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52 N. Ishimura, D. Ševčovič

1 Introduction

The purpose of this paper is to analyze special solutions to a fully nonlinear partial
differential equation which can be derived from the Hamilton–Jacobi–Bellman (HJB)
equation for the value function arising in a class of optimal allocation problems.
In many practical stochastic dynamic optimization problems, the goal is to maxi-
mize the expected value of the terminal utility. More precisely, let us suppose that
X = X θ

t , t ∈ [0, T ], is a stochastic process satisfying a stochastic differential equa-
tion (SDE):

dX θ
t = μθ

t (X θ
t )dt + σθ

t (X θ
t )dWt , (1)

where μθ
t and σθ

t > 0 are the drift and volatility of Itō’s stochastic process (1). Here
Wt (t ≥ 0) denotes the standard Wiener process. The goal is to find an optimal
response strategy {θ} = {θt | t ∈ [0, T ]} belonging to a set A of admissible strategies
and yielding the maximal expected utility from the terminal value X θ

T , i.e.,

max
{θ}∈A

E
[
u(X θ

T )|X θ
0 = x

]
. (2)

In this paper we consider the case when the optimal response strategy θ is restricted by
the unity from above, i.e., A = {{θ} | θt ≤ 1, 0 ≤ t ≤ T }. The function u represents
the terminal utility function. Throughout the paper we shall assume that u is a strictly
increasing and concave function, i.e., u′(x) > 0 and u′′(x) < 0 for all x ∈ R.

It follows from the theory of stochastic dynamic programming (see e.g. [4]) that
problem (2) can be solved by introducing the so-called value function

V (x, t) := sup
{θ}∈A

E[u(X θ
T ) | X θ

t = x]. (3)

Using the Bellman optimality principle combined with the tower law of conditioned
expectations it can be shown that the value function satisfies the so-called Hamilton–
Jacobi–Bellman (HJB) equation

∂V

∂t
(x, t) + max

{θ}∈A

{ (σ θ
t (x))2

2

∂2V

∂x2 (x, t) + μθ
t (x)

∂V

∂x
(x, t)

}
=0, V (x, T )=u(x),

(4)

for all x ∈ R and t ∈ [0, T ) (see e.g. [1,4,7,9]).
The main goal of this paper is to construct monotone traveling wave solutions to

the HJB equation (4) subject to the constraint A = {{θ} | θt ≤ 1, 0 ≤ t ≤ T } for
the optimal decision policy {θ}. Depending on the models considered, we show the
existence of traveling wave solutions with positive as well as negative wave speeds.

This paper is organized as follows. In the next section we investigate a simple HJB
equation with drift and volatility functions linearly depending on the optimal deci-
sion parameter θ . Using a Riccati-like transformation we transform the HJB equation,
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On traveling wave solutions to a Hamilton–Jacobi–Bellman equation 53

originally stated for the value function V into a fully nonlinear parabolic PDE for the
reciprocal value of the optimal response function θ . We construct a traveling wave
solution with a decreasing wave profile, and we extend the results to the case when the
underlying processes is governed by a SDE with a drift quadratically depending on the
parameter θ . In Sect. 3 we investigate a more general HJB equation with a volatility
function depending nonlinearly on the optimal decision policy parameter θ . We again
identify a range of model parameters for which a traveling wave solution exists and
has a monotonically increasing profile.

2 Construction of a traveling wave solution to the HJB equation with a positive
wave speed

In this section, we focus our attention to traveling wave solutions to the HJB equa-
tion. First, we shall examine a simplified model where the drift μθ

t (Xt ) and volatility
σθ

t (Xt ) are linear functions in θ . Then we generalize the results to the HJB equation
(4) with an underlying stochastic process satisfying a SDE (1) with a drift function
quadratically depending on the control parameter θ .

2.1 A simple HJB equation

In what follows, we shall analyze a simplified model capturing essential features of a
more complex model with general drift and volatility functions μ and σ . We assume
X θ

t is a Brownian motion with drift μθ = ωθ and volatility σθ = θ > 0, i.e.,

dX θ
t = ωθdt + θdWt ,

where ω > 0 is a positive parameter. We restrict our strategy θ by 1 from above.
Then the corresponding Hamilton–Jacobi–Bellman equation (3) for the value func-
tion V (x, t) reads as follows:

∂V

∂t
(x, t) + sup

θ≤1

{1

2
θ2 ∂2V

∂x2 (x, t) + ωθ
∂V

∂x
(x, t)

}
= 0, V (x, T ) = u(x). (5)

Suppose, for a moment, that (5) has a classical solution V such that ∂x V (x, t) > 0, and
∂2

x V (x, t) < 0 for all x ∈ R and t ∈ [0, T ]. For justification of such an assumption
we refer the reader to Proposition 3. Let us denote by θ∗(x, t) the optimal response
strategy at (x, t). It maximizes the function

R � θ �→ 1

2
θ2 ∂2V

∂x2 (x, t) + ωθ
∂V

∂x
(x, t) ∈ R
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54 N. Ishimura, D. Ševčovič

subject to the constraint θ ≤ 1. If the optimal response satisfies θ∗(x, t) < 1 then we
have

θ∗(x, t) = −ω
∂x V (x, t)

∂2
x V (x, t)

. (6)

Placing (6) back into (5) we obtain

∂V

∂t
− ω2

2

(∂x V )2

∂2
x V

= 0 for 0 < t < T, V (T, x) = u(x). (7)

Following [1] and [9] (see also [7]), we introduce the Riccati-like transformation

ϕ(x, t) := − 1

ω

∂2
x V (x, t)

∂x V (x, t)
. (8)

Recall that, in the context of optimal portfolio allocation problems, the function ϕ is
related to the so-called Arrow–Pratt coefficient of the absolute risk aversion (c.f. [10,
12]). Performing straightforward calculations, the evolution equation for ϕ becomes

∂ϕ

∂t
+ 1

2

∂

∂x

( 1

ϕ2

∂ϕ

∂x

)
= 0. (9)

In view of the optimal response function θ∗ = 1/ϕ, Eq. (9) is fulfilled by ϕ in the
region {(x, t), ϕ(x, t) > 1}. On the other hand, if ϕ(x, t) < 1, then the maximum
in (5) is attained at θ∗ = 1. Inserting θ = 1 into (5) we end up with an equation for
V (x, t) of the form:

∂V

∂t
+ 1

2

∂2V

∂x2 + ω
∂V

∂x
= 0, V (x, T ) = u(x).

In terms of the transformed function ϕ, it can be further reduced to

∂ϕ

∂t
+ 1

2

∂

∂x

(∂ϕ

∂x
− ω(1 − ϕ)2

)
= 0. (10)

It is easy to see that Eq. (10) is satisfied in the region {(x, t), ϕ(x, t) < 1}.
Combining Eqs. (9) and (10) allows us to rewrite them in a compact form

∂ϕ

∂t
+ ∂2

∂x2 A(ϕ) + ∂

∂x
B(ϕ) = 0, x ∈ R, t ∈ (0, T ), (11)

where

A(ϕ) =
{

1
2ϕ, for ϕ ≤ 1,

1 − 1
2ϕ

, for ϕ > 1,
B(ϕ) =

{−ω
2 (1 − ϕ)2, for ϕ ≤ 1,

0, for ϕ > 1.
(12)

Notice that A(ϕ) and B(ϕ) are increasing and C1 continuous functions.
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On traveling wave solutions to a Hamilton–Jacobi–Bellman equation 55

2.1.1 Construction of a traveling wave solution with a positive wave speed

In this subsection we shall construct a traveling wave solution to (11) of the form

ϕ(x, t) = v(x + c(T − t)), x ∈ R, t ∈ [0, T ],

with the wave speed c ∈ R where v = v(ξ) is a C1 function defined on R.
Inserting the aforementioned ansatz on the solution ϕ into (11) we conclude the

existence of a constant K0 ∈ R such that the function v = v(ξ) fulfills the identity

− cv(ξ) + d

dξ
(A(v(ξ))) + B(v(ξ)) = K0, (13)

for all ξ ∈ R. Let us introduce an auxiliary function z = z(ξ) as follows:

z(ξ) = A(v(ξ)).

Then ϕ(x, t) = v(x + c(T − t)) is a traveling wave solution to (11) if and only if the
function z is a solution to the ODE:

z′(ξ) = F(z(ξ)), (14)

where F(z) = K0 + cA−1(z) − B(A−1(z)). Clearly,

F(z) =
{

K0 + 2cz + ω
2 (1 − 2z)2, for z < 1

2 ,

K0 + c
2(1−z) , for 1

2 ≤ z < 1.
(15)

Notice that the function F is C1 continuous for z < 1. Its graph, for the case when
c > 0 and K0 + c < 0, is depicted in Fig. 1. In this case the function F has exactly
two roots z± such that F(z±) = 0 and 0 < z+ < 1/2 < z− < 1, where

z− = 1 + c

2K0
, z+ = 1

2
− c

2ω
− 1

2

√
c2/ω2 − 2(c + K0)/ω. (16)

We have F ′(z−) > 0 and F ′(z+) < 0 and F(z) < 0 for z+ < z < z−. Therefore, up
to a shift in the argument ξ , there exists a unique solution z = z(ξ) to (14) connecting
the steady states z± such that

lim
ξ→±∞ z(ξ) = z±, z+ < z(ξ) < z−, z′(ξ) < 0, ξ ∈ R.

The traveling wave profile v = v(ξ) is given by v(ξ) = A−1(z(ξ)). It satisfies:

lim
ξ→±∞ v(ξ) = v±, v+ < v(ξ) < v−, v′(ξ) < 0, ξ ∈ R,
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Fig. 1 A graph of the function F(z) in the case c > 0 and K0 + c < 0. The roots z± of the function F(z)
(left) and those of the function F̃(z) = F(z) − z (right)

with v± = A−1(z±). Clearly 0 < v+ < 1 < v−. On the other hand, we can prescribe
the limiting values v± and calculate the corresponding wave speed c > 0 and constant
K0. Indeed, it is straightforward to verify that, for 0 < v+ < 1 < v−, the wave speed
c and K0 are given by formulae:

c = ω

2

(1 − v+)2

v− − v+ , K0 = −cv−. (17)

Since F is a C1 smooth nonlinear function we obtain that the solution z is a C2

smooth function in the ξ variable. However, as A is just C1 smooth we obtain that the
traveling wave profile v is a C1 smooth function in the ξ variable only. As a conse-
quence, we have that the solution ϕ(x, t) = v(x + c(T − t)) is C1 smooth and it is a
weak solution to (11) in the usual sense.

2.2 A HJB equation for a quadratic drift function

In this section we shall assume the underlying stochastic process satisfying a SDE
(1) with a drift function μθ quadratically depending on the parameter θ , i.e. μθ :=
ωθ − 1

2θ2. The volatility is again assumed to be linear in θ , σθ := θ . The Hamilton–
Jacobi–Bellman equation (3) for the value function V has the form

∂V

∂t
(x, t) + sup

θ≤1

{
1

2
θ2 ∂2V

∂x2 (x, t) +
(

ωθ − 1

2
θ2

)
∂V

∂x
(x, t)

}
= 0,

V (x, T ) = u(x), (18)

In this case, the optimal response strategy θ̃∗(x, t) is given by

θ̃∗(x, t) = −ω
∂x V (x, t)

∂2
x V (x, t) − ∂x V (x, t)

, (19)
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On traveling wave solutions to a Hamilton–Jacobi–Bellman equation 57

provided that θ̃∗(x, t) < 1. The function V solves the nonlinear PDE:

∂V

∂t
− ω2

2

(∂x V )2

∂2
x V − ∂x V

= 0 for 0 < t < T, V (T, x) = u(x), x ∈ R. (20)

Applying the Riccati-like transformation

ϕ̃(x, t) := − 1

ω

∂2
x V (x, t) − ∂x V (x, t)

∂x V (x, t)
= − 1

ω

(
∂2

x V (x, t)

∂x V (x, t)
− 1

)
, (21)

it is easy to verify that the equation for ϕ̃ reads as follows:

∂ϕ̃

∂t
+ 1

2

∂

∂x

( 1

ϕ̃2

∂ϕ̃

∂x

)
− ∂

∂x

1

2ϕ̃
= 0, (22)

and it is satisfied by ϕ̃ in the region {(x, t), ϕ̃(x, t) > 1}. If ϕ̃(x, t) < 1, then the
maximum in (18) is attained at θ̃∗ = 1. In this case, the equation for the solution
V (x, t) and its Riccati transformation ϕ̃ are as follows:

∂V

∂t
+ 1

2

∂2V

∂x2 +
(

ω − 1

2

)
∂V

∂x
= 0, V (x, T ) = u(x),

and

∂ϕ̃

∂t
+ 1

2

∂

∂x

(∂ϕ̃

∂x
− ω(1 − ϕ̃)2 + ϕ̃

)
= 0, (23)

provided that ϕ̃(x, t) < 1. Hence we can rewrite the equation for ϕ̃ as follows:

∂ϕ̃

∂t
+ ∂2

∂x2 Ã(ϕ̃) + ∂

∂x
B̃(ϕ̃) = 0, x ∈ R, t ∈ (0, T ), (24)

where Ã(ϕ) = A(ϕ) and B̃(ϕ) = B(ϕ) + A(ϕ) (A and B are defined in (12)).
Next, following the analysis from Sect. 2.1.1, we can construct a traveling wave

solution to (24) of the form

ϕ̃(x, t) = ṽ(x + c̃(T − t)), x ∈ R, t ∈ [0, T ],

with the wave speed c̃ ∈ R and the profile ṽ = ṽ(ξ). Since Ã ≡ A and B̃ ≡ B + A
the transformed wave profile z̃(ξ) = A(ṽ(ξ)) should satisfy the ODE:

z̃′(ξ) = F̃(z̃(ξ)), (25)

where F̃(z) = F(z) − z and F is defined by (15), i.e. F(z) = K0 + c̃A−1(z)
− B(A−1(z)). Here K0 is a constant. In Fig. 1 (right) we plot the graph of a function
F(z) for c̃ > 0 and K0 + c̃ < 0. In such a situation, the function F̃ has exactly two
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58 N. Ishimura, D. Ševčovič

roots 0 < z̃+ < 1/2 < z̃− < 1 such that F(z̃±) = z̃±. Furthermore, F̃ ′(z̃−) > 0 and
F̃ ′(z̃+) < 0. As in the previous Sect. 2.1.1, there exists, up to a shift in the argument ξ ,
a unique solution z̃ = z̃(ξ) connecting the steady states, i.e. limξ→±∞ z̃(ξ) = z̃±. The
corresponding traveling wave profile ṽ = ṽ(ξ) given by ṽ(ξ) = A−1(z̃(ξ)) satisfies:

lim
ξ→±∞ ṽ(ξ) = ṽ±, ṽ+ < ṽ(ξ) < ṽ−, ṽ′(ξ) < 0, ξ ∈ R,

where ṽ± = A−1(z̃±), 0 < ṽ+ < 1 < ṽ−. Again we can prescribe the limiting values
0 < ṽ+ < 1 < ṽ− and calculate the corresponding wave speed c̃ > 0 and constant K0.
Since 0 = F̃(z̃±) = K0 + c̃ṽ± − B̃(ṽ±) we have c̃ = (B̃(ṽ−) − B̃(ṽ+))/(ṽ− − ṽ+)

and K0 = −c̃ṽ− + B̃(ṽ−). Since B̃ ≡ B + A we have

c̃ =
ω
2 (1 − ṽ+)2 + 1 − 1

2ṽ− − ṽ+
2

ṽ− − ṽ+ . (26)

Summarizing the results of this section we conclude the following theorem.

Theorem 1 For any limiting values 0 < v+ < 1 < v− there exists a speed c > 0
given by (17) such that the Hamilton–Jacobi–Bellman equation (5) with a range bound
{θ ≤ 1} has a solution V (x, t) such that the optimal response function θ∗(x, t) given
by (8) has the form of θ∗ = min(1, 1/ϕ) where ϕ(x, t) = v(x + c(T − t)) and v(ξ)

is a C1 smooth and strictly decreasing function, limξ→±∞ v(ξ) = v±.
The statement remains true if we consider the HJB equation (18) for the reduced

optimal portfolio selection problem with the traveling wave profile ϕ̃(x, t) = ṽ(x +
c̃(T − t)), limξ→±∞ ṽ(ξ) = ṽ± and the optimal response function θ̃∗ = min(1, 1/ϕ̃).
Here the wave speed c̃ > 0 is given by (26) for any prescribed limiting values 0 <

ṽ+ < 1 < ṽ−.

Proposition 1 For HJB equations (5) and (18) there is no traveling wave profile with
negative wave speed.

Proof Indeed, for the traveling wave speed we have c= (B(v−)−B(v+))/(v−−v+)

> 0 because the function B is increasing. Analogously, c̃ > 0 as B̃ = B + A is an
increasing function. Moreover, the profile v(ξ) is always a decreasing function, as
there are no roots 0 < z− < 1

2 < z+ < 1 of F such that F ′(z−) > 0 and F ′(z+) < 0.
The latter follows from the inequality F(0) = K0 + ω

2 > K0 + c = F( 1
2 ) and

F(1−) = −∞ in the case c < 0. The same statement holds true for the profile ṽ

(Figs. 2, 3). �

3 A HJB equation with more general drift and volatility functions

One disadvantage of the HJB equations with a bounded constraint discussed in Sects.
2.1 and 2.2 is the fact that there is no traveling wave solution with increasing wave
profile v. As a consequence, the optimal response function θ∗(x, t) is nondecreasing
with respect to x . In this section we analyze a HJB equation with more general drift

123

Author's personal copy



On traveling wave solutions to a Hamilton–Jacobi–Bellman equation 59

Fig. 2 A graph of the function z (left) and the traveling wave profile v (right) for the parameter values
ω = 1, v+ = 0.5, v− = 2

Fig. 3 Graphs of the function φ(x, t) (left) and the response function θ∗(x, t) (right)

and volatility functions. Under suitable assumptions made on the model parameters,
we shall prove that there exists a traveling wave solution having an increasing wave
profile v and negative wave speed c < 0.

We shall assume that a stochastic process X θ
t follows a Brownian motion

d X θ
t = μθ dt + σθ dWt

with drift μθ and volatility σθ given by

μθ = β + ωθ, (σ θ )2 = 2

(
α2 + 1

m
|θ |m

)
,

where α, β, ω, m ∈ R, m > 1, and ω > 0 are model parameters. We again restrict
our response strategy θ by 1 from above. The corresponding HJB equation (3) for the
value function V (x, t) reads as follows:

∂V

∂t
(x, t) + sup

θ≤1

{(
α2 + 1

m
|θ |m)∂2V

∂x2 (x, t) + (β + ωθ)
∂V

∂x
(x, t)

}
= 0,

V (x, T ) = u(x). (27)

The simplified model discussed in the previous section corresponds to the choice
α = β = 0, and m = 2.
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60 N. Ishimura, D. Ševčovič

Again, supposing ∂x V > 0 and ∂2
x V < 0 the unconstrained optimal response

strategy θ̄ at (x, t) is the unique argument of the maximum of the function

θ �→
(

α2 + 1

m
|θ |m

)
∂2

x V + (β + ωθ)∂x V .

Therefore

θ̄ = ϕ− 1
m−1 ,

where we have again employed the new variable ϕ defined by means of the Riccati-like
transformation:

ϕ(x, t) := − 1

ω

∂2
x V (x, t)

∂x V (x, t)
.

Now, if ϕ(x, t) > 1 at (x, t) then θ̄ (x, t) < 1 and therefore, for the optimal response
θ∗(x, t), we have θ∗(x, t) = θ̄ (x, t). Hence the value function V (x, t) satisfies

∂V

∂t
+

(
α2 + 1

m
ϕ− m

m−1

)
∂2V

∂x2 +
(
β + ωϕ− 1

m−1

) ∂V

∂x
= 0.

Notice the following recurrent relations:

∂2
x V = −ωϕ∂x V, ∂3

x V = (ω2ϕ2 − ω∂xϕ)∂x V . (28)

Using the relation for ∂2
x V we can rewrite the equation for V in the form:

∂V

∂t
+ g

∂V

∂x
= 0, where g = β − ωα2ϕ + ω

m − 1

m
ϕ− 1

m−1 . (29)

Since

∂ϕ

∂t
= − 1

ω

∂3
xxt V

∂x V
+ 1

ω

∂2
xx V ∂2

xt V

(∂x V )2 = ∂ϕ

∂t
= − 1

ω

∂3
xxt V

∂x V
− ϕ

∂2
xt V

∂x V
(30)

we obtain from (29) and (28) the equation

∂ϕ

∂t
= 1

ω

∂2g

∂x2 − ∂

∂x
(gϕ), (31)

which can be further rewritten in terms of the function ϕ as follows:

∂ϕ

∂t
+ ∂2

∂x2

(
α2ϕ − m − 1

m
ϕ− 1

m−1

)
+ ∂

∂x

(
βϕ − ωα2ϕ2 + m − 1

m
ωϕ

m−2
m−1

)
= 0,

(32)

provided that ϕ(x, t) > 1.
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On traveling wave solutions to a Hamilton–Jacobi–Bellman equation 61

On the other hand, if ϕ(x, t) < 1 at (x, t) then θ̄ (x, t) > 1 and therefore for the
optimal response θ∗(x, t) which is restricted by 1 from above we have θ∗(x, t) = 1.
Then the value function V (x, t) satisfies the following equation:

∂V

∂t
+

(
α2 + 1

m

)
∂2V

∂x2 + (β + ω)
∂V

∂x
= 0.

In view of relations (28) we have

∂V

∂t
+ g̃

∂V

∂x
= 0, where g̃ = β + ω − ω

(
α2 + 1

m

)
ϕ.

Using (30), (28) and (31) (with g replaced by g̃) we finally obtain the following reaction
diffusion equation

∂ϕ

∂t
+

(
α2 + 1

m

)
∂2ϕ

∂x2 + ∂

∂x

(
(β + ω)ϕ − ω

(
α2 + 1

m

)
ϕ2

)
= 0, (33)

which is fulfilled by ϕ in the case when ϕ(x, t) < 1.
Similar to the simplified problem (α = β = 0, and m = 2) in both cases ϕ > 1

and ϕ < 1 we obtain that the function ϕ is a solution to (11), that is:

∂ϕ

∂t
+ ∂2

∂x2 A(ϕ) + ∂

∂x
B(ϕ) = 0, (34)

where

A(ϕ) =
⎧
⎨

⎩

(α2 + 1
m )ϕ, for ϕ ≤ 1,

1 − m−1
m ϕ− 1

m−1 + α2ϕ, for ϕ > 1,

(35)

B(ϕ) =
⎧
⎨

⎩

(β + ω)ϕ − ω(α2 + 1
m )ϕ2 − ω m−1

m , for ϕ ≤ 1,

βϕ − ωα2ϕ2 + m−1
m ω(ϕ

m−2
m−1 − 1), for ϕ > 1.

(36)

Notice that we have added appropriate constants to the definition of B in order to
make it continuous across the value ϕ = 1. Both functions A and B are C1 continuous
functions for ϕ > 0. Moreover, the function A is strictly increasing.

3.1 A traveling wave solution with negative wave speed

The aim of this subsection is to show, for suitable model parameters α, β, ω and m,
that there exists a traveling wave solution ϕ to (11) with increasing wave profile v.
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Fig. 4 A graph of the functions B(v) and K0 + cv for model parameters: m = 3/2, α = β = 0,

c = −K0 = −0.1, ω = 1

To this end, we search for a traveling wave solution to (11) of the form

ϕ(x, t) = v(x + c(T − t)), x ∈ R, t ∈ [0, T ],

with negative wave speed c < 0 and where v = v(ξ) is a C1 function defined on R.
Inserting the traveling wave form of a solution ϕ into (11) we obtain that the func-
tion v = v(ξ) should fulfill identity (13). Again, we introduce an auxiliary function
z(ξ) = A(v(ξ)). With this substitution, ϕ(x, t) = v(x + c(T − t)) is a traveling wave
solution to (11) if and only if the function z is a solution to the ODE:

z′(ξ) = F(z(ξ)), where F(z) = G(A−1(z)), G(v) = K0 + cv − B(v). (37)

Notice that the function G is C1 continuous for v > 0. The function A(v) is increasing
for v > 0 and its range is the interval (0, 1) if α = 0, and (0,∞) if α �= 0. In order to
construct an increasing traveling wave profile v such that limt→±∞ v(ξ) = v± where
0 < v− < 1 < v+, we first have to find roots z± = A(v±) of the function F such that
F(z) > 0 for z− < z < z+ and F ′(z−) > 0, F ′(z+) < 0. To this end, it is sufficient
to investigate the roots and behavior of the function G(v) for positive v > 0. Clearly,
if m ≥ 2 then the function B is concave, B ′′(v) ≤ 0, v �= 1. Thus G is convex and
there are no roots v± such that G(v) > 0 for v− < v < v+. For this reason we cannot
find the desired form of a traveling wave solution ϕ for the case m ≥ 2.

The function v �→ B(v) is strictly concave for v ≤ 1. It has a local maximum at
v− = β+ω

2ω(α2+1/m)
and it is strictly convex for v > 1 provided that ω > 0, α = 0 and

1 < m < 2. Notice that, for α = β = 0, 1 < m < 2 the maximum of B is attained
at v− = m/2. In what follows, we restrict ourselves to the case α = β = 0, and
m ∈ (1, 2). Inspecting the behavior of the function B (see also Fig. 4) we conclude
the following result.

Theorem 2 Assume that α = β = 0, m ∈ (1, 2), and ω > 0. Let the limits v± be
such that v− < v− < 1 and v+ > v+ > 1 where v− = m/2 < 1 and v+ > 1 is the
unique root of the secant equation B(v+) − B(v−) = B ′(v−)(v+ − v−).

1. there exists a traveling wave speed c < 0 given by

c = B(v+) − B(v−)

v+ − v−
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and intercept K0 = B(v−) − cv− such that G(v±) = 0 and G ′(v−) > 0 and
G ′(v+) < 0;

2. there exists a solution V (x, t) to HJB (27) with the optimal response function

θ∗(x, t) given by θ∗ = min(1, ϕ− 1
m−1 ) where ϕ(x, t) = v(x + c(T − t)) and v(ξ)

is a C1 smooth and strictly increasing function, limξ→±∞ v(ξ) = v±.

Proof Part 1 follows from the behavior of the function B given by (36) for parameter
values α = β = 0, m ∈ (1, 2) and ω > 0. Notice that the condition v+ > v+, where
v+ is the unique root of the secant equation B(v+) − B(v−) = B ′(v−)(v+ − v−), is
necessary in order to find two roots of the equation K0+cv = B(v) where c > B ′(v−)

with the property G(v−) ≡ c − B ′(v−) > 0 and G(v+) ≡ c − B ′(v+) < 0.
Part 2. Since the function A is strictly increasing and G ′(v−) > 0 and G ′(v+) < 0

the ODE (37) has a solution z = z(ξ) such that F(z±) = 0 and F(z) > 0 for
z− < z < z+ and F ′(z−) > 0, F ′(z+) < 0 where z± = A(v±).

Then there exists a traveling wave solution ϕ to (11) of the form ϕ(x, t) = v(x +
c(T − t)) with negative wave speed c < 0 where v(ξ) = A−1(z(ξ)). Moreover,
limξ→±∞ v(ξ) = v± = A−1(z±). If ϕ(x, t) > 1 then the optimal response θ∗(x, t) is

given by θ∗(x, t) = θ̄ (x, t) = ϕ(x, t)−
1

m−1 . On the other hand, θ∗(x, t) = 1 provided
that ϕ(x, t) ≤ 1, which concludes the proof. �

By a non-monotone traveling wave solution we mean a non-constant solution whose
derivative changes the sign several times.

Proposition 2 There are no non-monotone traveling wave solutions to the fully non-
linear equations (11) and (34) analyzed in Sects. 2.1.1 and 3.1, respectively.

Proof We follow the ideas from [7]. If we assume to the contrary z′(ξ0) = 0 then,
as a consequence of the uniqueness of solutions to ODEs (37) and (14), we obtain
z(ξ) ≡ const for all ξ ∈ R. Consequently, the profile v is constant, a contradiction. �

We finish this section with two computational examples. In Fig. 5 we plot a graph of
the function G(v) for the model parameters: m = 3/2, α = β = 0, c = −K0 = −0.1
and ω = 1. In this case we have v− = 1 is a root of G. Moreover, B ′(1) = ω m−2

m
and so G ′(1) = c − ω m−2

m . Hence G ′(v−) > 0 if and only if c > −ω 2−m
m . The

function G also has a root v+ = 10/3 > 1. Since m = 3/2 and K0 + c = 0 we have
the analytic expression for v+ = ω

−3c > 1. Moreover, G ′(v+) = c + 3c2 < 0 for
ω = 1, c = −K0 = −0.1, and m = 3/2. In Fig. 6 we plot a graph of the function
z and the traveling wave profile v. The functions φ(x, t) and the optimal response
function θ∗(x, t) are depicted in Fig. 7.

For parameter values: m = 3/2, α = β = 0, c = −0.08, K0 = 0.1, and ω = 1
the function has three roots. An unstable root is located at v− ≈ 0.888 < 1 and a
stable root exists at v+ ≈ 4.488 > 1. Therefore the traveling wave solution ϕ(x, t)
becomes strictly less than 1 for x → −∞. Hence the optimal response function

θ∗(x, t) = min(1, ϕ− 1
m−1 (x, t)) is identically 1 for all sufficiently large negative x

(see Fig. 8).
Finally, we give a justification of the assumption made on the value function V .

In what follows, we shall prove that ∂2
x V < 0 and ∂x V > 0.
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Fig. 5 A graph of the function G(v) for model parameters: m = 3/2, α = β = 0, c = −K0 = −0.1, ω =
1 (left). In this case v− = 1, v+ = 10/3. A graph of the function F(z) = G(A−1(z)) (right) with roots
z− = 2/3, z+ ≈ 0.97

Fig. 6 A graph of the function z (left) and the traveling wave profile v (right) for the parameter values
m = 3/2, α = β = 0, c = −K0 = −0.1, ω = 1

Fig. 7 Graphs of φ(x, t) (left) and the optimal response function θ∗(x, t) (right)

Fig. 8 A graph of the optimal response function θ∗(x, t) attaining the prescribed boundary θ = 1 (left), a
graph of the optimal value θ∗(x, t) computed by the stochastic dynamic optimization model [8] (right)
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Proposition 3 Suppose that the terminal condition V (x, T ) ≡ u(x) is a smooth func-
tion and there exist constants λ± > 0 such that λ− < −u′′(x)/u′(x) < λ+ for
all x ∈ R. Then λ−/ω < ϕ(x, t) < λ+/ω for all x ∈ R and t ∈ [0, T ] where
ϕ is a solution to Eq. (5) or (18) and satisfying the terminal condition ϕ(x, T ) =
−(1/ω)u′′(x)/u′(x), x ∈ R.

Furthermore, for the value function V it holds: ∂2
x V (x, t) < 0 and ∂x V (x, t) > 0

for all x ∈ R and t ∈ [0, T ]

Proof Equations (5) as well (18) are strictly parabolic partial differential equations
with a strictly positive diffusion coefficient A′(φ) which is uniformly bounded from
below and above. Using the parabolic maximum principle we conclude λ−/ω <

ϕ(x, t) < λ+/ω for all x ∈ R and t ∈ [0, T ], provided that λ−/ω < ϕ(x, T ) ≡
−(1/ω)u′′(x)/u′(x) < λ+/ω for all x ∈ R.

Concavity and the monotonicity of the value function V can be now deduced from
the fact −∂2

x V (x, t)/∂x V (x, t) = ωφ(x, t) ∈ (λ−, λ+). �

4 A motivation for analyzing HJB equations with range bounds

The optimal allocation problem has a long history of research and much progress
has been made so far (see for instance Dupačová [4]). For a comprehensive overview
of the stochastic dynamic optimization problems of the form (2) with the prescribed
terminal value we refer the reader to papers by Merton [11], Browne [3], Bodie et al.
[2] and to the wide range of literature referenced therein.

As an example of a process X θ
t of the form (1) one can consider a stochastic process

representing returns on the accumulated sum of a saver’s portfolio consisting of vola-
tile stocks and less volatile bonds. The time discrete version of the stochastic dynamic
accumulation model has been proposed and analyzed by Kilianová et al. [8]. In the
time continuous limit, according to the pension savings accumulation model analyzed
by Macová and Ševčovič [9], we have Xt = ln Yt where the stochastic variable Yt

represents the logarithm of a ratio Yt of the accumulated sum in the pension account
and the yearly salary of a future pensioner. More precisely, by choosing a portfolio
consisting of θ ∈ [0, 1] part of stocks and 1 − θ part of bonds one can derive the SDE
for the ratio Yt :

dY θ
t = (ε + μθ Yt )dt + σθ Yt dWt , (38)

where μθ = θμs +(1−θ)μb and (σ θ )2 = θ2(σs)
2 +(1−θ)2(σb)

2 +2θ(1−θ)σsσb

(c.f. [9]). In this model, μs, μb and σs, σb denote the expected returns and volatilities
on stocks and bonds, respectively. Here  ∈ (−1, 1) is a correlation between returns
on stocks and bonds. Using Itō’s lemma for the variable Xt = ln Yt , we obtain the
following SDE:

dX θ
t =

(
εe−Xt + μθ − 1

2
(σ θ )2

)
dt + σθdWt . (39)
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In a stylized financial market, one can assume the expected return μb on bonds to
be very small when compared to μs and also σb � σs . Furthermore, we notice that
the yearly contribution rate ε > 0 can be considered as a small model parameter (the
value ε = 0.09 was accepted in Slovakia, ε = 0.03 was proposed in Czech repub-
lic, and, ε = 0.14 was accepted in Bulgarian pension fund system). The asymptotic
expansions of a solution to the corresponding HJB equation with respect to the small
parameter 0 < ε � 1 have been analyzed in [9]. By taking the formal asymptotic
limit ε → 0, μb → 0, σb → 0 and rescaling the time t �→ t/σ 2

s , we end up with the
following reduced SDE governing the variable Xt :

dX θ
t =

(
ωθ − 1

2
θ2

)
dt + θdWt , (40)

where ω = μs/σ
2
s is the Sharpe (reward-to-variability) ratio of returns on bonds. Such

an underlying stochastic process corresponds to the one analyzed in Theorem 1. The
wave speed of the traveling wave solution from Theorem 1 is positive, c > 0 and the
profile v is a decreasing function, v′ < 0. As a consequence, we have ∂tϕ > 0 and
∂xϕ < 0. Hence, for the optimal response function θ∗ = min(1, 1/ϕ), we obtain the
following properties:

∂tθ
∗(x, t) ≤ 0, ∂xθ

∗(x, t) ≥ 0, x ∈ R, t ∈ (0, T ).

From the optimal allocation portfolio problem point of view, the decreasing behavior
of the proportion of stocks θ∗ in the portfolio with respect to time can be interpreted
as the necessity to be more conservative in investing when the time horizon T is
approached. On the other hand, increasing dependence of θ∗ with respect to the accu-
mulated property x indicates an increase of the investor’s risk selection preference
with the increase of the accumulated property x .

5 Conclusions

In this paper we have investigated traveling wave solutions to a fully nonlinear para-
bolic PDE arising from the model of a stochastic dynamic optimal allocation problem.
Our approach is based on the method solving and analyzing the fully nonlinear par-
abolic partial differential equation which can be constructed from the corresponding
Hamilton–Jacobi–Bellman equation. Under certain assumptions made on the form of
the underlying stochastic process, we found a range of parameters for which a trav-
eling wave solution can be constructed. More precisely, we identified parameters for
which the traveling wave profile is monotonically decreasing or increasing and it has
positive or negative wave speed, respectively.
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