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Abstract—This contribution deals with the numerical simu-
lation of dislocation dynamics, which is a topic belonging to
the field of solid state physics. Dislocations are modelled as
line defects in crystalline lattice causing the disturbance of
the regularity of the crystallographic arrangement of atoms.
From the mathematical point of view, dislocations are defined as
smooth closed or open planar curves, which evolve in time, and
their motion is driven by the equation for the mean curvature
flow stating that the normal velocity is proportional to the mean
curvature and the sum of all acting force terms. In this paper,
we describe the family of evolving curves by the parametric
approach, and the system of PDEs arising from the mean
curvature motion law is solved by semi-implicit scheme with
spatial discretization based on the flowing finite volume method.
Additionally, we enhance the performance and the numerical
stability of the algorithm by adding a tangential term to the
motion law. The presented results of numerical simulations
contain the motion of a single dislocation in the PSB channel
and the motion and mutual interaction of two dislocation curves
in the PSB channel.

Index Terms—Dislocations, mean curvature flow, tangential
redistribution, flowing finite volume method, PSB channel.

I. INTRODUCTION

ALL real crystals contain some imperfections, which
locally disturb the regular arrangements of the atoms.

These imperfections may have point, line, surface or vol-
ume character and they occur in nanoscale. However, their
presence can significantly influence the physical and me-
chanical properties of crystalline solids. In this paper, we
are concerned with dislocations, which are line defects of
the crystalline lattice. They act in such a way that the
crystallographic arrangement of atoms is disturbed along a
so called dislocation line. Even though the dislocation theory
concerns the solid state physics and material sciences, it can
be considered relatively young (compared to other physical
disciplines in macro scale). Throughout the last century
presence of dislocations has been experimentally verified and
the theoretical framework, which is extensively discussed in
the literature (see, e.g., [1], [2]) has been developed.

From the mathematical point of view, dislocations can
be represented as closed curves (acting inside the crystal)
or open curves (ending on a surface of the crystal), which
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can, under certain physical conditions, evolve in time and
space and even interact with each other. At certain physical
conditions, e.g., at low homologous temperature, the motion
is only two-dimensional and dislocations can move only
along the so called slip planes, i.e., some crystallographic
planes with the highest density of atoms. We describe
the motion by means of the mean curvature flow and the
parametric approach [17], [10] and enhance the model by
adding the curvature adjusted tangential redistribution [14],
which was originally proposed for closed curves only. Our
contribution is in modifying the redistribution algorithm for
open dislocation curves.

We investigate the motion and interaction of dislocations
in PSB channel [1], [2], [8] and present novel numerical
results for evolution of open dislocation curves computed by
means of curvature adjusted tangential redistribution.

II. MATHEMATICAL MODEL

Generally, to model a motion of curves or interfaces, the
equation for the mean curvature flow is usually investigated.
Its basic dimensionless form is

normal velocity = curvature + force. (1)

Taking into account the dislocation dynamics, more precise
description preserving physical units of measurement is given
by equation (2) below.

There are several approaches to treat equation (1). Very
popular methods come from the family of interface capturing
approaches, such as the phase-field method [5], [7] or the
level set method [3], [4], [6]. It is often referred, that their
main advantage is their ability to deal with topological
changes, such as merging or splitting, with almost no difficul-
ties. However, when applying such approaches to problems
of discrete dislocation dynamics (where evolution in long
time interval and evaluations of relatively complex spatially-
dependent terms are often required), one experiences some
difficulties mainly in the computational cost. For instance,
in the case of a planar curve, which is, in fact, a one-
dimensional object, it is required to solve a two-dimensional
problem, and thus the interface capturing methods are too
slow.

A fast method for evolving curves is provided by the
parametric approach [8], on which we also focus in this
contribution. It needs to be mentioned, that the parametric
approach cannot deal with topological changes on its own.
However, separate algorithms to deal with such a task can
be developed [17].

It shows that the mathematical theory of evolving curves
is very useful framework to model the motion of dislocations
(see [8], [10]). In this paper, we investigate their evolution
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governed by the mean curvature flow (1) in the following
form

Bv = Tκ+ F. (2)

Here v is the normal velocity (considering outer normal
vector), κ denotes the mean curvature of the curve Γ = Γt,
which is a closed or an open curve in a plane. The F
is the forcing term. The terms B and T are just physical
parameters, which we discuss in the next section along with
the particular choice of the force F .

Our goal is to find a family {Γt : t ∈ [0, Tmax]} of
closed or open curves in the plane, whose normal velocity is
proportional to the mean curvature and the force, i.e., satisfies
the equation for the mean curvature flow (2).

As already mentioned, in this contribution, we treat equa-
tion (2) by means of the parametric (also referred as the direct
or the Lagrangian) approach as in [8]. There are two common
ways in which the planar curve Γt can be parametrized. The
first one is called fixed domain parametrization, where we
introduce a parameter u belonging to a fixed interval, which
is independent of time, e.g., u ∈ [0, 1]. Then the family of
planar curves is given as the following set

Γt = { ~X(u, t) = (X1(u, t), X2(u, t)) : u ∈ Iu}.

Here the curve Γt is described by the space and time
dependent vector mapping

~X : Iu × It → R2,

where Iu = [0, 1] is the fixed interval for the parameter u
and It = [0, T ] is the time interval.

The second type of parametrization of a planar curve is the
so called arc-length parametrization which is also represented
by a mapping ~X(s, t), where the parameter s is bounded by
the actual length of the curve at time t. Denoting Lt the
actual length of the curve at time t, the family of the planar
curves is given as

Γt = { ~X(s, t) = (X1(s, t), X2(s, t)) : s ∈ [0, Lt]},

where ~X : [0, Lt]× It → R2.
Denoting by g the quantity g = |∂u ~X| > 0 as the local

length, the relation between the arc-length parametrization
and the fixed domain parametrization reads as ds = gdu
and the variable transformation for a quantity ϕ is given
by ∂uϕ = g∂sϕ.

In our paper the numerical approach is based on the finite
volume method. It is therefore natural to treat equation (2)
by means of the arc-length parametrization.

We define the unit tangential vector ~t to the curve as
~t = ∂u ~X/|∂u ~X| = ∂s ~X . The outer unit normal vector ~n
is defined as ~n = ∂s ~X

⊥, where ⊥ is the symbol of per-
pendicularity and det(~n,~t) = 1 holds. Both parametrizations
are oriented counterclockwise. Note that ~X = ~X(u, t) and
~X = ~X(s, t) are different mappings with the same range. In
this paper, we intentionally use the same symbol ~X for both
mappings to simplify the text. Time derivatives in equations
(3), (4), (9) are taken in sense of arc-length parametrization,
i.e., ∂t ~X(s, t).

The normal velocity v is the time derivative of ~X(t, s)
projected into the normal direction, i.e., v = ∂t ~X · ∂s ~X⊥.
According to the Frenet formulae, one can derive the curva-
ture as κ = ∂s~t · ∂s ~X⊥ = ∂ss ~X · ∂s ~X⊥. Note the curvature

of the unit circle is −1. Then equation (2) can be written
as

B∂t ~X · ∂s ~X⊥ = T∂ss ~X · ∂s ~X⊥ + F ( ~X), (3)

provided that the unknown mapping ~X satisfies the paramet-
ric equation

B∂t ~X = T∂ss ~X + F ( ~X)∂s ~X
⊥. (4)

Equation (4) is complemented with the initial condition

~X|t=0 = ~Xini

and either the periodic boundary conditions for closed curves
or fixed ends boundary conditions for open curves

~X|s=0 = ~XA, ~X|s=Lt = ~XB .

III. PHYSICAL MODELING OF EXTERNAL FORCES FOR
DISLOCATION DYNAMICS

The aim of this section is to recall the main idea of phys-
ical modelling of external forces. Recalling the governing
equation (2) and its parametric form (4), we want to describe
the physical parameters of the proposed model of evolving
dislocations. Here B is the drag coefficient and the symbol
T denotes the line tension [1], which is, basically, the weak
anisotropic term causing straightening of the dislocation
curve. In this paper, we consider the simplified isotropic
model, where the line tension is approximated as follows

T ≈ E(e)(1 + ν). (5)

The constants E(e) and ν are the dislocation edge energy
[1] and the Poisson ratio, respectively. The particular choice
of the model parameters is presented in Table I. In the
following, we denote by b the magnitude of the Burgers
vector ~b = (b, 0, 0) and identify the slip plane with the xz-
plane.

The term F is the sum of all outer force terms acting on
the curve Γt in the normal direction, i.e.,

• force Fapp = bτapp caused by the resolved shear stress
τapp applied on the crystal,

• force Fwall = bτwall caused by the stress τwall from
the walls of the PSB ([1], [2]) channel,

• force Fint = bτint caused by the mutual interaction
stress τint between the dislocations in the PSB channel,

• force Ffr = bτfr caused by the crystalline lattice
resistance. This friction force slows down the movement
of the dislocation, and therefore it has to be subtracted
from the total force contribution.

Then the sum of all outer forces is the following

F = Fapp + Fwall + Fint − Ffr. (6)

The last term which has to be taken into the account is the
force Fself = bτself , where the stress field τself is generated
by the dislocation itself. In [9] Kratochvı́l and Sedláček
proved that the dislocation self force is proportional to the
curvature of the corresponding dislocation curve. The term
Tκ in (2) approximates the self force of the dislocation.
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Fig. 1. Schematic illustration of the PSB channel with walls simulated by
dipoles. Dislocation (thick black line) evolves in xz plane (slip plane).

A. Wall interaction

The motion of a dislocation itself is considered within
the so called PSB (persistent slip band) channel [1], [2],
[8]. Generally, it is a pattern consisting of areas with high
density of dislocations (channel walls) and low densities
of dislocations (channel itself). This structure usually arises
from a cyclic loading of a crystal. When a dislocation
moves in the PSB channel, it interacts with the dipolar loops
created by other closed dislocation curves inside the crystal.
In particular, the clustered dipolar loops create the channel
walls. This interaction is usually simulated as elastic fields
of infinite edge dipoles in the channel walls, which act like
a potential wells generated by the dipoles.

The situation is schematically illustrated in Figure 1. The
dislocations D1 and D2 form a dipole in the left wall and
the dislocations D3 and D4 form a dipole in the right wall.
Its strength is given by the mutual distance hdip. All the
four dislocations are ydip under or above the slip plane and
the parameter ddip represents the distance from the channel
walls, which are at a distance dc.

According to [18], the resolved shear stress in the slip
plane produced by an edge dipole approximating the dislo-
cations D1 and D2 is given as

τ
(1)
wall =

Gb

2π

1

1− ν

(
x1(x2

1 − y2
1)

(x2
1 + y2

1)2
− x2(x2

2 − y2
2)

(x2
2 + y2

2)2

)
,

where x1 and y1 are the coordinates of a point in the channel
relative to the dislocation D1. Analogously x2 and y2 are
coordinates of the same point related to the dislocation D2.
Because of the symmetry of the channel, interaction is only
considered in the direction of the x-axis. Here, G denotes
just the shear modulus and ν stands for the Poisson ratio
(see Table I).

Similarly, the same considerations can be done for a
dipole approximating the dislocations D3 and D4. In our
simulations, we consider the dislocation curve Γ to belong
to a slip plane y = 0 within a channel with its mid point at
x = 0. Then, for a given point (x, 0, z) we have

x1,3 = ±x+ dc/2 + ddip + hdip, y1,3 = ydip,

x2,4 = ±x+ dc/2 + ddip, y2,4 = −ydip,

where the parameters of the channel are in Table I.
Then the formula for the resolved shear stress produced

by both walls reads as follows

τwall = τ
(1)
wall + τ

(2)
wall
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Fig. 2. Wall force function, the x-axis is in nanometers, the y-axis is in
Newtons.

and the force generated by the channel walls reads as

Fwall = bτwall.

It follows that the channel wall force Fwall = Fwall(x) =
Fwall(X1) and acts in the x-axis of the channel. The graph
is depicted in Figure 2.

B. Dislocation interaction

We consider the dislocation motion to be influenced by
interactions with other dislocations. Since we approximate
the dislocations as polygonal curves (details can be found in
Section 4), all force interactions are sums of contributions of
straight dislocation segments.

To solve the problem of dislocation interactions, one needs
to determine the stress tensor field τint = (τint)i,j =

(τint( ~X))i,j at a position ~X from a straight segment AB
of a dislocation. This problem was theoretically solved by
Devincre in [11]. There exists a general formula providing
the 3D stress tensor field τA( ~X) = (τAij )( ~X) at a position
~X generated by the dislocation half line from the point ~A to
infinity and reads as

τAij =
G

4π

1

R(U +R)

[
(~b× ~Y )itj + (~b× ~Y )jti

− 1

1− ν
((~b× ~t)iYj + (~b× ~t)jYi)

−
~b · (~%× ~t)

1− ν

(
δij + titj +

%i%j(2 + U/R)

R(U +R)

+
(%itj + %jti + Utitj)(U +R)

R2

) ]
,

(7)

where ~t is the unit tangential vector to the dislocation
segment, R is the magnitude of the vector ~R = ~X − ~A,
~% = ~R − U~t is the distance vector from the dislocation
and U = ~R · ~t is the projection of the vector ~R to the
dislocation segment. Yi and Yj are components of the vector
~Y = ~R+R~t and δij is the Kronecker symbol. Here · denotes
the scalar product and the symbol × stands for the cross
product.

The stress tensor generated by one straight dislocation
segment AB is given as the difference of the tensors τA
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and τB

(τint( ~X))ij = τAij − τBij .

Then the total stress is given as the sum of stress contribu-
tions from all the segments of the dislocation.

The force acting on the dislocation exposed to the stress
field τint is given by Peach-Koehler formula [12], which
reads as

~Fint = (τint~b)× ~t. (8)

We consider the Burgers vector ~b = (b, 0, 0) parallel to the
x-axis and the slip plane y = 0. The unit tangential vector
~t is of the form ~t = (t1, 0, t3) and the unit normal vector is
~n = (t3, 0,−t1). Then the vectorial force ~Fint given by (8)
is

~Fint = (τint~b)× ~t = b(τ12t3, τ13t1 − τ11t3,−τ12t1).

Hence the normal component of the interaction force is

Fint = ~Fint · ~n = b(τ12t
2
3 + τ12t

2
1) = bτ12.

According to these formulas and the above settings of the
model it is clear that only the component τ12 of the stress
tensor is to be computed. Since we investigate the interaction
of dislocations in parallel slip planes in this paper, it is clear
that the singularity, which appears in (7) at R = 0 is avoided.

IV. NUMERICAL ALGORITHM

Our approach is based on the numerical scheme pro-
posed by Ševčovič and Yazaki in [14], [15] with spatial
discretization by means of the flowing finite volume method.
Discretization in time then leads to a semi-implicit scheme.
The scheme was originally proposed for evolution of closed
curves. Here we extended it to the case of open curves. We
show how to enhance the governing equation and design
a tangential redistribution for open curves, which will be
mentioned below.

A. Tangential Redistribution

Gage and Epstein showed (see [13], Proposition 2.4) that
when tracking a curve motion, the tangential terms do not
affect the curve shape. Hence, for the analytical purposes, it
is sufficient to take into the account only the terms in the nor-
mal direction to the curve. However, numerical experiments
show that the parametric equations (4) are not appropriate for
numerical computation. Since the curve is discretized by a
certain number of grid points (except the perfectly symmetric
and uniform cases with constant curvature, like a shrinking
circle), we can observe that during the time evolution, the
grid points accumulate in certain parts of the curve, while
they become sparse elsewhere. This phenomenon is not
desirable particularly in long time simulations, where this
non-uniform distribution of grid points can cause increasing
numerical error. One possible way to overcome this problem
is to employ some kind of tangential redistribution, i.e., to
complement equation (4) with a tangential term

B∂t ~X = T (∂ss ~X + α∂s ~X) + F ( ~X, t)∂s ~X
⊥. (9)

The redistribution coefficient α is a (possibly nonlocal)
function of the position vector ~X and its first and second
derivative. Generally, the tangential terms move the dis-
cretization points along the curve without affecting its shape.

If correctly chosen, the numerical algorithm is more stable
and has higher accuracy. On the other hand, wrong choice
of tangential terms can lead to numerical errors, and in the
worst case, to the failure of the algorithm.

Basically, the further modifications lead to the form of (4)
with a local tangential redistribution, originally proposed for
closed curves, by Deckelnick and Dziuk in [19]. Differenti-
ating the ∂ss ~X , we obtain

∂ss ~X =
1

|∂u ~X|
∂u(∂s ~X) =

1

|∂u ~X|
∂u

(
∂u ~X

|∂u ~X|

)

=
∂uu ~X

|∂u ~X|2
− ∂u ~X · ∂uu ~X

|∂u ~X|3
∂u ~X

|∂u ~X|
,

Then, the following equation

∂t ~X =
∂uu ~X

|∂u ~X|2
+ F

∂u ~X
⊥

|∂u ~X|
already contains a local tangential term with redistribution
coefficient αloc:

αloc =
∂u ~X · ∂uu ~X
|∂u ~X|3

.

However, numerical experiments show that this local redis-
tribution property is not strong enough to prevent the grid
points from accumulating in certain segments of the curve.
Thus in (9), the local tangential term αloc∂s ~X is replaced
by a general, possibly nonlocal tangential term α∂s ~X .

The problem of tangential redistribution has been ex-
tensively studied. We use the curvature adjusted tangential
redistribution originally proposed by Ševčovič and Yazaki
for closed curves in [14], where one can also find a brief
overview and a critical discussion of the redistribution meth-
ods. In this paper, we adapted the original algorithm for
evolution equation (9) and developed a modification suitable
for open curves.

According to [14], the redistribution coefficient has been
proposed as the solution of the following problem

∂s(ϕ(κ)α) = H,where (10)

H = f − ϕ(κ)

〈ϕ(κ)〉
〈f〉+ ω

(
Lt

|∂u ~X|
〈ϕ(κ)〉 − ϕ(κ)

)
.

The quantity Lt is the curve length at time t and the
parameter ω is a given positive constant. The other factors
in the problem (10) are as follows

ϕ(κ) =1− ε+ ε
√

1− ε+ κ2ε2,

f =ϕ(κ)κ(Tκ+ F )

− ϕ′(κ)(∂ss(Tκ+ F ) + κ2(Tκ+ F )),

〈ϕ(·, t)〉 =
1

Lt

∫
Γt

ϕ(s, t)ds.

The function ϕ(κ) plays an important role because it controls
the redistribution of the grid points. The special choice of
ε = 0, i.e., ϕ(k) = 1 produces the uniform redistribution and
asymptotically uniform redistribution for ε > 0. The choice
of ε = 1, i.e., the function ϕ = |κ| was proposed for the
crystalline curvature flow (see [16]). Choosing ε ∈ (0, 1),
we obtain the curvature adjusted redistribution as in [14],
which takes into account the shape of the curve. The ratio
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Fig. 3. Spatial discretization by flowing finite volume method.

ϕ(κ)/〈ϕ(κ)〉 was used by Ševčovič and Yazaki to capture
deviations of |κ| and hence to design the curvature adjusted
tangential term α. Detail of their research can be found in
[14].

The redistribution coefficient α = α(s, t) is uniquely (up
to an additive constant) determined from (10). In the case of
closed curves, Ševčovič and Yazaki imposed renormalization
constraint

〈α(·, t)〉 = 0 (11)

to determine α uniquely. In the case of open curves, we have
to ensure

α(0, t) = α(Lt, t) = 0 (12)

for all t > 0. Clearly, as ϕ(κ(Lt)) > 0, setting α(0, t) = 0
and integrating (10) over the curve Γt with respect to the
arc-length yields

ϕ(κ)α(s, t)|s=Lt = ϕ(κ)α(s, t)|s=0 +

∫
Γt

H(s)ds = 0,

(13)
because one can see that∫

Γt

Hds = ω(Lt〈ϕ〉 − Lt〈ϕ〉) = 0

and the uniqueness condition (12) holds.

B. Finite volume method

Given an initial N -sided polygonal curve P 0 = ∪Ni=1S
0
i

with vertices ~X0
i approximating the initial curve Γ0, we

find a family of N -sided polygonal curves {P j}j=1,2,...

with vertices ~Xj
i , where P j = ∪Ni=1S

j
i for i-th edge

Sj
i = [ ~Xj

i−1,
~Xj
i ], which represents the control volume. The

polygon P j is constructed as an approximation of Γt at the
j-th time level tj = jτ and the updated polygon P j+1 is
determined from the P j at the previous time step by solving
the systems of PDEs (9) and (10).

We consider the i-th dual volume νji as the following set

νji = [ ~Xj
i−1/2,

~Xj
i ] ∪ [ ~Xj

i ,
~Xj
i+1/2],

where the quantities ~Xj
i±1/2 are the averages on the primary

volumes Sj
i+1 and Sj

i , respectively

~Xj
i−1/2 =

~Xj
i−1 + ~Xj

i

2
, ~Xj

i+1/2 =
~Xj
i + ~Xj

i+1

2
.

Here, notice that the symbol ν stands for the Poisson ratio
(see Table I), whereas the symbol νji denotes the particular
dual volume. The scheme of the discretization is shown in
Figure 3.

Besides the ~Xj
i , we introduce the following discrete quan-

tities: αj
i , κji , and dji = |Sj

i | with their dual values defined
in the same way as ~Xj

i±1/2

αj
i−1/2 =

αj
i−1 + αj

i

2
, αj

i+1/2 =
αj
i + αj

i+1

2
,

κji−1/2 =
κji−1 + κji

2
, κji+1/2 =

κji + κji+1

2
,

dji−1/2 =
dji−1 + dji

2
, dji+1/2 =

dji + dji+1

2
.

These quantities are naturally classified into two categories
as follows:
• κji and dji are constant on the i-th edge Sj

i and satisfy
the duality condition, i.e., the dual values κji+1/2 and
dji+1/2 are constant value on the corresponding dual
volume νji .

• αj
i and ~Xj

i are defined on the i-th vertex ~Xj
i and take

constant value on the i-th dual volume νji , whereas
the dual value αi−1/2 remains constant on the primary
volume Sj

i .
We denote Lj =

∑N
i=1 d

j
i as the total length of P j and

〈Gj〉 =
∑N

i=1G
j
id

j
i as the mean value of a quantity Gj over

P j .
At first, the values for dji and κji are computed from the

previous known data according to the following formulas,
where the discrete curvature is approximated in agreement
with [14], [17].

1) ~pji = ~Xj
i − ~Xj

i−1,
2) dji = |~pji |,

3) κji = 1

2dj
i

sgn
(
det(~pji−1, ~p

j
i+1)

)
arccos

(
~pj
i−1·~p

j
i+1

dj
i−1d

j
i+1

)
.

Then the redistribution coefficients αi are computed via
relations (16) and (15) below.

Finally, the position vector ~Xj
i is computed by solving

(18).

C. Discretization of the tangential velocity equation

In [14] Ševčovič and Yazaki proposed the following al-
gorithm for closed curves, where all quantities ~Xj

i , αj
i , κji

and dji satisfy the periodic boundary conditions. There is a
modification for open curves with fixed ends, which we will
mention at the end of this section.

We integrate equation (10) over the control volume Si =
[ ~Xi−1, ~Xi] with respect to the arc-length parameter s∫ ~Xi

~Xi−1

∂s(ϕα)ds =

∫ ~Xi

~Xi−1

fds−
∫ ~Xi

~Xi−1

ϕ〈f〉
〈ϕ〉

ds

+

∫ ~Xi

~Xi−1

ω

(
Lt

g
〈ϕ〉 − ϕ

)
ds,

(14)

where∫ ~Xi

~Xi−1

fds =

∫ ~Xi

~Xi−1

ϕ(κ)κ(Tκ+ F )ds

−
∫ ~Xi

~Xi−1

ϕ′(κ)(∂ss(Tκ+ F ) + κ2(Tκ+ F ))ds.

Here we use the following finite differences to evaluate the
second derivative of the curvature and the force. Note that
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the curvature remains constant on the control volume Sj
i ,

while the force term is defined pointwise, or more precisely
at each vertex ~Xj

i . We have

(∂ssκ)( ~Xj
i−1/2) =

1

dji
[∂sκ]

~Xj
i

~Xj
i−1

=
1

dji

(
κji+1 − κ

j
i

di+1/2
−
κji − κ

j
i−1

di−1/2

)
,

(∂ssF )( ~Xj
i−1/2) =

1

dji
[∂sF ]

~Xj
i

~Xj
i−1

=
1

dji

(
F j
i+1 − F

j
i

dji+1

−
F j
i − F

j
i−1

dji

)
.

By taking averaged spatial values in (14), we obtain
the following system of finite differences equations for
the tangential velocity. Note that from direct calculation∫ ~Xi

~Xi−1
(1/g)ds = 1/N due to ~Xi = ~X(ui), ds = gdu and

ui+1 − ui = 1/N .

ϕ(κji+1/2)αj+1
i − ϕ(κji−1/2)αj+1

i−1 = ψj
i , (15)

where

ψj
i = f ji d

j
i −

ϕ(κji )

〈ϕ(κj)〉
〈f j〉dji + ω

(
Lj

N
〈ϕ(κj)〉 − ϕ(κji )d

j
i

)
is defined for the discrete quantity

f ji =ϕ(κji )κ
j
i

(
Tκji + F ( ~Xj

i−1/2)
)

− ϕ′(κji )

dji

(
T

[
κji+1 − κ

j
i

dji+1/2

−
κji − κ

j
i−1

dji−1/2

]

+
F j
i+1 − F

j
i

dji+1

−
F j
i − F

j
i−1

dji

)
− ϕ′(κji )

(
(κji )

2(Tκji + F ( ~Xj
i−1/2))

)
.

From (15) we can obtain the following recurrent formulation

ϕ(κji+1/2)αj+1
i = ϕ(κj1+1/2)αj+1

1 + Ψj
i , Ψj

i =
i∑

k=2

ψj
k.

From (11) we have 〈αj+1〉 = 0 and hence∑N
i=1 d

j
i+1/2α

j+1
i = 0 holds. Therefore we can ensure

the uniqueness of the solution αj+1 and set

ϕ(κj1+1/2)αj+1
1 = −

∑N
i=2 d

j
i+1/2Ψj

i/ϕ(κji+1/2)∑N
i=1 d

j
i+1/2/ϕ(κji+1/2)

. (16)

The modification for open curves satisfying the fixed ends
boundary conditions ~X|s=0 = ~XA, ~X|s=Lt = ~XB is just
to set αj+1

0 = αj+1
N = 0, which represents zero tangential

speed since ~XA and ~XB are fixed. For the quantities κji and
dji instead of periodicity, the mirroring technique is used.

D. Discretization of the equation for the position

We integrate the equation (9) over the dual volume νi with
respect to the arc-length parameter s∫ ~Xi+1/2

~Xi−1/2

B∂t ~Xds =

∫ ~Xi+1/2

~Xi−1/2

T∂ss ~X+αT∂s ~X+F∂s ~X
⊥ds,

from which, by taking discrete time stepping and averaged
values, we obtain the following equation (note that the force
term F is considered constant on the dual volume νi)

Bdji+1/2(∂t ~X)j+1
i =T

[
∂s ~X

] ~Xj+1
i+1/2

~Xj+1
i−1/2

+ αj+1
i T

[
~X
] ~Xj+1

i+1/2

~Xj+1
i−1/2

+ F j
i

[
~X⊥
] ~X⊥,j

i+1/2

~X⊥,j
i−1/2

.

(17)

Using the following differences of ~Xj
i , where the nonlinear-

ities dji are taken at the previous time level,

(∂s ~X)j+1
i+1/2 =

~Xj+1
i+1 − ~Xj+1

i

dji+1

,

(∂s ~X)j+1
i−1/2 =

~Xj+1
i − ~Xj+1

i−1

dji
,

(∂t ~X)j+1
i =

~Xj+1
i − ~Xj

i

τ
,

the following semiimplicit linear system for the position
vector ~Xj+1

i

−aj+1/2
i τ ~Xj+1

i−1 + (1 + b
j+1/2
i τ) ~Xj+1

i − cj+1/2
i τ ~Xj+1

i+1

= ~Xj
i + τ

F j
i

B

~X⊥,ji−1 − ~X⊥,ji+1

dji+1 + dji
(18)

with the coefficients

a
j+1/2
i =

T

B

1

dji+1/2

(
1

dji
− αj+1

i

2

)
,

c
j+1/2
i =

T

B

1

dji+1/2

(
1

dji+1

+
αj+1
i

2

)
,

b
j+1/2
i = a

j+1/2
i + c

j+1/2
i .

The system (18) is tridiagonal and can be easily solved by
matrix factorization.

V. COMPUTATIONAL RESULTS

We present results of numerical simulations of the motion
of dislocations in the PSB channel. In the first study, we
consider the motion of a single dislocation. Moreover, we
present the results of two numerical experiments, in which
we deal with the interaction of two dislocations on nearby
parallel slip planes in the PSB channel. All simulations are
considered under real physical settings, which are summa-
rized in Table I. The values of model parameters used in
numerical examples are: number of finite volumes N = 150,
time step τ = B ·104/N , tangential redistribution parameters
ω = 0.1, ε = 0 (0.1 in one dislocation evolution), and
approximate line tension T = E(e)(1 + ν) (see (5)).

A. Single dislocation line

We consider one straight initial dislocation line with fixed
endpoints in the channel walls, which is driven by the force

F = Fapp + Fwall − Ffr.

We study the influence of the various values of the applied
stress τapp, which are τapp = 30, 40, 50 MPa, respectively.
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TABLE I
TABLE OF PHYSICAL PARAMETERS

Parameter Symbol Value Units

Drag coefficient B 10−5 Pa · s

Magnitude of Burgers vector b 0.256 nm

Dislocation edge energy E(e) 2.0693 nJ · m−1

Poisson ratio ν 0.34 —

Shear modulus G 42.1 GPa

Friction τfr 5 MPa

Width of the channel dc 1200 nm

Distance of dislocations hdip 20 nm

Distance from the slip plane ydip 10 nm

Distance from the PSB wall ddip 10 nm

The results are shown in Figure 4. As the dislocation evolves,
it attaches to the walls of the PSB channel, while the apex of
the dislocation in the center of the channel moves onward.
Additionally, we can see that when the applies stress is
higher, the dislocation is more straightened.

B. Interaction of two dislocations in PSB channel

We consider two straight initial dislocation lines with fixed
endpoints in the channel walls, driven by the forces (6) with
opposite signs. The dislocations are located on different slip
plane with the distance h.

In the first experiment shown in Figure 5, the distance
between the slip planes is h = 35 nm and we consider the
value of the applied stress τapp = 30 MPa. The interaction
force is attractive, speeds up the motion and both dislocations
(solid and dashed curves) are attracted to each other. How-
ever, since the distance of slip planes is relatively small, the
interaction force is strong and when the dislocations overlap,
the total force becomes repulsive, which stops the movement
at a certain position, leaving the dislocations in a steady state.

In the second experiment (see Figure 6), the mutual
distance between the slip planes is h = 65 nm and the value
of the applied stress is τapp = 35 MPa. The interaction force
also attracts the dislocations. When the dislocations (solid
and dashed curves) overlap, the interaction force becomes
repulsive. In this case of relatively large distance h, the force
generated by channel walls and applied stress is greater than
the repulsive force and the dislocations continue to glide.

VI. CONCLUSION

We have presented a mathematical and physical model of
evolving curves in plane based on the parametric approach
and discussed the problem of non-uniform distribution of
grid points. We successfully overcame this problem by
adding a curvature adjusted tangential term to the model,
which has been shown to be a very useful technique for
stabilizing the numerical algorithm. We presented a method
for computing the redistribution coefficients by discretization
of the equation for the tangential velocity by means of the
flowing finite volume method and we used the very same
approach to treat the motion law of evolving curves. We
also modified the redistribution algorithm for evolution of
open dislocation curves. We introduced a physical model of
evolving dislocations and discussed the outer forces affecting
the motion and the interaction of two dislocation curves,

respectively. We present novel numerical results for evolution
of open dislocation curves in the PSB channel computed by
means of curvature adjusted tangential redistribution. Previ-
ous computational studies showed importance of tangential
redistribution. In Minárik (see [8], [10]), much simpler
redistribution was implemented. Here we apply the curvature
adjusted tangential redistribution which is more suitable for
curve evolution problems with high variations in curvature.
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Fig. 4. Time evolution of a single dislocation curve in the PSB channel under the influence of applied stress. The values of applied stress are
τapp = 30, 40, 50 MPa, respectively. All axes are in nanometers.
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(c) Time = 1.78

Fig. 5. Time evolution of two dislocation curves (solid and dashed) with distance h = 35 nm. At a certain position, the repulsive force is too high
and the dislocations stop moving. All axes are in nanometers, the left figure is the vertical view and the right figure is the three-dimensional view of the
dislocations position.
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(c) Time = 3.56

Fig. 6. Time evolution of two dislocation curves (solid and dashed) with distance h = 65 nm. Because of the large distance the movement continues
and during the passing, the dislocations slightly change their shape. All axes are in nanometers, the left figure is the vertical view and the right figure is
the three-dimensional view of the dislocations position.
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