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1 Introduction

In a stylized financial market, the price of a European option can be computed from a
solution to the well-known Black–Scholes linear parabolic equation derived by Black
and Scholes (1973), and, independently by Merton (1971) (c.f. Kwok 1998; Dewynne
et al. 1993; Hull 1989). A European call (put) option is the right but not obligation to
purchase (sell) an underlying asset at the expiration price E at the expiration time T .

In contrast to European options, American style options can be exercised anytime in
the temporal interval [0, T ] with the specified time of obligatory expiration at t = T .
A mathematical model for pricing American put options leads to a free boundary
problem. It consists in construction of a function V = V (S, t) together with the early
exercise boundary profile S f : [0, T ] → R satisfying the following conditions:

1. V is a solution to the Black–Scholes partial differential equation:

∂t V + 1

2
σ 2S2∂2S V + r S∂S V − r V = 0 (1)

defined on the time dependent domain S > S f (t) where 0 < t < T . Here σ is
the volatility of the underlying asset price process, r > 0 is the interest rate of a
zero-coupon bond. A solution V = V (S, t) represents the price of an American
style put option for the underlying asset price S > 0 at the time t ∈ [0, T ];

2. V satisfies the terminal pay-off condition:

V (S, T ) = max(E − S, 0); (2)

3. and boundary conditions for the American put option:

V (S f (t), t) = E − S f (t), ∂S V (S f (t), t) = −1, V (+∞, t) = 0, (3)

for S = S f (t) and S = ∞.

Since the seminal paper by Brennan and Schwartz (1977) American style of a
put option has been investigated by many authors (c.f. Kwok 1998 and references
therein). Various accurate analytic approximations of the free boundary position have
been derived by Stamicar et al. (1999), Evans et al. (2002), and by Zhu (2006) and
Lauko and Ševčovič (2011) in recent papers and dealing with analytic approximations
on the whole time interval.

If the volatility σ > 0 in (1) is constant then (1) is a classical linear Black–Scholes
parabolic equation derived by Black and Scholes (1973). If we assume the volatility
σ > 0 is a function of the solution V then Eq. (1) with such a diffusion coefficient
represents a nonlinear generalization of the Black–Scholes equation. In this paper we
focus our attention to the case when the diffusion coefficient σ 2 may depend on the
asset price S and the second derivative ∂2S V of the option price. More precisely, we
will assume that

σ = σ
(

S∂2S V
)

, (4)
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i.e. σ depends on the product S∂2S V of the asset price S and the second derivative
(Gamma) of the option price V . Recall that the nonlinear Black–Scholes equation
(1) with a nonlinear volatility σ having the form of (4) arises from option pricing
models taking into account nontrivial transaction costs, market feedbacks and/or risk
from a volatile (unprotected) portfolio. The linear Black–Scholes equation with a
constant volatility σ has been derived under several restrictive assumptions like e.g.,
frictionless, liquid and complete markets, etc. Such assumptions have been relaxed
in order to model the presence of transaction costs (see e.g., Leland 1985; Hoggard
et al. 1994; Avellaneda and Paras 1994), feedback and illiquid market effects due to
large traders choosing given stock-trading strategies (Frey 1998; Frey and Patie 2002;
Frey and Stremme 1997; Schönbucher and Wilmott 2000), imperfect replication and
investor’s preferences (Barles andSoner 1998), risk fromunprotected portfolio (Kratka
1998; Jandačka and Ševčovič 2005 or Ševčovič 2007).

In the Leland model (generalized for more complex option strategies by Hoggard
et al. 1994) the volatility is given by σ 2 = σ 2

0 (1 + Le sgn(∂2S V )) where σ0 > 0 is the
constant historical volatility of the underlying asset price process and Le > 0 is the
so-called Leland number. Another nonlinear Black–Scholes model has been derived
by Frey (1998). In this model the asset dynamics takes into account the presence of
feedback effects due to a large trader choosing his/her stock-trading strategy (see also
Schönbucher and Wilmott 2000). The diffusion coefficient σ 2 is again non-constant:

σ
(

S∂2S V
)2 = σ 2

0

(
1 − μS∂2S V

)−2
, (5)

where σ 2
0 , μ > 0 are constants.

Next example of the Black–Scholes equation with a non-constant volatility is the
so-called Risk Adjusted Pricing Methodology model proposed by Kratka (1998) and
revisited by Jandačka and Ševčovič (2005). In the Risk adjusted pricing methodology
model (RAPM) the purpose is to optimize the time-lag between consecutive portfolio
adjustments in such way that the sum of the rate of transaction costs and the rate
of a risk from unprotected portfolio is minimal. In this model, the volatility is again
non-constant and has the form:

σ
(

S∂2S V
)2 = σ 2

0

(
1 + μ

(
S∂2S V

) 1
3
)

, (6)

where σ0 > 0 is a constant historical volatility of the asset price returns and μ =
3(C2R/2π)

1
3 ,where C, R ≥ 0 are nonnegative constants representing the transaction

cost measure and the risk premium measure, respectively (see Jandačka and Ševčovič
2005 for details). Recently, explicit solutions to the Black–Scholes equation with
varying volatility of the form (5) and (6) have been derived by Bordag and Chmakova
(2007) and Bordag (2011, 2015).

Another important contribution in this direction has been presented by Amster et al.
(2005), where the transaction costs are assumed to be a non-increasing linear function
of the form C(ξ) = C0 − κξ , (C0, κ > 0), depending on the volume of traded stocks
ξ ≥ 0 that is needed to hedge the replicating portfolio. In the model studied by Amster
et al. (2005) the volatility function has the following form:
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σ
(

S∂2S V
)2 = σ 2

0

(
1 − Le sgn

(
S∂2S V

)
+ κS∂2S V

)
. (7)

A disadvantage of such a transaction costs function is the fact that it may attain
negative values when the amount of transactions exceeds the critical value ξ = C0/κ .
The model (7) has been generalized to a class of nonnegative variable transaction cost
function by Ševčovič and Žitňanská (2016).

Bakstein and Howison (2004) investigated a parametrized model for liquidity
effects arising from the asset trading. In theirmodel the volatility function is a quadratic
function of the term S∂2S V :

σ
(

S∂2S V
)2 = σ 2

0

(
1 + γ 2(1 − α)2 + 2λS∂2S V + λ2(1 − α)2

(
S∂2S V

)2

+ 2

√
2

π
γ sgn

(
S∂2S V

)
+ 2

√
2

π
λ(1 − α)2γ

∣∣∣S∂2S V
∣∣∣
)

. (8)

The parameter λ corresponds to a market depth measure, i.e. it scales the slope of
the average transaction price. The parameter γ models the relative bid–ask spreads
and it is related to the Leland number through relation 2γ

√
2/π = Le. Finally, α

transforms the average transaction price into the next quoted price, 0 ≤ α ≤ 1.
An interesting generalization of the linear Black–Scholes equation with the volatility
function polynomially dependent on S∂2S V has been proposed by Cetin et al. (2004).

Note that if additional model parameters (e.g., Le,μ, κ, γ, λ) are vanishing then all
the aforementioned nonlinear models are consistent with the original Black–Scholes
equation, i.e. σ = σ0. Furthermore, for call or put options, the function V is convex
in the S variable.

The main purpose of this paper is to investigate qualitative and quantitative behav-
ior of a solution to the problem of pricing American style of perpetual put options.
We assume the option price is a solution to a stationary generalized Black–Scholes
equation with a nonlinear volatility function. We prove existence and uniqueness of
a solution to the free boundary problem. We derive a single implicit equation for the
free boundary position and the closed form formula for the option price. It is a gen-
eralization of the well-known explicit closed form solution derived by Merton for the
case of a constant volatility. We also present results of numerical computations of the
free boundary position, option price and their dependence on model parameters. In
the recent paper (Grossinho et al. 2017) we investigated the case when the volatility
function may depend on S and ∂2S V including other models proposed by Barles and
Soner (1998), Frey and Patie (2002) and Frey and Stremme (1997). However, for
these models there is no single implicit equation for the free boundary position and
numerical methods have to be adopted.

The paper is organized as follows. In the next section we recall mathematical for-
mulation of the perpetual American put option pricing model. We furthermore present
the explicit solutions for the case of the constant volatility derived byMerton. In Sect. 3
we prove the existence and uniqueness of a solution to the free boundary problem.
We derive a single implicit equation for the free boundary position 
 and the closed
form formula for the option price. The first order expansion of the free boundary
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position with respect to the model parameter is also derived. We construct suitable
sub- and supper-solutions based on Merton’s explicit solutions. In Sect. 4 we present
results of numerical computations of the free boundary position, option price and their
dependence on the model parameter.

2 Perpetual American Put Options

In this section we analyze the problem of pricing American perpetual put options. By
definition, perpetual options are optionswith a very longmaturity T → ∞. Notice that
both the option price and the early exercise boundary position depend on the remaining
time T − t to maturity. Recently, stationary solutions to generalized Black–Scholes
equation have been investigated by Grossinho andMorais (2009), Fabiao et al. (2009).
Suppose that there exists a limit of the solution V and early exercise boundary position
S f for the maturity T → ∞.

For anAmerican style put option the limitingpriceV = V (S) = limT −t→∞ V (S, t)
and the limiting early exercise boundary position ρ = limT −t→∞ S f (t) of the perpet-
ual put option is a solution to the stationary nonlinearBlack–Scholes partial differential
equation:

1

2
σ

(
S∂2S V

)2
S2∂2S V + r S∂S V − r V = 0, S > 
, (9)

and
V (
) = E − 
, ∂S V (
) = − 1, V (+∞) = 0. (10)

Our purpose is to analyze the system of equations (9)–(10). In what follows, we
will prove the existence and uniqueness of a solution pair (V (·), 
) to (9)–(10).

In the rest of the paper, we will assume the volatility function

R
+
0 � H 	→ σ(H)2 ∈ R

+
0 (11)

is non-decreasing, σ(0) > 0 and such that the function H 	→ σ(H)2H is C1 smooth
for H ≥ 0. Under these assumptions there exists an increasing inverse function β :
R

+
0 → R

+
0 such that

1

2
σ(H)2H = u iff H = β(u). (12)

which is an C1 continuous and non-decreasing function such that β(0) = 0, and
β(u) > 0 for u > 0. As u = 1

2σ(β(u))2β(u) ≥ 1
2σ(0)2β(u) we have

β(u) ≤ M1u for all u ≥ 0, (13)

where M1 = 2/σ(0)2. Moreover, for any U0 > 0 there exists M0 > 0 such that

β(u) ≥ M0u for all u ∈ [0, U0]. (14)

Notice that the transformation H = S∂2S V is a useful tool when analyzing
nonlinear generalizations of the Black–Scholes equations. For example, using this
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Fig. 1 A plot of the price V (S)

of a perpetual American put
option and the pay-off diagram
max(E − S, 0) for the
parameters: E = 100, r = 0.1
and constant volatility σ0 = 0.3
and γ = 2r/σ 2
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transformation the fully nonlinear Black–Scholes equation with a volatility function
σ = σ(S∂2S V ) can be transformed into a quasilinear equation for the new variable H
(see Jandačka and Ševčovič 2005; Ševčovič et al. 2011 for details).

2.1 The Merton Explicit Solution for the Constant Volatility Case

In the case of a constant volatility σ ≡ σ0 the free boundary value problem (9)–
(10) for the function V and the limiting early exercise boundary position 
 has a
simple explicit solution discovered by Merton (1973). The closed form solution has
the following form:

V (S) =
{

E
1+γ

(
S



)−γ

, S > 
,

E − S, 0 < S ≤ 
,
(15)

where


 = E
γ

1 + γ
, γ = 2r

σ 2
0

. (16)

A graph of a perpetual American put option with the constant volatility is shown in
Fig. 1.

3 Existence and Uniqueness of Solutions

In this section we will focus our attention on existence and uniqueness of a solution
to the problem (9)–(10).

3.1 Explicit Formula for the Perpetual American Put Option Price

Since β is the inverse function to 1
2σ(H)2H the pair (V (·), 
) is a solution to (9) if

and only if

S∂2S V = β(r V/S − r∂S V ).
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Let us introduce the following transformation of variables:

U (x) = r
V (S)

S
− r∂S V (S) = −r S∂S

(
V (S)

S

)
, where x = ln S. (17)

Since

∂xU (x) = ∂S (r V (S)/S − r∂S V )
d S

dx
= −r S∂2S V (S) + r S∂S

(
V (S)

S

)

the function U (x) is a solution to the initial value problem

∂xU (x) = −U (x) − rβ(U (x)), x > x0 = ln 
, (18)

U (x0) = r E



. (19)

The initial condition (19) easily follows from the smooth pasting conditions V (
) =
E−
 and ∂S V (
) = −1. Equation (18) can be easily integrated.Wehave the following
result:

Lemma 1 A solution U = U (x) to the initial value problem (18)–(19) is uniquely
given by

U (x) = G−1(− x + x0), for x > x0 = ln 
,

where

G(U ) =
∫ U

U (x0)

1

u + rβ(u)
du. (20)

Taking into account the estimates (13) and (14) we can summarize the useful prop-
erties of the function G:

Lemma 2 The function G : R
+
0 → R is non-decreasing and G−1(0) = r E/
.

Furthermore, G(+∞) = +∞, G(0) = −∞, and, consequently, G−1(−∞) = 0.

Since

−r S∂S

(
V (S)

S

)
= U (ln S) = G−1(− ln S + ln 
)

by taking into account the boundary condition V (+∞) = 0 we conclude that the
solution to Eq. (9) is given by

V (S) = S

r

∫ ∞

S
G−1

(
− ln

(
s




))
ds

s
.

Using the substitution u = G−1(− ln(s/
)) we have

ds

s
= − G ′(u)du = − 1

u + rβ(u)
du.
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As G−1(−∞) = 0 the expression for V (S) can be simplified as follows:

V (S) = S

r

∫ G−1(− ln(S/
))

0

u

u + rβ(u)
du. (21)

3.2 Equation for the Free Boundary Position

Using the expression (21) we can derive a single implicit integral equation for the free
boundary position 
. Clearly, V (
) = E − 
 if and only if

E − 
 = 


r

∫ G−1(0)

0

u

u + rβ(u)
du. (22)

As G−1(0) = r E



we obtain

r E



= r +

∫ r E



0

u

u + rβ(u)
du = r + r E



− r

∫ r E



0

β(u)

u + rβ(u)
du (23)

Therefore the free boundary position 
 is a solution to the following implicit equation:

∫ r E



0

β(u)

u + rβ(u)
du = 1.

3.3 Main Result

In this section we summarize the previous results and state themain result on existence
and uniqueness of a solution to the perpetual American put option pricing problem
(9)–(10).

Theorem 1 Suppose that the volatility function σ : R+
0 → R

+ is non-decreasing,
σ(0) > 0 and such that the function H 	→ σ(H)2H is C1 smooth for H ≥ 0.

Then the perpetual American put option problem (9)–(10) has a unique solution
(V (·), 
) where the free boundary position 
 is a solution to the implicit equation

∫ r E



0

β(u)

u + rβ(u)
du = 1, (24)

and the option price V (S) is given by

V (S) = S

r

∫ G−1(− ln(S/
))

0

u

u + rβ(u)
du, (25)

where β is the inverse function to the function H 	→ 1
2σ(H)2H.
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Proof According to results in Sect. 3.2 it suffices to prove that (24) has the unique
solution 
. To this end, let us introduce the auxiliary function:

φ(y) =
∫ y

0

β(u)

u + rβ(u)
du

we have φ′(y) > 0, φ(0) = 0. For a fixed U0 > 0 we have β(u) ≥ β(U0) > 0 for
u ≥ U0, and

φ(+∞) =
∫ ∞

0

β(u)

u + rβ(u)
du ≥

∫ ∞

U0

β(u)

u + rβ(u)
du ≥ β(U0)

1 + r M1

∫ ∞

U0

1

u
du = +∞.

Hence Eq. (24) has the unique solution 
 > 0. Clearly, 
 < E because the right hand
side of (22) is positive.

Since 
 is a solution to (23) we have V (
) = E − 
. Moreover, as

U (x) = r
V (S)

S
− r∂S V (S), where x = ln S

[see (17)] we obtain, for x0 = ln 
,

∂S V (
) = V (
)



− U (x0)

r
= E − 




− E



= −1.

Hence V is a solution to the perpetual American put option pricing problem (9)–(10),
as claimed. �

Remark 1 In the case of a constant volatility function σ(H) ≡ σ0 we have β(u) =
2
σ 2
0

u. It follows from Eq. (24) that


 = E
γ

1 + γ
, where γ = 2r

σ 2
0

,

and,

V (S)= S

r

∫ G−1(− ln(S/
))

0

u

u+rβ(u)
du= S

r

1

1 + γ
G−1(− ln(S/
)) = E

1 + γ

(
S




)−γ

because G(U ) = 1
1+γ

ln(U/U (x0)), U (x0) = r E/
, and so G−1( f ) = r E



e(1+γ ) f .
Hence the solution is identical with Merton’s explicit solution.
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3.4 Sensitivity Analysis

In this section we will investigate dependence of the free boundary position on model
parameters. We consider the volatility function of the form:

1

2
σ(H)2H = σ 2

0

2

(
1 + μHa)

H + O(μ2) as μ → 0.

Here a ≥ 0 andμ ≥ 0 are specific model parameters. Our goal is to find the first order
expansion of the free boundary position 
 considered as a function of a parameter μ,
i.e. 
 = 
(μ).

First, we derive expression for the derivative ∂μβ of the inverse function β. For
H = β(u;μ) we have u = 1

2σ(β(u;μ))2β(u;μ) and so

0 = ∂μ

(
σ 2
0

2

(
1 + μHa)

H

)
= σ 2

0

2

(
1 + μ(a + 1)βa)

∂μβ + σ 2
0

2
βa+1 + O(μ)

For μ = 0 we have β(u; 0) = 2
σ 2
0

u. Therefore

∂μβ(u; 0) = − (σ 2
0 /2)−(a+1)ua+1.

The first derivative of the free boundary position 
 = 
(μ) can be deduced from the
implicit equation (24). We have

0 = d

dμ

∫ r E

(μ)

0

β(u;μ)

u + rβ(u;μ)
du

= β(u;μ)

u + rβ(u;μ)

∣∣∣∣
u= r E


(μ)

(
− r E


(μ)2
∂μ
(μ)

)
+

∫ r E

(μ)

0

u∂μβ(u;μ)

(u + rβ(u;μ))2
du.

Since, for μ = 0 we have 
(0) = Eγ /(1 + γ ) we conclude

∂μ
(0) = − E

a + 1
γ (1 + γ )a−2.

In summary we have shown the following result:

Theorem 2 If the volatility function σ(H) has the form 1
2σ(H)2H = σ 2

0
2 (1 + μHa)

H + O(μ2) as μ → 0, where μ, a ≥ 0, then the free boundary position 
 = 
(μ) of
the perpetual American put option pricing problem has the asymptotic expansion:


(μ) = E
γ

1 + γ
− μ

E

a + 1

γ

(1 + γ )2−a
+ O(μ2) as μ → 0.
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Remark 2 In the case a = 0 we have σ(H)2 = σ 2
0 (1 + μ). It corresponds to the

constant volatility model. Thus 
(μ) = E γ (μ)
1+γ (μ)

= E 1
1+1/γ (μ)

where γ (μ) =
2r/(σ 2

0 (1 + μ)). Hence


(μ) = E
1

1 + σ 2
0
2r (1 + μ)

, and, ∂μ
(0) = −E
γ

(1 + γ )2
,

as claimed by Theorem 2.

3.5 Comparison Principle and Merton’s Sub- and Super-Solutions

In this section our aim is to derive sub- and super-solutions to the perpetual American
put option pricing problem.

Let γ > 0 be positive constant. By Vγ we will denote the explicit Merton solution
presented in Sect. 2.1, i.e.

Vγ (S) =
{

E
1+γ

(
S

γ

)−γ

, S > 
γ ,

E − S, 0 < S ≤ 
γ ,
(26)

where

γ = E

γ

1 + γ
. (27)

It means that the pair (Vγ (·), 
γ ) is the explicit Merton solution corresponding to the
constant volatility σ 2

0 = 2r/γ [see (15)].
Then, for the transformed function Uγ (x) we have

Uγ (x) = − r S∂S

(
Vγ (S)

S

)
= r E
γ

γ e−(1+γ )x , for x = ln S > x0γ = ln 
γ .

Clearly,
∂xUγ + Uγ + rβ(Uγ ) = rβ(Uγ ) − γUγ . (28)

Next we will construct a super-solution to the solution U of the equation ∂xUγ =
− Uγ − rβ(Uγ ) by means of the Merton solution Uγ where γ = γ + is the unique
root of the equation

γ +σ(1 + γ +)2 = 2r. (29)

Since

Uγ +(x) ≤ Uγ +(x0γ ) = r E

γ + = r
1 + γ +

γ +

we obtain

1

2
σ

(
(γ +/r)Uγ +(x)

)2 γ +

r
Uγ +(x) ≤ 1

2
σ(1 + γ +)2

γ +

r
Uγ +(x).
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Fig. 2 A plot of Merton
solutions V +, V −, and the
pay-off diagram max(E − S, 0)
corresponding to constant
volatilities σ+ = 0.6 and
σ− = 0.3 for model parameters:
E = 100, r = 0.1
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By taking the inverse function β we finally obtain

γ +

r
Uγ +(x) ≤ β(Uγ +(x)).

With regard to (28) we conclude that

∂xUγ +(x) ≥ − Uγ +(x) − rβ(Uγ +(x)) for x > x0γ + = ln 
γ + (30)

Similarly, we will construct the Merton sub-solution Uγ − satisfying the opposite
differential inequality. Let γ − be given by

γ −σ(0)2 = 2r, (31)

i.e. γ − = 2r/σ(0)2. Then

Uγ − = 1

2
σ(0)2

γ −

r
Uγ − ≤ 1

2
σ((γ −/r)Uγ −)2

γ −

r
Uγ −

and so, by taking the inverse function β we obtain β(Uγ −) ≤ γ −
r Uγ − . Then, from

(28) we conclude that

∂xUγ −(x) ≤ −Uγ −(x) − rβ(Uγ −(x)) for x > x0γ − = ln 
γ − . (32)

In Fig. 2 we plot Merton’s solutions V ±(·) corresponding to γ + = 0.555 (σ+ .=
0.6) and γ − = 2.222 (σ− .= 0.3) where (σ±)2 = 2r/γ ±.

In what follows, we will prove the inequalities


γ + ≤ 
 ≤ 
γ − , (33)

where 
 is the free boundary position for the nonlinear perpetual American put option
pricing problem (9)–(10).
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Denote

β−(u) = γ −

r
u

the inverse function to the function H 	→ 1
2σ(0)2H . As 1

2σ(0)2H ≤ 1
2σ(H)2H we

have β(u) ≤ β−(u) for any u ≥ 0. Since

∫ r E



0

β(u)

u + rβ(u)
du = 1 =

∫ r E


γ−

0

β−(u)

u + rβ−(u)
du ≥

∫ r E


γ−

0

β(u)

u + rβ(u)
du

we conclude the inequality 
 ≤ 
γ − .
On the other hand, let

β+(u) = γ +

r
u

be the inverse function to the function H 	→ 1
2σ(1+ γ +)2H . Then, for u ≤ r E/
γ +

we have

H = β(u) ≤ β(r E/
γ +) = β

(
1

2
σ(1 + γ +)2(1 + γ +)

)
= 1 + γ +.

Therefore, for u ≤ r E/
γ + we have β(u) ≥ β+(u) and arguing similarly as before
we obtain the estimate 
γ + ≤ 
 and so the inequalities (33) follows.

For initial conditions we have Uγ ±(x0γ ±) = r E

γ± , U (x0) = r E



and so

Uγ −(x0γ −) ≤ U (x0) ≤ Uγ +(x0γ +).

Using the comparison principle for solutions of ordinary differential inequalities we
haveUγ −(x) ≤ U (x) ≤ Uγ +(x). Taking into account the explicit form of the function
V (S) from Theorem 1 [see (25)] we conclude the following result:

Theorem 3 Let (V (·), 
) be the solution to the perpetual American pricing problem
(9)–(10). Then

Vγ −(S) ≤ V (S) ≤ Vγ +(S) for any S ≥ 0,

and,


γ + ≤ 
 ≤ 
γ −

where Vγ ± , 
γ ± are explicit Merton’s solutions where γ ± are given by (29) and (31).

A graphical illustration of the comparison principle is shown in Fig. 6.
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Table 1 The free boundary position 
 = 
(μ) and the option price V (S) evaluated at S = E for various
values of the model parameter μ ≥ 0 for the Frey model (5)

μ 0.00 0.01 0.05 0.10 0.15 0.20 0.22


 68.9655 68.2852 65.7246 62.8036 60.1175 57.6177 56.6627

V (E) 13.5909 13.8005 14.6167 15.5961 16.5389 17.4510 17.8083

4 Numerical Approximation Scheme and Computational Results

In this section we propose a simple and efficient numerical scheme for constructing a
solution to the perpetual put option problem (9)–(10).

Using transformation H = β(u), i.e. u = 1
2σ(H)2H and du = 1

2∂H (σ (H)2H)d H
we can rewrite the equation for the free boundary position [see (24)] as follows:

∫ β(r E/
)

0

H 1
2∂H (σ (H)2H)

1
2σ(H)2H + r H

d H = 1. (34)

Similarly, the option price (24) can be rewritten in terms of the H variable as follows:

V (S) = S

r

∫ β(G−1(− ln(S/
)))

0

1
2σ(H)2H 1

2∂H (σ (H)2H)

1
2σ(H)2H + r H

d H. (35)

With this transformation we can reduce computational complexity in the case when
the inverse function β is not given by a closed form formula.

4.1 Numerical Results

Results of numerical calculation for the Frey model (5) and the RAPM model (6)
are summarized in Tables 1 and 3. We show the position of the free boundary 
 and
the perpetual option value V evaluated at the exercise price S = E . The results are
computed for various values of the parameter μ for the Frey model and the RAPM
model. Other model parameter were chosen as: E = 100, r = 0.1 and σ0 = 0.3 (Fig.
3).

In the Frey model (5) the nonlinear volatility function has the form:

σ(H)2 = σ 2
0 (1 − μH)−2 .

The range of the parameter μ is therefore limited to satisfy the strict inequality 1 −
μH = 1 − μS∂2S V (S) > 0. However, using the identity

1

1 − μH
= 1 +

∞∑
n=1

μn Hn .
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Fig. 3 A plot of dependence of the free boundary position 
 (a) and the perpetual American put option
price V (E) (b) on the model parameter μ for the Frey model (5)
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Fig. 4 A plot of dependence of the free boundary position 
 (a) and the perpetual American put option
price V (E) (b) on the model parameter μ for the modified Frey model (36)

we can approximate the Frey volatility function as follows:

σ(H)2 = σ 2
0

(
1 +

N∑
n=1

μn Hn

)2

, (36)

where N is sufficiently large. Interestingly, a similar power series expansion of σ(H)2

can be found in the generalized Black–Scholes model proposed by Cetin et al. (2004).
In computations shown in Fig. 4 and Table 2 we present results of the free boundary

position and the perpetual American put option price V (E) for N = 10 and larger
interval of parameter values μ ∈ [0, 8]. Note that the results for small values μ ≤ 0.1
computed from the original Frey volatility (5) and (36) are very close to each other.

In our next computational example we consider the Risk adjusted pricing method-
ologymodel (RAPM). In computations shown in Fig. 5a and Table 3we present results
of the free boundary position and the perpetual American put option price V (E) for the
RAPM model (see Fig. 5b). We also show comparison of the free boundary position

 = 
(μ) and its linear approximation derived in Theorem 2 (see Fig. 5c).
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Table 2 The free boundary position 
 and the option price V (S) evaluated at S = E for various values of
the model parameter μ ≥ 0 for the modified Frey model

μ 0.00 0.10 0.50 1.00 2.00 4.00 8.00


 68.9655 62.8037 45.3007 31.0862 16.3126 8.3818 5.4556

V (E) 13.5909 15.5961 22.4529 29.5719 41.0654 56.1777 70.2259
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Fig. 5 A plot of dependence of the free boundary position 
 (a) and the perpetual American put option
price V (E) (b) on the model parameter μ for the RAPM model (6). The comparison of the free boundary
position and its linear approximation (c)

Table 3 The free boundary position 
 and the option price V (S) evaluated at S = E for various values of
the model parameter μ ≥ 0 for the RAPM model

μ 0.00 0.10 0.50 1.00 2.00 4.00 8.00


 68.9655 66.7331 59.6973 53.3234 44.5408 34.0899 23.6125

V (E) 13.5909 14.5761 17.9398 21.3434 26.6857 34.3393 44.1774

In the last examples shown in Fig. 6 we present comparison of the option price V (S)

and the free boundary position 
 for the Freymodel (left) and the Risk adjusted pricing
methodologymodel (right)with closed formexplicitMerton’s solutions corresponding
to the constant volatility.

123



Pricing Perpetual Put Options by the Black–Scholes. . . 307

50 75 100 125 150 175 200

S

0

10

20

30

40

50

60
V

S

50 75 100 125 150 175 200

S

0

10

20

30

40

50

60

V
S

V

V
V

V

V

V

(a) (b)

Fig. 6 The solid curve represents a graph of a perpetual American put option S 	→ V (S) for the Frey
model (a) with μ = 0.1 and the RAPM model (b) with μ = 1. Sub- and super- solutions V − = Vγ − and

V + = Vγ + are depicted by dashed curves, V + < V −. The model parameters: E = 100, r = 0.1 and
σ0 = 0.3

5 Conclusions

In this paper we analyzed the free boundary problem for pricing perpetual American
put option when the volatility is a function of the second derivative of the option price.
We showed how the problem can be transformed into a single implicit equation for
the free boundary position and explicit integral expression for the option price.
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