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On a Gradient Flow of Plane Curves Minimizing
the Anisoperimetric Ratio

Daniel Sevéovi¢ and Shigetoshi Yazaki

Abstract—We analyze a gradient flow of closed planar curves Jiang and Zhu [14] for convex curves and by the authors in
minimizing the anisoperimetric ratio. For such a flow the [23] for general closed Jordan curves evolving in the plane.
normal velocity is a function of the anisotropic curvature and Recently, a classical nonlocal curvature flow preserving

it also depends on the total interfacial energy and enclosed - . . .
area of the curve. In contrast to the gradient flow for the the enclosed area was reinvestigated by gaal. in [25].

isoperimetric ratio, we show there exist initial curves for which  They proved uniform upper bound and lower bound on the
the enclosed area is decreasing with respect to time. We alsocurvature. Furthermore, Maet al. [17] showed that such
derive a mixed anisoperimetric inequality for the product of a nonlocal flow will decrease the perimeter of the evolving
total interfacial energies corresponding to different anisotropy . ,rve and make the curve more and more circular during
functions. Finally, we present several computational examples . . . "
illustrating theoretical results. the evolution process. Applymg |ne.qual|t|es of Andrews
] ) ) ] ) _and Green-Osher type, Lin and Tsai [15] showed that the
Index Terms—Anisoperimetric ratio, gradient geometric o\, ing curves will converge to a round circle, provided
flows, mixed anisoperimetric ratio inequality, tangential sta- . e
bilization that the curvature is a-priori bounded. However, most of
those fine results for area preserving flow still have to be
extended to the case of a class of non-local flows minimizing
the isoperimetric and/or anisoperimetric ratio.
T HE goal of this paper is to investigate a geometric The main goal of this paper is twofold. First we derive the
flow of closed plane curvek’,¢ > 0, minimizing the npormal velocity3 corresponding to the anisoperimetric ratio
anisoperimetric ratio. We will show that the normal velocit)gradient flow. It turns out that = k,— L, /(24) wherek, is
f for such a geometric flow is a function of the anisotropighe anisotropic curvature, i.8.has the form of (1). We derive
curvature, the total interfacial energy and enclosed area{d analyze several important properties of such a geometric
an evolved curve, flow. In contrast to the isoperimetric ratio gradient flow (c.f.
B = 6wk + Fr, (1) Jia_ng and_ Zhu [14], [23_])_, we s_how that the anisoperimetric
ratio gradient flow may initially increase the total length and,
wheref; is the curvature and(v) > 0 is a strictly positive co- conversely, decrease the enclosed area of evolved curves.
efficient depending on the tangent anglat a pointz € I'*.  |n order to verify such striking phenomena, an accurate
Here Fr is a nonlocal part of the normal velocity dependingumerical discretization scheme for fine approximation of
on the entire shape of the cure=T"* and the termi(v)k  the geometric flow has to be proposed. This is the second
represents the anisotropic curvature. In typical situations, thencipal goal of the paper. We derive a numerical scheme
nonlocal part is a function of the enclosed aréaand the pased on the method of flowing finite volumes with combi-
interfacial energyL, = [;.ods, i.e. Fr = F(A, L,). As an nation of asymptotically uniform tangential redistribution of

|. INTRODUCTION

example one can consider grid points. The idea of a uniform tangential redistribution
o has been proposed by Hat alin [13] and further analyzed
p=k- I by Mikula andSevcovic in [18]. The asymptotically uniform

whereL = L, is the length of an evolved closed cutvelt tangentia_l redistribution has been analyzed in [20], [19]. The
is well known that such a flow represents the area presefi:'€me is tested on the area-decrease and length-increase
ing geometric evolution of closed embedded plane curvB€nomena as well as on various other examples of evolution
investigated by Gage [8]. Among other geometric flows witfRf initial curves havmg_large variations in the curvature. _
nonlocal normal velocity we mention the curvature driven 1h€ pﬁ‘pfhr 1S organlze]cd as fol!owsl.DIIDnEth((aj nex_tb_sect;ﬁn
i i ; ; we recall the system of governin s describin e
length preserving flow in whicl¥ = k — 5~ [, k2ds studed : Yy g ng S g
by Ma and Zhu [16] and the inverse curvature driven flogvolution of all relevant geometric quantities. In section
preserving the length3 = —k~' + L studed by Pan 3 we recall basic properties the anisotropic curvature and
2 . . . .
and Yang [21]. The isoperimetric ratio gradient flow with/Vulff shape. We prove an important duality identity be-
8 = k — L/(24) has been proposed and investigated bt)\;veen total interfacial energies corresponding to different
anisotropies. In section 4 we investigate a gradient flow
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anisotropy functions. In section 6 we investigate propertiesads as follows:
of the enclosed area for the anisoperimetric gradient flow.

In contrast to a gradient flow for the isoperimetric ratio, Opk = 03B + adsk + K2, 3)
we will show that there are initial convex curves for which O = 058 + ak, 4)
the enclosed area is strictly decreasing. Finally, in section Og = (—kB + 0sa) g, (5)

7 we construct a counterexample to a comparison principle 9
showing that there initial noni?\teresting Clﬁ)rves suFZ:h thF;t O = 0(v)0;® + adsw + FT N, (6)
they intersect each other immediately when evolved in thg; ,, < [0, 1] and¢ > 0. Hereg = |9, x| is the so-called local
normal direction by the anisoperimetric ratio gradient flow. Ifength (c.f. [18]). A solution to (3)—(6) is subject to periodic
section 8 we derive a numerical scheme for solving curvatusgyndary conditions fog, k, @ atu = 0,1, (0,t) = v(1,¢t)
driven flows with normal velocity depending on no-locafhod@r) and the initial conditiork(-,0) = ko(-), v(-,0) =
terms. The scheme is based on a flowing finite volumg ) 4(. 0) = g(-),z(-,0) = xo(-) corresponding to the
method combined with a precise scheme for approximatifitial curve I'® = Image(z?).
of non-local terms. We present several numerical examples oca| existence and continuation of a classical smooth
illustrating theoretical results and interesting phenomena fg¥ tion to system (3)-(6) has been investigated by the
the gradient flow for anisoperimetric ratio. authors in [22], [23]. In this paper we therefore take for
granted that classical solutions to (3)—(6) exists on some
Il. SYSTEM OF GOVERNING EQUATIONS AND CURVATURE maximal time interval0, T;,,..) (c.f. [23], [20]).
ADJUSTED TANGENTIAL REDISTRIBUTION

In this section we recall description and basic properties of 1l1l. THE WULFF SHAPE AND INTERFACIAL ENERGY
geometric evolution of a closed plane Jordan curwehich FUNCTIONAL
can be parameterized by a smooth function [0, 1] — R?
such thafl’ = Image(x) = {x(u); u € [0,1]} and|d, x| >
0. We identify the interval[0, 1] with the quotient space
R/Z by imposing periodic boundary conditions f@(u) at
u =0,1. We denote):F = 9F/9¢, and|a| = \/a - a where
a-b is the Euclidean inner product between vecterandb.
The unit tangent vector is given By = 9,z /|0,x| = dsx,
where s is the arc-length parametels = |9,x|du. The B
unit inward normal vector is defined in such a way that Lo () = /FU(V) ds
det(T, N') = 1. Then the signed curvatutfein the direction
N is given byk = det(d,x, 0%x). Let v be a tangent angle,
i.e.,, T = (cosv,sinv)T and N = (—sinv,cosv)T. From

The anisotropic curvature driven flow of embedded closed
plane curves is associated with the so-called interfacial
energy density (anisotropy) functioa defined onT'. It
is assumed that = o(v) is a strictly positive function
depending on the tangent angteonly. With this notation
we can introduce the total interfacial energy

associated with a given anisotropy density functonf o =
1 thenL(T) is just the total length.(T") of a curvel’. The

the Frenét formulag),T = kN and O,.N = —kT we Wulff shape is defined as an intersection of hyperplanes:
deduce thab,v = k.

Geometric evolution problem can be formulated as fol- Wo = ﬂ {w = ($1a$2)T; —x- N < U(V)}-
lows: for a given initial curve® = Image(z®) =T, find a vest
family of curve {I"};>o, I'* = {z(u, t); u € [0,1]} starting |f the boundarydW,, of the Wulff shape is smooth and it
fromI'? and evolving in the normal direction with the velocis parameterized by, = {x = —-0()N +a(v)T,v €

ity 5. In this paper we follow the so-called direct approacfy 27}, then, it follows from the relatiom,» = k that
in which evolution of the position vectot = x(u,t) is

governed by the equation: T =0sx = (—0'(v) + a(v))kN + (o(v) + ' (v))kT.

orx = BN +aT, x(-,0)=z"(). (2) Hencea(v) = o’'(v) and(c(v)+¢”(v))k = 1 holds and the

. . i boundaryoW, can be parameterized as follows:
Here « is the tangential component of the velocity vector.

Note thata has no effect on the shape of evolving closed oW, = {x; z = —o(v)N + o' (v)T, v € [0,27]},
curves, and the shape is determined by the value of the

normal velocity3 only. Therefore, one can take take= 0 and its curvature is given by = (o(v) + o”(v))~". Let
when analyzing analytical properties of the geometric floWs denote by, the anisotropic curvature defined Iy :=
driven by (2). On the other hand, the impact of a suitabl@(¥) +¢”(v))k. It means that the anisotropic curvaturg
choice of a tangential velocity on construction of robust of the boundarydW,, of the Wulff shapelV,, is constant,
and stable numerical schemes has been pointed out by mény= 1. Moreover, the are@V;| = A(OW,) of the Wulff

authors (see [22], [23] and references therein). shape satisfies:
In what follows, we shall assume thgt= 6(v)k + Fr 1 1
where 6(v) > 0 is a strictly positive2r-periodic smooth Wo| = —5/ x-Nds= 5/ o(v)ds
function of the tangent angle and Fr is a nonlocal part 1 oWo oWo
of the normal velocity depending on the entire shape of the = —L,(0W,).

curveI'. According to [19] (see also [18], [20]) the system
of PDEs governing evolution of plane curves evolving ilearly, |W;| = = for the cases = 1. If we consider the
the normal and tangential directions with velocitigeinda  anisotropy density functioa(v) = 1 + ¢ cos(mv) for m =
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2,3,---, ¢(m? — 1) < 1 then the area ofV, can be easily given curvel' = I'° and the boundary” = oW, of the
calculated: Wulff shapeW,. The homotopy can be realized by taking
1 1 [2m a suitable normal velocityy (eventually depending on the
W = —/ (v)ds = = / o(c" +o)dv position vectorz). Using such a normal velocity we deduce
2 Jow, 0 the identity:
- :
= 5(2752(m271)). (7)
In Fig 1 we plot shapes oWV, for various degreesx. /Fkads = /aw kods = L(OW,). 9)

It means thatfF k,ds is equal to the length of the boundary

oW, of the Wulff shape. The same result has been recently
obtained by Barretet al. in [2, Lemma 2.1]. We can say
that identity (9) is a generalization of the rotation number:
5= Jp kds =1, since2r = L(0Wh).

Remark 1:ldentity (9) can be easily shown for convex
curves. Indeed, ifl" is convex then its arc-length param-

eterizations can be reparameterized by the tangent angle
v € [0,2n]. We haved,yr = k > 0 and therefore

ds = k~'dv. Hence
2w
/ kods = / okds = / o(v)dv.
r r 0
For the lengthL(0W,) of the boundary of a convex Wulff

shape we obtain

Fig. 1. The Wulff shapedV,, form = 2,--- ,6 ande = 0.99/(m? —1). 27 9
L(OW,) = / ds :/ —dv
oW, 0
. . 27 27
I" do not depend on the tangential velocity we may / [a(y)+a”(y)]dy:/ o(v)dv.
take o = 0. Henced,g = —kfBg and O, = 0,5. These 0 0
identities follow from (4) and (5) withh = 0. Recall that

Since the global quantities evaluated over the closed curve
Osv = k. Thereforedso’(v) = o"(v)dsv = o"(v)k and O Therefore ;. k,ds = L(OW,) becausef;" o (v)dv = 0

Jro"(v)kds = 0. Hence andk = [o(v)+0"(v)]* ondW,. If T is not convex we can
apply the famous Grayson’s theorem [12]. We let it evolve
/Fk ds = /Fak’ds according to the normal velocitg = k until a timet = T

whenT'7 becomes convex. Using (8) and previous argument
holds. For the time derivative ofF k-ds we obtain we again obtain identity (9).
d 1 Let us denote byL; the total interfacial energy corre-
% / kyds = — akzgdu = / [0t (ck)g + okdrgldu sponding toc = 1, i.e. L = L. LetT" = OW; be the unit
0 circle. Then, by applying identity (9), we deduce
= / [8t(0k) — ok*B]ds
r

. L1(0W,) = Ly (0Wr). (10)
= / (ko (v) + o(v)Oik — o(v)k*B]ds
A Latter identity can be rephrased as follows: the length of the
= /[k;a'(z/)atu + o(v)(0sk — K*B)]ds boundaryoW, of the Wulff shape equals to the total inter-
r facial energy of the unit circle. It can be easily generalized
= /[k;g’(y)asﬁ + o(v)9?f]ds = 0, to the case of arbitrary two anisotropie&/) and u(v). We
r have the following proposition:
becausé;k—k?3 = 923 andko’ (v) = o' (v)0sv = 050 (V). Theorem 1:Let o andu be two smooth anisotropy func-
From the previous equality we can deduce the followintipns satisfyings(v) + o”(v) > 0, u(v) + 1’ (v) > 0. Then
identity: the duality
/ kyds = / kods, forany 0<t<Thne, (8) Ly(0Ws) = Lo (0W,,) (11)
I"t I"O

where the family of planar embedded closed cureg ¢ between total interfacial energies of boundarig$, and

[0, Tnaz), €volves in the normal direction with the velocitydW,, of Wulff shapes holds.

5. P r o o f. Notice that the Wulff shaped’, and W, are
Now, let us consider an evolving family of plane embeddezbnvex sets becausdr )+ (v) > 0 andu(v)+pu” (v ) >0

closed curvesl™,t € [0,7T], homotopicaly connecting ahold. For the curvaturé: at the boundan®W, we have
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arguing vice versa. &

IV. GRADIENT FLOW FOR THE ANISOPERIMETRIC RATIO

Recall that for the enclosed areb= A(T'*) and the total

V. A MIXED ANISOPERIMETRIC INEQUALITY

The aim of this section is to prove a mixed anisoperimetric
inequality of the form

Lo (I')Ly(T)
T > Kq .,

which holds for anyC? smooth Jordan curvé in the
plane. HereK, , > 0 is a constant depending only on the
anisotropy functionsr and i such thato(v) + ¢”(v) > 0

and p(v) + u”(v) > 0 hold for anyv. The existence of

a minimizer of the mixed anisoperimetric ratio is discussed
in Remark 2. The idea of the proof of the inequality (19)
is rather simple and consists in solving the constrained
minimization problem:

(19)

length L = L(I'*) for a flow of embedded closed plane mFinLa(F), s.t. L,(I') = cA(D), (20)

curves driven in normal direction by the velocitywe have

d d "
—A ds = —L kBds = 14
gA+ [ aas=o. & +/Ft680, (14)

(c.f. [18]). Using governing equations (3)—(6), for the tot

interfacial energyL, = L, (I'") of a curvel®, we obtain

d d [ d !
— Ly = — ds = — d 15

_ /0 0" ()09 + o) g

- /F [0/ (v)0s 8 — o(v)kp]ds (16)
_ /F 0" ()08 + o (v)kB)ds (17)
__ /F (0" (v) + o(v)]kBds = — / ko 3.

r

Here we have used the governing equations (5) and (4) (with
a = 0) and the identityd,v = k. For the anisoperimetric

ratio
_ Ls(I)?
CAWLIAT)’

we havell,(I") > 1 and, in particular]l,(0W,) = 1 (see

11, (T)

wherec > 0 is a given constant. To this end, let us assume
that a curvel' = I'(z) is parameterized by &2 smooth
functionz : S' — R2. If we denoteg = g(z) = |0, x|

atlhe local length then, for the derivative gfin the direction

y: S — R? we obtain2g(x)g'(x)y = 2(duz - d,y) and
SO

g (x)y = (T - 0sy)g. (21)

Here and here after, for scalar-valued functiff) and
vector-valued functionf(z) = (fi(x), f2(z))T we denote
their derivatives in the directiogy by

Fe)y = V@) y = lim LETY @)

e—0 g
riew= (i)
respectively.

As for the tangent vectol’ = T'(xz) = (cosv,sinv)?t

we haveT(z) = g '0,z and soT'(z)y = g 0.y —

g 20 g (x)y = Osy — (T - 0sy)T = (N - 9sy)N. As
N = (—sinv,cosv)T, for the derivative of the tangent angle
v =v(x), we obtain

V(x)y = N - 0sy. (22)

Remark 3). Taking into account identities (15) and (14) wRecall thatk, := (o(v) + 0" (v))k and ;v = k. Since

obtain Ly(I') = [pods = fol o(v)gdu we obtain
d I o L,,@tLa Lg_atA r1
7 T 2W,A  4W,|A? L (T(x))y /O [o' )V (2)yg + o(v)g' (x)y] du
- Lo /(kﬁ>ﬂds. _ [
oA Jo BT 2 ~ [0V 0) + 00T - 0. s
Herce, the flow driven_ in the normal direction by the non- _ _/ (0" (V)0 v(N - y) — o' (V)k(T - y)
locally dependent velocity r
L +0' (V)0 (T - y) + o (V)k(N - y)]ds
ﬂ = kcf - ﬁ (18)

represents a gradient flow for the anisoperimetric rétjo
with the propertyo,Il, < 0 for 8 # 0. Notice that3 = 0 on

T'if and only if ' x OW,, i.e.T" is homotheticaly similar to

- / [0(v) + 0" ()] K(V - )ds
= —/kU(N-y)ds.
I

ow,. Hence
In the caser = 1 the isoperimetric ratio gradient flow has / _ )
been analyzed by Jiang and Zhu in [14] and by the authors L;((z))y = /Fka(N y)ds,
in [22]. In this case the normal velocity has the forth=
ke L), L@y = [ RN pds @)
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For the aread = A(T") erclosed by a Jordan curte=I'(x) Remark 2:The proof of existence of a minimizer of the
we haved = fol det(x, 9, x)du. Therefore mixed anisoperimetric ratié, (I') L, (I") /A(T") is as follows:
1 let ' = T'(x™) be a sequence of Jordan curves minimizing
A'(D(z))y = l/ det(y, Oyx) + det(x, 0, y)du this ratio. As L,(yI') = 7Ly (T), and A(7yI') = 7*A(T)
2 1o for each~y > 0, without lost of generality, we may assume
L") =1 for all n € N. We can also fix the barycenter
= /0 det(y, Ouz)du = /Fdet(y’T)dS' of I at the origin. SincecoL(I) < Ly (T) < ciL(T)

where0) < ¢g = minro < ¢; = maxro < oo, then,

by the isoperimetric inequality, the value of the infimum

AT — | N uds. o) IS positive. _Moreover, the parameterizatiaft of I'" can
@)y /F yds (24) be chosen in such a way th&l,x"| = L(I'") = 1. As

In order to solve the constrained minimization problem (26 consequence, the position vectdrs” (u),u & [0, 1]}

we introduce the Lagrange functiab(z, \) = Lo (I(z)) + are uniformly bounded. By the Arzela-Ascoli theorem there

AL, (T(x)) — cAT(z))) with A > 0. ’ is a convergent subsequence converging to some function
Then the first order condition fof = I'(z) to be a 1%(w),u € [0,1]} which is the minimizer of the mixed

minimizer of (20) reads as follows) = L. (x,\)y anisoperimetric ratio. _ _

L. (D(z))y + ML, (T(z))y — cA'(T(z))y) at x = In summary, we have shown the following mixed
o I . . . .

Latter equality has to be satisfied for any smooth functigiliSoperimetric inequality:

y: S1 — R2. Taking into account (23) and (24) we obtain ITheor(ra]m 2:Let I' be aC? smooth Jordan curve in the
plane. Then

ko + Mk, = Ae, on T. M>K
It means that A(T) Z Bop,

ks =Xc, on [, where ¢ =o+ \u. (25) where K, ,, = 21/[W,[[W,] + L,(0W,).The equality in
In oth dsT — L g ¢ Hine t lation in th (26) holds if and only if the curvE is homothetically similar
n other words" = 5;6W (upto an affine translation in the to the boundarypW; of a Wulff shape corresponding to the

planeR?2). The Lagrange multiplieA € R can be computed mixed anisotropy functiod — /T 1 W
from the constraint.,,(I') = cA(T"). It follows from duality by Walo+ vIWe| 1.

(11) (see Proposition 1) that Remak 3: If ¢ = p = 1 we obtain the well known
S 7 isoperimetric inequalityL(I')2/A(I') > K, = 2Vn2 +
Lu(0Wz) = Ls(OW,) = Lo(OW,) + ALu(OW,) L(W,y) = 4rn. If o = p we obtain the anisoperimetric
= Lo(0W),) + 2XA(0W),). inequality L, (T')2/A(T) > K., = 2y/[Wy 2+ Lo (0W,) =
To calculate the enclosed aref(T) = iz A(OW5) we 4|Wa|. Fmally, if 4 = 1 we obtain the mixed anisoperimetric
make use of the identityd(OW,) = 1L, (0W). Clearly, as inequality

Sincedet(y,T) = —y - N we obtain

8

(26)

o=0+ )\,U, we obtain L (F)L(F)
> Ko =247 W, | + L(OOW,).
Ly (0W,) = Ly (OW5) 4+ AL, (0W,) A(T) ! [Wel + L(OWo)
= L5(0Ws) + AL5(0W,,) Renark 4: In the casg: = o, the anisoperimetric inequal-
= Ly, (0Wy) + AL, (0Ws) + AL, (0W),) ity in the plane has been stated in a paper by G. Wulff [24]
+A2L, (W) from 1901. Later, it was proved by Dinghas in [4] for a

B 9 special class of polytopes. Recently, Fonseca and Miller [5]
= 24(0Ws) + 2ALa (OW,,) + 2A°A(OW,.). proved the anisotropic inequality in the plane. Later Fusco

Since ﬁLH@Wa) = L,(T) = cA(l) = s£: A(OW,) we €t al. [6] proved it in arbitrary dimension. Giga in [10]

end up with the identity pointed out that the anisotropic inequality whete= o
1 are w-periodic function is the isoperimetric inequality in a
— (Lo (OW,) + 2XA(0W,,)) suitable Minkowski metric. It is a useful tool in the proof
>‘CC ) of anisotropic version of the so-called Gage’s inequality (c.f.
T 22 (A(@WU) + AL (OWy) + A A(GWH)) : [9, Corollary 4.3]).

However, in all aforementioned proofs, the surface energy
was associated with a functiongk (I') = [, ®(IV)ds where
® : R? — Ris an absolute homogeneous anisotropy function

Since the Lagrange multipliex > 0 it is given by A =
VAOW,)/A(OW,,). Furthermore,

L,(0W5) = Ls(0W,) = Ls(0W,) + AL, (0W,) of degree one, i.ed(tx) = |t|®(x) for anyt € R,z € R
= 24(0W,) + AL, (0W,,). The relation between our description of anisotropy and the
latter one is:o(v) = ®(—sinwy,cosv) and, conversely,
Now, letT" be an arbitraryC? smooth Jordan curve in thed(z) = o(v) wherez/||z| = (—sinv,cosv). Since we
plane. Set = L, (I')/A(T'). Then do not requirer-periodicity of o, in our approach of de-
Lo(T)L,(T) ~ c scr.iption qf ani.sotropy we th_ereforg allow for non-symmetric
—am cLs(T') > cLy (') = ELU(GW&) anisotropies, like e.g. functions with odd degreen (see
Fig 1) corresponding thus to anisotropy functi@hwhich
= 2\/A(8WU)A(8WM) + Ly (0W,). are positive homogeneous only, i®(tx) = t®(x) for any
t>0,z cR2
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In the case of general anisotropy functions# o, the of the anisoperimetric ratio. Indeed, As= k, — L,/(2A4)
mixed anisoperimetric inequality derived in Theorem 2 iggpresents gradient flow for the anisoperimetric ratip =
to our best knowledge, new even in the case of symmet(it? )?/(4|W,|A?) we havel < II! < TIO for all t €
(w-periodic) anisotropy functions. [0, Taz)- Thus

o Lo o (Lg)P 1
V1. CONVEXITY PRESERVATION. TEMPORAL AREA AND Fr = oAl = T340 L_g
LENGTH BEHAVIOR

In this section we analyze behavior of the enclosed ar W, since the classical iolution exists on the time interval
A(T") of a curvel™ evolved in the normal direction by the 0, Tinaa) th?” infoce<is Ly > 0 for ach0 < % < Tinas
anisoperimetric ratio gradient flow, i.8.= k, — L,/(2A). and the estimate (27) follows. ¢

First we prove the preservation of convexity result stating ) )
that the anisoperimetric ratio gradient flow preserves con-/n what follows, we shall investigate the enclosed area and
vexity of evolved curves. In the case of the isoperimetri€Ndth behavior of curves evolved by the normal velocity
ratio gradient flow of convex curves with = k — L/(24), B8 =k, — L,/(2A) representing thus a gradient flow for the

the convexity preservation has been shown by Jiang a@@iSoperimetric ratio. .
Pan in [14]. However, similarly as Mu and Zhu in [16], USing the area equation (14) we obtain

they utilized the Gauss parameterization of the curvature d g L,

equation (3) by the tangent angleand this is why their &A = */Fﬂds = */F (kv - ﬂ) ds
results are applicable to evolution of convex curves only. LL

In our paper we first prove convexity preservation based on = —L(0OW,)+ QAU. (28)

the analysis of the curvature equation (3) with arc-length

parameterization. Moreover, we show the anisoperimetﬁ%’ applying the isoperimetric inequality (see Remark 3)

_ ot .
ratio gradient flow may initially increase the total Iengtf{Or the cases = 1 and any curvel’ = I", the following

and decrease the enclosed area. This phenomenon caflfEfuaiity: q 12
be found in the isoperimetric ratio gradient flow (c.f. [14], — A= 21+ (I) >0
Theorem 3:Let ', ¢ € [0, T)uq2), be the anisoperimetric holds. It means that the gradient flow for the isoperimetric
ratio gradient flow of smooth Jordan curves in the plamatio does not decrease the enclosed area. On the other hand,
evolving in the normal direction by the velocity= k,,—g—z. if anisotropy density functiom # const, then for a curve
If the curvele is convex at some tim&, € [0, T},q.) then T =Tt & W, corresponding to the Wulff shagéd’, with

I'* remains convex for any € [to, Thnaz)- the anisotropy functio@ = /w0 + /|W,| we obtain
P ro o f. Sinced;k = 925 + k?83, v = 9,8 = 95k, and q IL 1
6 =k, + Fr we have th L(OW,) + 54 L(OW,) + 2K0,1
_ /
atk/’g = 6(V)atk + 1) (Z/)k/’atl/ _ /7T|W0| o lL(an) <0 (29)
= 5(0)0%ky + S(V)K2B + 6 (V)kDsky 2
) T, , due to the isoperimetric inequalityL(0W,)? >
= 0(v)0;kq + 5(v) ko3 + ' (v)kOsko, 47 A(OW,) = 4w|W,|. It means that the gradient flow for

the anisoperimetric ratio may initially decrease the enclosed
area for special initial curves.

Next we recall the isoperimetric inequality by Gage.
According to [7] the following inequality holds:

where 6(v) :=o(v) + o’ (v) > 0.

Let us denote by (¢) = minr: k. (., ¢) the minimum of
the anisotropic curvaturé, = §(v)k over the curvel™.
Denote bys*(t) € [0, L!] the argument of the minimum of

ko, ie. K(t) = ko(s*(t),t). Thendsk,(s*(t),t) = 0 and /des > oL (30)
92k, (s*(t),t) > 0. Hence r - A
1 for any convexC? smooth Jordan curve in the plane. The

2 t
K(6)"(K(t) + Fr), equality in (30) holds iffT" is a circle. Therefore, in the case

of isoperimetric gradient flow withr = 1 and the convex
curveI™, we have

"(t) > NG

where A(t) = 6(v(s*(t),t)), and FL = — Lt /(2A"). Notice
that A(t) > Apin := min, 6(v) > 0 for all ¢t € [0, Trnaz)-

Suppose thats is a solution to this ordinary differential dre_ —/kﬂds _ —/k2d5+7r£ <o. (31)
inequality existing on some intervgl, T;,q.) and such that dt r A~
K(to) > 0. Then, it should be obvious thdt (t) > 0 for yowever, ifo # const is a smooth nonconstant anisotropy
t € [to, Tmac) provided that density function such that + ¢ > 0, there exists an initial
inf FL > —o0, (27) curveI'® such that the lengtth! may iniFia}II.y increase, ?.e.
to<t<tr 4Lt >0att=0.Indeed, le™® be an initial curve which

for every0 < t* < Tyae. In order to prove convexity homothetically Simikil’ to the b_ounda@W(—, of the WU”T
preservation for the anisoperimetric ratio gradient flow it ihape corresponding to the mixed anisotropy functios

therefore sufficient to verify that the nonlocal paff. = ao +0bwherea,b> 0 are constants. Then
—Lt /(2A%) remains bounded from below far > ¢,. To 1 b
prove boundedness off. from below we utilize a property ke = k:&;b = Ek(’ — Ek'
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Hencek, = 1 — gkz on the Wulff shapel’ = T° = 9W, that I'* intersects the stationary Wulff shagdV, for all
becausé:; =1 on 9W;. Using (14), we have sufficiently small times) < ¢ < 1. The construction is as
d : Lo (OW5) follows. First, we shall construct a nonsmooth culves the
t o o . A
T = */ kkyds + LTZTaY union’ = W, Ur - OW; of the Wulff shapedW,, and the
r (0W5) ) . ;
b o Lo (OW,) circle r - 9W; of a radiusr > 0 touching the Wulff shape
= = / k2ds — — 4+ 722/ from outside at a poiny (see Fig 2 (left)). For such a curve
a.Jr a A(OW5) we have
att = 0. Sinceo = (7 — b)/aiwe have Fo L) _ Ly (0Ws) 4 Lo(r - 0W)
L (OW5) :/ 7044 v QAT 2(A@W,) + A(r-0Wh)
ow, @ _ _L,,(&Wa) + rL,(0W)
— L ow) - Lrew,) L, (0W,) + 2mr2
a a ~
2 b becauseA(0W,) = L,(I')/2. Hence 7 > —1 provided
- EA@WE) - EL(GW(—,). that the radiusr is sufficiently large,r > L,(0W;)/2x.
Thus For instance, ifo(v) = 1 + € cos(mv), thenr > 1 because
d b/ r LOWS,) Ls(0W1) = 2w (see section 3).
&Lt = </awc, k*ds — WMTW:)) >0 att=0, Let 2° € ' n OW, be a point different fromy and

belonging to a part of the curve representing the Wulff
due to inequality (30) and the fact thaiV, is a convex shape. Now, let us construct an initial smooth cuive
curve different from a circle fob # const. which is a continuous perturbation df, it contains the
Wulff shape in the closure of its interior, and such that
tfo = I" in some neighborhoo® (&) of z (see Fig 2 (right)).
The anisoperimetric ratio gradient floW,¢+ > 0, starting
Of[rrc?m 'Y intersects the stationary Wulff sha@dv,, in the
neighborhood)(z) for any time0 < ¢t < 1 (I'! is plotted
by a dashed curve in Fig 2 (right)). This is a consequence of

Assume the anisotropy functienis not constant and suchthe fact that the normal velocity at z0 is strictly E)é)sitive
thato +o” > 0. LetI'° be an initial curve which is homoth- f~00r t =0 because = ko + Fpo =1+ Fpo >0 ata”, and
etically similar to the boundargW, of a Wulff shape with 1= 1 O(&) =W, NO(&), i.e.k, =1 atz’.
the modified anisotropy density functien= ac + b where A oW
a,b are constantsq,b > 0. Then, for the anisoperimetric  I'=0W_ U r-0W, !
ratio gradient flowl™, ¢ € [0, T)nq42), €volving in the normal

direction by the velocity3 = k, — g—z, we have

1) £L(Tt) > 0att =0.
2) If, moreover,a/b = /m/\/|W,| then L A(I'*) < 0 at
t=0.

In summary, we have shown the following result.

Theorem 4:If o = 1 then the isoperimetric ratio gradien
flow with the normal velocitys = k — L/(2A) is area
nondecreasing and length nonincreasing flow of smo
Jordan curved™,t € [0, Tuq2) in the plane provided that
I'Y is a convex curve.

% oW

o

VII. A COUNTEREXAMPLE TO THE COMPARISON i - . . )
Fig. 2. An initial nonsmooth curvé® (left) and its smooth perturbation

PRINCIPLE IO (right). Failure of a comparison principle occurs at the paifit and

The aim of this section is to demonstrate that the cori-<t < 1.
parison property does not hold under the anisoperimetric
gradient flow, which is quite in a contrast to the total-
length gradient flow3 = k. It is a well-known fact that VIIl. N UMERICAL EXPERIMENTS
the comparison argument plays a key role in the proof of theln this section we present several examples of evolution
famous Gage-Hamilton-Grayson theorem for the curvatuoé plane curves minimizing their anisoperimetric ratio. Our
driven flow 8 = k, and it states that two smooth curvesscheme belongs to a class of boundary tracking methods
one of them included in the closure of the interior of théaking into account tangential redistribution. In construction
second one, evolved by the normal velocity= k never of the scheme we employed flowing finite volume discretiza-
intersects each other [11], [12]. The aim of this sectiotion in space with a nontrivial tangential velocity, and semi-
is to show that the analogous comparison property dosplicit discretization in time. The advantage of applying
not hold for the anisoperimetric gradient flow. As the flova nontrivial tangential velocity consists in its capability to
8 = k, — L,/(24) is nonlocal, violation of comparison overcome various numerical instabilities of a flow of plane
principle can be expected. Nevertheless, we provide aurves like swallow tails and/or merging of numerical grid
explicit construction of a counterexample in this section. points leading to break-up of the numerical scheme known

Clearly, any curvel’ homotheticaly similar to the Wulff for the case when the numerical scheme is constructed with
shapedW, is a stationary curve, i.e3 = 0 on I'. Indeed, no tangential redistribution. One can find recent progress in
k, =1 on OW, and Fow, = —L,(0W,)/(2A(0W,)) = [22], [23]. Such a scheme is simple and fast, but even if
—1 and therefores = k, + Faw, = 0 on 0W,. the original problem has a variational structure, it is unclear

In what follows, we shall construct a smooth initial curvéhat the discretized problem has variational structure. On
I'° containing in its interior the Wulff shap@/¥, and such the other hand, in [3], the authors proposed a semi-discrete
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scheme with variational structure in a discrete sense. TheifThe evolution equations d?(t) read as follows:
sg:heng has the second order of accuracy in time. However, ;= ;T + BNy (i=1,2,---,N), (32)
discretized polygonal curves are restricted to a certain class
of curves which is analogous to the admissible class Where a; and 3; are quantities defined o8;. Here and
crystalline curvature flows or crystalline algorithm. In whahereafter, we denoté = du/dt. The tangential velocities
follows, we propose a hybrid scheme taking into accoufitvi} are defined below and theth normal velocity; is

advantages from both aforementioned schemes. defined such as

Discretization schemeFor a given initialV-sided polyg- BB
onal curveP? = (¥, S?, we will find a family of N-sided Bi= 2; (@=1,2,---,N), (33)
polygonal curveg P’} =1 0...., P7 = UX, S/, whereS] = where thei-th normal velocity3? is defined onS;. It is an
[x]_,,x]] is thei-th edge withey, = a7, for j = 0,1,2,---.  approximation of (1) such as

The initial polygonP? is an approximation of ® satisfying . ,
{1V, ¢ P°NTY, and P/ is an approximation of* at Bi =diki+Fr (i=1,2,--,N).

the timet = ¢;, wheret; = j7 is the j-th discrete time Herek; is the i-th curvature and the constant value &n
(j =0,1,2,---) if we use a fixed time increment > 0, defined as

ort; = Z{;& n(j=1,2,---; to = 0) if we use adaptive tan(¢;/2) + tan(p;—1/2)
time increments; > 0,0 =0,---,j — 1. The updated curve i =

P7*! is determined from the data f@’ at the previous time |\ is the same as the polygonal curvature in [3], and
step by using discretization in space and time. Our two steps,, approximation ofi(1;) defined later. Then we <;btain
scheme will be constructed as follows: in the first step W8e time evolution of the total length @ (¢):
construct moving polygonal curves which is continuous in
time and discrete in space. In the second step we make use i *Qiﬂ's' L ikﬂ*r-
of the semi-implicit time discretization scheme for moving - — e — R
olygonal curves. = =
P Syt%p 1: Moving polygonal curvesLet P (t) = Ui\le Sit) and the time evolution of the enclosed aredRif):
be an N-sided polygonal curve continuously in time with ) N N g1 — Ti
P0) = PO where Si(t) = [xi_1(t),zi(t)] is the i- A== Bicir; + Zaisi% (34)
th edge andx;(t) is the i-th vertex ¢ = 1,2,--- | N; i=1 i=1

(i:1527"'5N)7

Ti

xo(t) = xn(t)). The length ofS; is denoted byr; = N

|; — ;_1|. Thei-th unit tangent vectof; can be defined == Biri +era, (35)
asT;, = (x; — x;—1)/r;, and thei-th unit inward normal =1

vector N; = T:-, where (a,b)* = (=b,a). Then thei-th N WTit1 — 21 + 71 N Tig1 —Ti
unit tangent angle; is obtained fronfl} = (cosv;, siny;)™ AT T ;ﬂi 1 + ;O‘isiT'

in the following way: Firstly, fromT; = (T11,T12)T, we
obtainv; = — arccos(T11) if T2 < 0; v1 = arccos(T11)
if T15 > 0. Secondly, fori = 1,2,--- , N we successively
computer;; from v;:

Thes identities represent a discrete version of equations (14)
provided that the distribution; = L/N,i =1,2,--- , N, is
uniform because the error terenr , = 0 is vanishing.

To realize this uniform distribution asymptotically, we

v; —arccos(I), if D <0, assume that
viy1 = { v; +arccos(I), if D> .0, ry — L = me~f®
Vi, otherwise N
N
where D = det(T}, T;41),I = T; - Ty,1. Finally, we obtain (Zi:l ni =0, f(t) = 00 ast = Tipae < OO) :

vo = v1 — (VN1 — vN). Then thei-th unit inward normal
vector N; is N; = (—sinv;, cosv;)T. ) .
Let us introduce the “dual” volumeS; = [z, x;] U . L L / maz
v i i— === t), t)dt = 36

[x;, z}, ] of S;, wherex; = (x;_1 +x;)/2 is the mid point TN N " w(t) 0 w(t) ce (36)

of the i-th edgeS; (i = 1,2,---, N xy,, = xj). The (; —1 2 ... N). Taking into account the relations:
length of S} is v = (r; +ri+1)/2. Then the total length of .

By using a relaxation terrw(t) = f/(¢) we obtain

Pis L =" r =Y r and the enclosed area &f ri = (@i~ ®i-1) Ty
isA=— Zi\il(ml -Ny)ri/2 = Zf\il T, w2 = —Pisi — Bi—18i—1 + ciovi — ¢i—10-1
We define the-th unit tangent angle of by v} = (v; + L L
Vi+1)/2 = V; +¢1/21 Where¢i = Vi1 — V; is the angle = N + (N - 7"1') W(t),
between the adjacent two edges. Thenithietangent vector . . . .
at the vertexz; is T — (cosv?,sinv*)T and the inward we deduce N — 1 equations for tangential velocitieg (i =
normal vectorN; = (—sinv},cosv;)T. Hereafter we will 2,3, N):
use the following abbreviations: oy = Vi + C_lal (i=2,3,-,N),
C; C;
C; :cos%, S5 :sin% (t=1,2,---,N). U, =g+ +---+; (i=23---,N),

Then it is easy to check that

2

Vi = Bisi + Bi—18i-1 — 2 iﬂisi + (£ - ri) w(t).
N ~ N
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To determinea;, we ad one more linear equation of theeven the case whete+¢;,_1 = 0, k,; is well-defined, since
form Zf;l a;p; = P, which is independent of the abovek; = (¢; +t;—1)/r; and then denominator df,; is 2r;.

N — 1 equations. Since We obtain
d12 2L, (L Lo A)
_ Pi pz Ay )
clz p Z v;, (37) A A 24
i=1 =2 N
. L, . L,
we obtaina; = (P — Q)/R. Next, we propose three Lo — ﬂA = —Z ki — A Biri + erTratio,
candidates for eackip;} and P, and choose one of them =1
in the following way: _ al .
Candidate 1We put CMTratio = ZP'O‘Z
i=1
T — T
pi = si— (i=1,2- N) L Lo XN: LTigl = 2rz+r1 .
A :
N

al «Titl — 21 + 1
P:;ﬂirJrl Z . 17 72 7"1+1 )

and fom (37) we calculate? and Q. We denote thisk by

R;. If the above equation holds, themr, = 0 and A = Canddate 3.We put
— >N Br; hold in (35). However, if distribution of grid N S 2A (i=1,2,---,N)
points are almost uniform, then the above equation is almost pi=si— L, b T o
nothing. Therefore we need another candidate. N
Candidate 2For thei-th quantitiesF; defined onS; and p— Z B Tit1 — 27 +Ti-1 7
G; defined onS}, we define the average alofigysuch as =1 4
| N 1 and fom (37) we calculate? and Q. We denote thisk by
=7 Z Firi, (G)" = I ZGir;‘. R3. Let thei-th normal velocity defined os; be
=1 =1 L
%:koii_o- 7;:1527"'5]\77
Sice L = 3N r; = 32N ¥, we have(l) = (1)* = 1. b 24 ( )

Moreover, fora} = (a;+a;-1)/2 defined onS;, the relation which is discrete version of (18). If we choose the candidate

{(a)* = (a*) holds. 3 and its hold exactly, theerr,..+;, = 0 holds and we obtain
The second candidate of linear equation is the zero-average d 12 o7 N I \2

(a)* =0, thatis,p; = rf fori =1,2,--- ,N and P = 0. —Zo - ¢ <kgi_") r; < 0.

From this and (37) we calculate and(. We denote this? dt A A 24

by Ro. Choice one from three candidate®/e choose candidate

The purpose of this section is to present numerical silumper; satisfying
ulations of the geometric flow evolving according to the

evolution equation (18). Before we introduce the third can- | Ri| = max{[ Ry, [ Ra], | R3]}
didate, we calculate the discrete version of (18). Let the totalRemark 5:If, for definition of the normal velocity defined
interfacial energy be on S, we use

Biri + B i1
2¢;ry
instead of (33), therk,; can not be divided into weighted

The time derivative off; = (cosv;,sinv;)" is T; = 7; N;. partw,; and the curvaturé;. Moreover, if we use
Then we have;v; = (&; —&;_1)-IN;, from which it follows Br + B
H—l

that )
Bi = 5

N
_ instead of (33), therk,; can be divided into weighted part
Z oL + 0yl) = kaﬂ ri + Zk‘”pla“ and the curvature. However, we hawe 4 # 0, that isA =
— "™ Brr; does not hold even if uniform distribution =
L/N holds for alli =1,2,--- , N.
Hereo; = o(v;), o} = o' (v;), andk,; is discrete version of ~ Step 2: Discretization in time. We use semi-implicit

o (1)) (t): Bi=

I
WE

i=1

=1
= (0] +0j41)8 + (07 — ai_H)ci.

the weighted curvature in the following sense: scheme for discretization of (32). Next we develop expres-
sion (32) as follows:
ko’i = 6iki) ( )
T, = OéiT'i* + iNi*
5 = Oiy1 = 0iny | Oigiti +oi(ti +tim1) +oiitio 1 /o P 1
C2ti+tio) 2(ti +ti-1) ’ = 3 (C—l - ﬁisi) T+ ( + 5181) i+1
¢z Z]\]’. + N
t; = tan 5 +/8'ch SR L 9 ot (38)
and¢; is discrete weight ob(v) = o’ (v) + o(v) atv = v;. 1o B T a; B T
Note thaté; — §(v;) holds asg¢;, ¢;_1 — 0 formally, and 2\ s + 2\ ¢ + s ) T
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. 2
m* —1
Here we have used the relation — V7 [ 1+ ecosmy+4/1—¢2 .
* 11i+1 + 111 2
T, = ——.
261'

In order to verify the area-decreasing and the length-
Ny = s Tin - T + ¢ Nis1 + N = Tiva = Ti. increasing phenomenon at the initial time as in Theorem 4,
2 2 2si we usedW; as the initial curve. Fig 3 (a) indicatesV;
Let ;. bea parameter satisfying = 0 if mini<;<n |s;| =0, with m = 6. Its discretization is given by the uniformv-
otherwisey € (0, 1]. For the parameter € [0, 1] we use the division of the u-range0, 1]. Fig 3 (b) indicates the same
linear interpolation of (38) and (38), since we can not usgulff shape, but the grid points are distributed uniformly.
(38) if s; = 0. Fig 3 (c) indicates the time evolution starting from (b).
Putb; = (1 — p)s; + p/s; for p € (0,1) andb; = s; for
1 = 0. Then the evolution equation instead of (32) will be

. 1 (67 1
ZT; — 5 (C_z ﬂzbz) 111 2 (Cz +ﬂz z) 1+1

N; + N;
+ﬁici(1 — u)%
From T; = (z; — x;-1)/ri, we discretize (39) in time &
and obtain the following tridiagonal linear system under the %
periodic boundary condition:

Jj+1
T

(39)

o
T

(b)

_ Jj+1 j+1 j+1
= —a-x;_ | + aox; — 44T

7j
o N/ £ NJ
Bl (1 — p) =

Hereap = a_ + a4 and

[0
+ ﬂ]bj>
(C’f ©
2,-

fori=1,2,---,N andj =0,1,2,---. For the choice of

we use Fig. 3. (a) The Wulff shap®W5 with N = 120 points, (b) its uniform
min, |s7 | parameterization and its time evolution (c).

w=———">=¢]0,1].
max; |7 |
Here and hereaftennin; and max; meanmin;<;<y and 39.046 o
maxi<;<n, respectively. Note thatax; |s!| > 0 holds for
closed curves. 39.044
In order to ensure solvability of the above linear system,
we require a simple condition on the diagonal dominance.
Adopting such a condition the adaptive time stersatisfies

1 223

1 22.28

39.042
1 22.26

min; r{
2(1 + \)(max; o] /e | + max; [5]b]])

Simulation. In following all figures, for the prescribed > '
0, we plot_ everyur d|s<_:rete time step u5|Eg_d|screte points 30.036¢
representing the evolving curve. In evedy7 time step, we e
plot a polygonal curve connecting those points, where 0 02 04 06 08 1 12 14
[[T/7]/100] ([z] is the integer part of), andT = 1.5 is the time
final computational time. We use = 1000 as the relaxation
term in (36). Note that if we use small, then asymptotic Fig. 4. Initial decrease of the enclosed arésand ncrease of the total
speed for uniform distribution becomes slow, and for som IengthL
choice ofo area-decreasing phenomena do not hold near the
initial time (cf. Fig 4 (a)).

Wulff shapes and area-decreasing phenomenonif
o(v) = 1+ ecos(mv) is the anisotropy density function
of the degreen then, by using (7), we obtain the explicit
expression for the mixed anisotropy function:

39.04 1 2224

T = ()\>0>

the enclosed area A
the total length L

39.038 1 22.22

1 222

22.18

Although deformation of 0W; is very small (see

Fig 3 (c)), the area-decreasing and the length-increasing
phenomenon can numerically verified by using the afore-
mentioned numerical discretization scheme. The behavior of
the enclosed area and total length of curves evolved from the
initial Wulff shape 0W5 with the mixed anisotropy density
g=vro+|Ws| function is shown in Fig 4.
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eterized by

(a) ellipse: z1(u) = acos2mu, x2(u) = bsin27wu,
(b) dumbbell shape z = 27u,

x1(u) = cosz, xo(u) = 2.0sinz — 1.99sin® 2,

(¢) x1(u) =cosz, xo(u)=0.7sinz +sinz; + 23,
xg = sin(3z)sinz, z = 2wu,
(d)  x1(u) =1.5cosz,
z2(u) = 1.5(0.6sin z + 0.523 + 0.4sinz4 + 0.1 sinx5),
r3 = sin(3z2)sinz, x4 = 227, x5 = 3¢~ ", z = 27U,
(e)  thin-dumbbell shape
(71(u), o (u))
for0<u<0.5
(1(w)22(W) =4 (7, (u - 0.5), 22(u— 05))
for0.b<u<1
(#1(u), £2(u))
(#1(1), B (1)) = for 0 <u < 0.25
T T2) =Y (Z41(0.5 — ), #2(0.5 —w))
for 0.25 <u <0.5
beam + rad(1 + cos(8(m — 6)u))
1 () for 0 <wu < 0.125
B 2(beam + rad(1 — cos0.)) (1 — 4u)
for 0.125 < u < 0.25
radsin(8(m — 0.)u))
. for 0 <w < 0.125
€

for 0.125 < u < 0.25

wherebeam > 0 and0 < ¢ < rad are parameters and
0. = arcsin(e/rad).

In all examples, the initial discretization is given by the
uniform N-division of the u-range [0, 1]. Fig 5 indicates
numerical simulation with the initial curves. We choose
several peaks of such as (ajn = 2, (b) m = 3, (c)m =4,

(d) m =5, and (e)m = 6.

Breaking of a comparison principle. In Fig 6 we plot
the initial curve consisting of the union of the boundary of a
Wulff shapedW,, (with o having degreen = 3) touched by
a circle with a sufficiently large circle with a radius> 1
(see section 7). As soon as it evolved by the anisoperimetric
ratio gradient flow it intersects the stationary Wulff shape
OW,. Numerically computed examples displayed in Fig 6
(a) and (c) correspond to those of the conceptual Fig 2.

IX. CONCLUSIONS

In this paper, we have derived and analyzed a gradient
flow of closed planar curves minimizing the anisoperimetric
ratio. A geometric law for normal velocity is a function of the
anisotropic curvature and it depends on the total interfacial
Fig. 5. Evolution of curves starting from the initial curves with variousenergy and enclosed area of the curve. We also derived a
choice of peak ofr. new mixed anisoperimetric inequality for the product of total

interfacial energies corresponding to different anisotropy
functions. Interestingly enough, there exist initial curves
for which the enclosed area is a decreasing function with
respect to time. This is in contrast to the known property
of a gradient flow minimizing isoperimetric ratio. We also

Initial test curves. As initial test examples we use thederived a stable numerical scheme based on the flowing finite
boundaryoW; of the Wulff shape as well as the followingvolumes method. Theoretical results have been illustrated be
initial curvesz (u,0) = (w1 (u), r2(u))T (u € [0,1]) param- several computational examples.
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