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1. Introduction

A number of ways of introducing inverses of graphs have been proposed, all based 
on inverting adjacency matrices. For a graph with a non-singular adjacency matrix a 
first thought might be to hope that the inverse matrix defines a graph again. It turns 
out, however, that this happens to be the case only for unions of isolated edges [6]. 
A successful approach was initiated by Godsil [4] who defined a graph to be invertible 
if the inverse of its (non-singular) adjacency matrix is diagonally similar (cf. [15]) to a 
nonnegative integral matrix representing the adjacency matrix of the inverse graph in 
which positive labels determine edge multiplicities. This way of introducing invertibility 
has the appealing property that inverting an inverse graph gives back the original graph. 
For a survey of results and other approaches to graph inverses we recommend [9].

Inverse graphs are of interest in estimating the least positive eigenvalue in families 
of graphs, a task for which there appears to be lack of suitable bounds. However, if the 
graphs are invertible, one can apply one of the (many) known upper bounds on largest 
eigenvalues of the inverse graphs instead (cf. [10–12]). Properties of spectra of inverse 
graphs can also be used to estimate the difference between the minimal positive and 
maximal negative eigenvalue (the so-called HOMO-LUMO gap) for structural models of 
chemical molecules, as it was done e.g. for graphene in [14].

Godsil’s ideas have been further developed in several ways. Akbari and Kirkland [7]
and Bapat and Ghorbani [1] studied inverses of edge-labeled graphs with labels in a 
ring, Ye et al. [13] considered connections of graph inverses with median eigenvalues, 
and Pavlíková [10,12] developed constructive methods for generating invertible graphs 
by edge overlapping. A large number of related results, including a unifying approach to 
inverting graphs, were proposed in a recent survey paper by McLeman and McNicholas 
[9], with emphasis on inverses of bipartite graphs and diagonal similarity to nonnegative 
matrices.

Less attention has been given to the study of invertibility of non-bipartite graphs 
and their spectral properties which is the goal of this paper. After introducing basic 
concepts, in Section 2 we present an example of a non-bipartite graph representing 
an important chemical molecule of fulvene. Its adjacency matrix has the remarkable 
additional property that its inverse is integral and diagonally similar to a nonpositive 
rather than a nonnegative matrix. This motivated us to introduce negative invertibility 
as a natural counterpart of Godsil [4] concept: A negatively invertible graph is one with 
a non-singular adjacency matrix whose inverse is diagonally similar to a nonpositive 
matrix. The negative of this matrix is then the adjacency matrix of the inverse graph. 
Positively and negatively invertible graphs are subfamilies of integrally invertible graphs, 
whose adjacency matrices have an integral inverse. The corresponding inverse graphs, 
however, would have to be interpreted as labeled graphs with both positive and negative 
(integral) edge labels.

Results of the paper are organized as follows. In Section 3 we develop constructions 
of new integrally invertible graphs from old ones by ‘bridging’ two such graphs over 
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subsets of their vertices. This yields a wide range of new families of integrally invertible 
graphs. We derive sufficient conditions for their positive and negative invertibility. In 
contrast to purely graph-theoretical approach we use methods of matrix analysis and in 
particular results on inverting block matrices such as the Schur complement theorem and 
the Woodbury and Morrison–Sherman formulae. Using this approach enables us to derive 
useful bounds on the spectra of graphs arising from bridging construction in Section 4. 
We then illustrate our results in Section 5 on a recursively defined family of fulvene-like 
graphs. In the final Section 6 we discuss arbitrariness in the bridging construction and 
give a census of all invertible graphs on at most 6 vertices with a unique 1-factor.

2. Invertible graphs

In this section we recall a classical concept of an invertible graph due to Godsil [4]. 
Let G be an undirected graph, possibly with multiple edges, and with a (symmetric) 
adjacency matrix AG. Conversely, if A is a nonnegative integral symmetric matrix, we 
will use the symbol GA to denote the graph with the adjacency matrix A.

The spectrum σ(G) of G consists of eigenvalues (i.e., including multiplicities) of AG

(cf. [3,2]). If the spectrum does not contain zero then the adjacency matrix A is invertible. 
We begin with a definition of an integrally invertible graph.

Definition 1. A graph G = GA is said to be integrally invertible if the inverse A−1 of its 
adjacency matrix exists and is integral.

It follows that a graph GA is integrally invertible if and only if det(A) = ±1 (cf. [7]). 
Note that, in such a case the inverse matrix A−1 need not represent a graph as it may 
contain negative entries.

Following the idea due to Godsil, the concept of the inverse graph G−1
A is based on 

the inverse matrix A−1 for which we require signability to a nonnegative or nonpositive 
matrix. We say that a symmetric matrix B is positively (negatively) signable if there 
exists a diagonal ±1 matrix D such that DBD is nonnegative (nonpositive). We also say 
that D is a signature matrix.

Definition 2. A graph GA is called positively (negatively) invertible if A−1 exists and is 
signable to a nonnegative (nonpositive) integral matrix. If D is the corresponding signa-
ture matrix, the positive (negative) inverse graph H = G−1

A is defined by the adjacency 
matrix AH = DA−1D (AH = −DA−1D).

The concept of positive invertibility coincides with the original notion of invertibility 
introduced by Godsil [4]. Definition 2 extends Godsil’s original concept to a larger class 
of integrally invertible graphs with inverses of adjacency matrices signable to nonpositive 
matrices.

Notice that for a diagonal matrix DA containing ±1 elements only, we have 
DADA = I. It means that (DA)−1 = DA.
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Fig. 1. An example of a negatively invertible non-bipartite graph F0 (left) and its inverse graph (F0)−1

(middle) of the fulvene chemical organic molecule (right).

Remark 1. The idea behind the definition of an inverse graph consists of the following 
useful property. If G is a positively (negatively) invertible graph then G−1 is again 
a positively (negatively) invertible graph and G = (G−1)−1. As far as the spectral 
properties are concerned, we have

σ(G−1) = 1/σ(G) = {1/λ, λ ∈ σ(G)},

for any positively invertible graph G. On the other hand, if G is negatively invertible 
then

σ(G−1) = −1/σ(G) = {−1/λ, λ ∈ σ(G)}.

Fig. 1 (left) shows the graph F0 on 6 vertices representing the organic molecule of 
the fulvene hydrocarbon (5-methylidenecyclopenta-1,3-diene) (right). The graph F0 is 
negatively (but not positively) invertible with the inverse graph (F0)−1 depicted in Fig. 1
(middle). The spectrum consists of the following eigenvalues:

σ(F0) = {−1.8608,−q,−0.2541, 1/q, 1, 2.1149},

where q = (
√

5+1)/2 is the golden ratio with the least positive eigenvalue λ+
1 (F0) = 1/q. 

The inverse adjacency matrix A−1
F0

is signable to a nonpositive integral matrix by the 
signature matrix DAF0 = diag(−1, −1, 1, 1, 1 − 1).

2.1. Bipartite graphs and their invertibility

A graph GB is called bipartite if the set of vertices can be partitioned into two disjoint 
subsets such that no two vertices within the same subset are adjacent. The adjacency 
matrix B of a bipartite graph GB can be given in a block form:

B =
(

0 K

KT 0

)
,

where K is a matrix with nonnegative integer entries. Clearly, the adjacency matrix B of 
a bipartite graph GB is invertible if and only if the number of its vertices is even and the 
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matrix K is invertible. If we consider the labeled graph corresponding to the adjacency 
matrix B−1 and the product of edge labels on every cycle in this graph is positive, then 
B−1 is signable to a nonnegative matrix and so GB is a positively invertible graph (see 
[8]).

Recall that a 1-factor (a perfect matching) of a graph is a spanning 1-regular subgraph 
with all vertices of degree 1. If G is a bipartite graph with a 1-factor M such that the 
graph G/M obtained from G by contracting edges of M is bipartite then G is a positively 
invertible graph (cf. [4,11]).

Bipartiteness and invertibility are related as follows.

Theorem 1. Let G be an integrally invertible graph. Then G is bipartite if and only if G
is simultaneously positively and negatively invertible.

Proof. Let G = GB be an integrally invertible bipartite graph. Assume that GB is 
positively invertible, i.e., there exists a signature matrix D+ = diag(D1, D2) such that 
the matrix

D+B−1D+ =
(
D1 0
0 D2

)(
0 (K−1)T

K−1 0

)(
D1 0
0 D2

)

=
(

0 D1(K−1)TD2
D2K

−1D1 0

)

contains nonnegative integer entries only. Then for the {±1} diagonal matrix D− =
diag(D1, −D2) the matrix

D−B−1D− =
(

0 −D1(K−1)TD2
−D2K

−1D1 0

)

contains nonpositive integers only. Hence GB is negatively invertible, and vice versa.
On the other hand, suppose that G is simultaneously positively and negatively in-

vertible. We will prove that G is a bipartite graph with even number of vertices. Let n
be the number of vertices of the graph G. Let D± be diagonal {±1}-matrices such that 
D+A−1D+ contains nonnegative integers and D−A−1D− contains nonpositive integers 
only. Since (D±A−1D±)ij = D±

ii (A−1)ijD±
jj we conclude that (D±A−1D±)ij �= 0 if and 

only if (A−1)ij �= 0. Hence

D+A−1D+ = −D−A−1D−. (1)

As det(A−1) = det(D+A−1D+) = (−1)ndet(D−A−1D−) = (−1)ndet(A−1) we conclude 
that n is even, i.e. n = 2m.

Recall that for the trace operator tr(Z) =
∑n

i=1 Zii of an n × n matrix Z we have 
tr(XY ) = tr(Y X) where X, Y are n × n matrices. With respect to (1) we obtain:
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tr(D+D−) = tr(AD+D−A−1) = tr(D−AD+D−A−1D−)

= −tr(D−AD+D+A−1D+) = −tr(D−D+) = −tr(D+D−).

Thus tr(D+D−) = 0. Since D± are diagonal {±1}-matrices, there exists an n × n

permutation matrix P such that

PTD+D−P =
(
I 0
0 −I

)
, i.e. D+D− = D−D+ = P

(
I 0
0 −I

)
PT ,

where I is the m ×m identity matrix. It follows from (1) that

A−1 = −D+D−A−1D−D+ = −P

(
I 0
0 −I

)
PTA−1P

(
I 0
0 −I

)
PT .

Since PTP = PPT = I we have

PTA−1P = −
(
I 0
0 −I

)
PTA−1P

(
I 0
0 −I

)

If we write PTA−1P as a block matrix we obtain

PTA−1P ≡
(

V H

HT W

)
= −

(
I 0
0 −I

)(
V H

HT W

)(
I 0
0 −I

)

=
(
−V H

HT −W

)
.

Therefore V = W = 0 and

PTA−1P =
(

0 H

HT 0

)
=⇒ PTAP =

(
0 (HT )−1

H−1 0

)
.

This means that the adjacency matrix A represents a bipartite graph G = GA after a 
permutation of its vertices given by the matrix P . ♦

3. Integrally invertible graphs arising by bridging

Let GA and GB be undirected graphs on n and m vertices, respectively. By 
Bk(GA, GB) we shall denote the graph GC on n + m vertices which is obtained by 
bridging the last k vertices of the graph GA to the first k vertices of GB. The adjacency 
matrix C of the graph GC has the form:

C =
(

A H

HT B

)
,
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where the n ×m matrix H has the block structure:

H =
(

0 0
I 0

)
= FET , where F =

(
0
I

)
, E =

(
I

0

)
,

and I is the k × k identity matrix.
Assume that A and B are symmetric n ×n and m ×m invertible matrices, respectively. 

With regard to the Schur complement theorem we obtain

C−1 =
(

A H

HT B

)−1

=
(

S−1 −S−1HB−1

−B−1HTS−1 B−1 + B−1HTS−1HB−1

)
, (2)

where S = A − HB−1HT is the Schur complement (see e.g. [5, Theorem A.6]). To 
facilitate further notation let us introduce the following matrices:

P = FTA−1F, R = ETB−1E.

In order to compute the inverse of the Schur complement S we follow derivation of the 
Woodbury and Morrison–Sherman formulae (cf. [5, Corollary A.6, A.7]). More precisely, 
equation Sx = y can be rewritten as follows:

y = (A−HB−1HT )x = Ax− FETB−1EFTx = Ax− FRFTx

and thus x = A−1y + A−1FRFTx. Hence

FTx = FTA−1y + FTA−1FRFTx = FTA−1y + PRFTx.

If we assume that the matrix I−PR is invertible then FTx = (I−PR)−1FTA−1y, and

S−1 = (A−HB−1HT )−1 = A−1 + A−1FR(I − PR)−1FTA−1. (3)

Note that the matrix I − PR is integrally invertible provided that either PR = 0 or 
PR = 2I.

Clearly, an m ×m matrix with a zero principal k× k diagonal block is invertible only 
for k ≤ m. Consequently, there are no connected invertible graphs with ETB−1E = 0
for k > m/2.

Theorem 2. Let GA and GB be integrally invertible graphs on n and m vertices, and let 
R and P be the upper left and lower right k × k principal submatrices of B−1 and A−1, 
respectively.

Let GC = Bk(GA, GB) be the graph obtained by bridging GA and GB over the last k
vertices of GA and the first k vertices of GB. If PR = 0 or PR = 2I, then the graph GC

is integrally invertible.
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Proof. Since PR = 0 or PR = 2I, then the inverse (I − PR)−1 exists and is equal to 
±I. Hence the inverse S−1 of the Schur complement is an integral matrix. Therefore the 
block matrix C given by

C =
(

A H

HT B

)

is invertible, and hence so is the bridged graph GC . Moreover, C−1 is an integral matrix 
because A−1, B−1, S−1 are integral. ♦

Definition 3. Let GB be a graph on m vertices with an invertible adjacency matrix B. 
We say that GB is arbitrarily bridgeable over a subset of k ≤ m/2 vertices if the k × k

upper principal submatrix R ≡ ETB−1E of the inverse matrix B−1 is a null matrix, 
that is R = 0.

In view of Definition 3, the bridged graph GC = Bk(GA, GB) is integrally invertible 
provided that GB is arbitrarily bridgeable over the set of its ‘first’ k vertices.

In the next theorem we address the question of invertibility of the bridged graph GC =
Bk(GA, GB) under the assumption that GA and GB are positive (negative) invertible 
graphs.

Theorem 3. Let GA and GB be graphs on n and m vertices, respectively. Assume that 
they are either both positively invertible or both negatively invertible graphs with signa-
ture matrices DA and DB. Then the graph GC = Bk(GA, GB) is positively (negatively) 
invertible if we have PR = 0 and either the matrix DAHDB or −DAHDB contains 
nonnegative integers only.

Proof. Let C be the adjacency matrix to the graph GC = Bk(GA, GB). If PR = 0 then 
for the inverse of the Schur complement (see (3)) we have

S−1 = A−1 + A−1FRFTA−1 = A−1 + A−1HB−1HTA−1

because FRFT = FETB−1EFT = HB−1HT . Therefore

DAS−1DA = DAA−1DA + DAA−1HB−1HTA−1DA

= DAA−1DA

+ (DAA−1DA)(DAHDB)(DBB−1DB)(DBHTDA)(DAA−1DA)

and so DAS−1DA is a nonnegative (nonpositive) integer matrix because the matrices 
DAA−1DA and DBB−1DB are simultaneously nonnegative (nonpositive) and DAHDB

or −DAHDB contains nonnegative integers only.
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In the case when DAHDB is nonnegative we will prove that C−1 is diagonally 
similar to a nonnegative (nonpositive) integer matrix with DC = diag(DA, −DB)
(DC = diag(DA, DB)). With regard to (2) we have

DCC−1DC =
(
DA 0
0 −DB

)(
S−1 −S−1HB−1

−B−1HTS−1 B−1 + B−1HTS−1HB−1

)

×
(
DA 0
0 −DB

)

=
(

DAS−1DA DAS−1DADAHDBDBB−1DB

DBB−1DBDBHTDADAS−1DA DBB−1DB + W,

)

where

W = (DBB−1DB)(DBHTDA)(DAS−1DA)(DAHDB)(DBB−1DB).

In the expression for the matrix W we have intentionally used the matrices DADA =
DBDB = I instead of the identity matrix I. Since the matrices DAA−1DA, DBB−1DB , 
and DAS−1DA contain nonnegative (nonpositive) integers only and DAHDB is nonneg-
ative, we conclude that C−1 is diagonally similar to a nonnegative (nonpositive) integral 
matrix.

In the case when −DAHDB is nonnegative we can proceed similarly as before and 
conclude that C−1 is diagonally similar to a nonnegative (nonpositive) integral matrix.

Hence the graph GC is positively (negatively) invertible, as claimed. ♦

As a consequence we obtain the following:

Corollary 1. Let GA, GB be two positively (negatively) invertible graphs such that 
(B−1)11 = 0. Then the graph GC = B1(GA, GB) bridged over the first vertex is again 
positively (negatively) invertible.

Proof. For k = 1 the condition (B−1)11 = 0 implies R ≡ ETB−1E = 0, i.e. GB is 
arbitrarily bridgeable. The matrix DAHDB contains only one nonzero element, equal to 
±H. Hence the assumptions of Theorem 3 are fulfilled and so GC is positively (negatively) 
invertible. ♦

With regard to Theorem 1 and Theorem 3 we obtain the following result:

Corollary 2. Let GA, GB be two bipartite positively and negatively invertible graphs such 
that GB is arbitrarily bridgeable over the first k vertices. Let DA

+ and DB
+ (DA

− and
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Fig. 2. An example of bridging of two bipartite positively and negatively invertible graphs GA and GB

through vertices 3 ↔ 1′, 4 ↔ 2′. The resulting graph GC = B2(GA, GB).

DB
−) be diagonal {±1}-matrices such that DA

+A
−1DA

+ and DB
+B−1DB

+ (DA
−A

−1DA
− and 

DB
−B−1DB

−) are nonnegative (nonpositive) matrices. If DA
±HDB

± are either both non-
negative or both nonpositive then the bridged graph GC = Bk(GA, GB) is again bipartite 
positively and negatively invertible.

Example 1. In what follows, we present an example showing that the assumption made 
on nonnegativity or nonpositivity of matrices DA

+HDB
+ and DA

−HDB
− cannot be relaxed. 

To do so, we will construct a bridged graph GC from two integrally invertible bipartite 
graphs such that GC is only positively but not negatively invertible graph and, as a 
consequence of Theorem 1, the graph GC is not bipartite.

Let GA and GB be two simultaneously positively and negatively invertible bipartite 
graphs shown in Fig. 2. We will bridge them over a set of k = 2 vertices to obtain the 
graph GC with inverses given by

A−1 =
( 0 0 0 1

0 0 1 0
0 1 0 −1
1 0 −1 0

)
, B−1 =

( 0 0 0 1
0 0 1 −1
0 1 0 0
1 −1 0 0

)
,

C−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0 0 −1 1
0 0 1 0 0 0 0 −1
0 1 0 −1 0 0 1 −1
1 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 −1
−1 0 1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 2

⎞
⎟⎟⎟⎟⎠ .

The graphs GA, GB are isomorphic with eigenvalues: {±1.6180, ±0.6180}. The upper 
left 2 × 2 principal submatrix R of B−1 is zero, so that the graph GB can be arbitrarily 
bridged to an integrally invertible graph GA.

It is easy to verify that the inverse matrices A−1 and B−1 can be signed to non-
negative matrices by signature matrices DA

+ = DB
+ = diag(−1, 1, 1, −1). At the same 

time they can be signed to a nonpositive matrix by DA
− = diag(−1, −1, 1, 1) and 

DB
− = diag(−1, 1, −1, 1). Furthermore, DA

+HDB
+ = −H is a nonpositive matrix. By 

Theorem 3, the graph GC is positively invertible. On the other hand,

DA
−HDB

− =
( 0 0 0 0

0 0 0 0
−1 0 0 0

)

0 1 0 0
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is neither nonnegative nor nonpositive. Indeed, the graph GC is not bipartite and it is 
just positively (and not negatively) invertible, with spectrum

σ(GC) = {−1.9738,−1.8019,−0.7764,−0.445, 0.2163, 1.247, 1.4427, 2.0912}.

Remark 2. If the graph GB is arbitrarily bridgeable over the first k vertices then R = 0, 
and, consequently the assumption PR = 0 appearing in Theorem 3 is satisfied. On the 
other hand, if we consider the graph GC with the vertex set {1, 2, 3, 4, 1′, 2′, 3′, 4′} shown 
in Fig. 2 then the inverse matrix C−1 contains the principal submatrix

P =
( 0 0 0 0

0 0 0 0
0 0 0 1
0 0 1 0

)

corresponding to vertices 4, 1′, 2′, 3′. Consider the same graph G̃C̃ on the vertex set 
{1̃, ̃2, ̃3, ̃4, ̃1′, ̃2′, ̃3′, ̃4′}. Then, after permuting vertices, the inverse matrix C̃−1 has the 
upper left principal 4 × 4 submatrix

R =
( 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

)
.

Hence PR = 0 but neither P nor R is an all-zero 4 ×4 matrix. By Theorem 3 the bridged 
graph B4(GC , G̃C̃) over the set of vertices 4 ↔ 2̃′, 1′ ↔ 3̃′, 2′ ↔ 4̃, 3′ ↔ 1̃′ is integrally 
invertible.

4. Spectral bounds for graphs arising by bridging

In this section we derive a lower bound for the least positive eigenvalue of bridged 
graphs Bk(GA, GB) in terms of the least positive eigenvalues of graphs GA and GB . 
Throughout this section we assume that the adjacency matrices A, B are invertible but 
we do not require their integral invertibility.

Before stating and proving our spectral estimate we need the following auxiliary 
Lemma.

Lemma 1. Assume that D is an n ×m matrix and α, β > 0 are positive constants. Then, 
for the optimal value λ∗ of the following constrained optimization problem:

λ∗ = max α‖x−Dy‖2 + β‖y‖2

s.t. ‖x‖2 + ‖y‖2 = 1, x ∈ R
n, y ∈ R

m,
(4)

we have an explicit expression of the form:

λ∗ = max
{
λ,

(λ− α)(λ− β) ∈ σ(DTD)
}

αλ
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=
αμ∗ + α + β +

√
(αμ∗ + α + β)2 − 4αβ

2
,

where μ∗ = max{σ(DTD)} is the maximal eigenvalue of the matrix DTD.

Proof. The proof is straightforward and is based on standard application of the Lagrange 
multiplier method (see e.g. [5]). We give details for the reader’s convenience.

Let us introduce the Lagrange function:

L(x, y, λ) = α‖x−Dy‖2 + β‖y‖2 − λ(‖x‖2 + ‖y‖2)

= αxTx− 2αxTDy + αyTDTDy + βyT y − λxTx− λyT y.

Now, it follows from the first order necessary conditions for constrained maximum (x, y)
(see e.g. [5]) that there exists a Lagrange multiplier λ ∈ R such that

0 = L′
x ≡ 2αxT − 2αyTDT − 2λxT , (5)

0 = L′
y ≡ −2αxTD + 2αyTDTD + 2βyT − 2λyT . (6)

In the case λ �= α we obtain

x = α

α− λ
Dy,

[
αDTD − (λ− β)

]
y = αDTx = α2

α− λ
DTDy.

Therefore,

DTDy = (λ− α)(λ− β)
αλ

y ⇒ (λ− α)(λ− β)
αλ

∈ σ(DTD).

Now, from the constraint xTx + yT y = 1 we deduce that

1 = xTx + yT y = α2

(α− λ)2 y
TDTDy + yT y =

(
α2

(α− λ)2
(λ− α)(λ− β)

αλ
+ 1

)
‖y‖2.

Hence

‖y‖2 = (λ− α)λ
λ2 − αβ

, ‖x‖2 = 1 − ‖y‖2 = (λ− β)α
λ2 − αβ

.

Finally, for the value function f(x, y) = α‖x − Dy‖2 + β‖y‖2 of the constrained opti-
mization problem (4) we obtain

f(x, y) = αxTx− 2αxTDy + αyTDTDy + βyT y

= αxTx− 2 α2
yTDTDy + αyTDTDy + βyT y
α− λ
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= α2(λ− β)
λ2 − αβ

+
(
α− 2α2

α− λ

)
(λ− α)(λ− β)

αλ

(λ− α)λ
λ2 − αβ

+ β
(λ− α)λ
λ2 − αβ

= λ.

In the case λ = α, one sees from (5) that Dy = 0 and so f(x, y) = α‖x‖2 + β‖y‖2 ≤
max{α, β} ≤ λ∗. In summary,

λ∗ = max
{
λ,

(λ− α)(λ− β)
αλ

∈ σ(DTD)
}
,

as claimed. ♦

We are in a position to present our spectral bound.

Theorem 4. Let GA and GB be graphs on n and m vertices with invertible adjacency ma-
trices. Assume GB is arbitrarily bridgeable over the first k vertices. Then the least positive 
eigenvalue λ+

1 (GC) of its adjacency matrix C of the bridged graph GC = Bk(GA, GB)
satisfies

λ+
1 (GC) ≥ λlb(GA, GB , k) := 2

αμ∗ + α + β +
√

(αμ∗ + α + β)2 − 4αβ
,

where μ∗ = max{σ(B−1HTHB−1)} is the maximal eigenvalue of the positive semidefi-
nite m ×m matrix B−1HTHB−1, α = 1/λ+

1 (GA) and β = 1/λ+
1 (GB).

Proof. The idea of the proof is based on estimation of the numerical range of the matrix 
C−1. Since λ+

1 (GC) = λ+
1 (C) = 1/λmax(C−1) where λmax(C−1) is the maximal eigen-

value of the inverse matrix C−1, the lower bound for λ+
1 (C) can be derived from the 

upper bound for λmax(C−1). As stated in Definition 3, the assumption that GB is an 
arbitrarily bridgeable graph implies S−1 = A−1. Thus formula (2) for the inverse matrix 
C−1 becomes:

C−1 =
(

A−1 −A−1HB−1

−B−1HTA−1 B−1 + B−1HTA−1HB−1

)

=
(

I 0
−B−1HT I

)(
A−1 0
0 B−1

)(
I −HB−1

0 I

)
.

Let z = (x, y)T ∈ R
n+m where x ∈ R

n, y ∈ R
m. For the Euclidean inner product 

〈C−1z, z〉 in Rn+m we obtain

〈C−1z, z〉 = 〈A−1(x−HB−1y), x−HB−1y〉 + 〈B−1y, y〉

≤ λmax(A−1)‖x−HB−1y‖2 + λmax(B−1)‖y‖2.
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Letting α = λmax(A−1), β = λmax(B−1) and D = HB−1, by Lemma 1 we obtain

〈C−1z, z〉 ≤ 1
λlb(GA, GB , k)

‖z‖2,

for any z ∈ R
n+m. Since

λmax(C−1) = max
z �=0

〈C−1z, z〉
‖z‖2 ≤ 1

λlb(GA, GB , k)

our Theorem follows because α = λmax(A−1) = 1/λ+
1 (A) = 1/λ+

1 (GA) and β =
λmax(B−1) = 1/λ+

1 (B) = 1/λ+
1 (GB). ♦

To illustrate this on an example, for the graph GC = Bk(GA, GB) shown in Fig. 2 we 
have λ+

1 (GC) = 0.2163 and the lower bound derived above gives λlb(GA, GB , k) = 0.1408.

5. A “fulvene” family of integrally invertible graphs

The aim of this section is to present construction of a family of integrally invertible 
graphs grown from the “fulvene” graph of Fig. 1 (left), which is the same as the H10 in 
Fig. 5. With regard to Table 2 (see Section 6), the graph F0 ≡ H10 can be arbitrarily 
bridged over the pair of vertices labeled by 1, 2 (see the left part of Fig. 1) to any 
integrally invertible graph.

Our construction begins with the fulvene graph F0. The next iteration F1 is obtained 
by bridging F0 to another copy of F0 over the vertex set {1, 2} in both copies (see Fig. 3).

We now describe a recursive construction of graphs Fn from Fn−1. For n ≥ 2, the 
graph Fn will be obtained from Fn−1 by bridging a certain number fn (to be described 
below) copies of the graph F0 over the vertex set {1, 2} to vertices of Fn−1 of degree 1
or 2. By definition, we set f1 = f2 := 2. Let |V (i)(Fn)|, i = 1, 2, 3, denote the number of 
vertices of Fn with degree i.

The order of bridging is as follows:

• two copies of F0 are bridged to every vertex of degree 1 which belonged to Fn−2 and 
remained in Fn−1 with degree 1. The other vertex of F0 is bridged to the shortest 
path distance vertex of degree 2 belonging to Fn−1. The number f (1)

n of graphs F0
added to Fn−1 is given by: f (1)

n = 2fn−2. This way one uses |V (2)(Fn−1)| − 2fn−2 of 
vertices of degree 2 from Fn−1.

• The remaining f (2)
n = fn − f

(1)
n copies of F0 are bridged to Fn−1 through 

|V (2)(Fn−1)| − 2fn−2 vertices of degree 2 in such a way that the graph is bridged 
to the pair vertices of degree 2 with the shortest distance. By construction we have 
|V (2)(Fn)| = 2fn. Hence, the number |V (2)(Fn−1)| − 2fn−2 = 2(fn−1 − fn−2) is even 
and so f (2)

n = fn−1 − fn−2. Moreover, the number |V (1)(Fn)| of vertices of degree 1
is given by: |V (1)(Fn)| = fn +fn−1 as the vertices of degree 1 from Fn−1 \Fn−2 have 
not been bridged.
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Fig. 3. The graphs F0, F1, F2, F3 of the “fulvene” family of integrally invertible graphs.

Since f (1)
n = 2fn−2 and f (2)

n = fn−1−fn−2 the total number fn = f
(1)
n +f

(2)
n of newly 

added graphs F0 satisfies the Fibonacci recurrence

fn = fn−1 + fn−2, f1 = f2 = 2.

It can be explicitly expressed as:

fn = 2√
5
(
qn − q−n

)
,

where q = (1 +
√

5)/2 is the golden ratio.
Properties of the fulvene family of graphs Fn, n ≥ 0, (for F0, F1, F2, F3 see Fig. 3) can 

be summarized as follows.

Theorem 5. Let Fn, n ≥ 0, be a graph from the fulvene family of graphs. Then

1. Fn is integrally invertible;
2. Fn is a planar graph of maximum degree 3, with
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|V (1)(Fn)| = fn + fn−1,

|V (2)(Fn)| = 2fn,

|V (3)(Fn)| = |V (Fn)| − |V (1)(Fn)| − |V (2)(Fn)| = 6
n∑

k=1

fk − 3fn − fn−1,

where |V (Fn)| = 6 
∑n

k=1 fk is the number of vertices of Fn;
3. Fn is asymptotically cubic in the sense that

lim
n→∞

|V (3)(Fn)|
|V (Fn)| = 1;

4. the least positive eigenvalue λ+
1 (Fn) satisfies the estimate:

λ+
1 (Fn) ≥ 1

q

5
6n+1 − 1 .

Proof. The number of vertices and integral invertibility of Fn have been derived during 
construction of Fn.

To prove the lower bound for the least positive eigenvalue λ+
1 (Fn) of the integrally 

invertible graph Fn constructed in Section 5. Recall that the next generation Fn is 
constructed from Fn−1 by bridging fn basic fulvene graphs F0 to vertices of degree 1 
and 2 of Fn−1, which can be described as

Fn = B2fn(Fn−1, GBn
),

where the graph GBn
has an M ×M adjacency matrix Bn of the block diagonal form:

Bn = diag(B, · · · , B︸ ︷︷ ︸
fn times

).

Here M = 6fn and B = AF0 is the adjacency matrix to the graph F0. Therefore

AFn
=

(
AFn−1 Hn

HT
n Bn

)

where Hn = (H1
n, · · · , Hfn

n ) is an N ×M block matrix with N = |V (Fn−1)|. Each Hr
n

is an N × 6 {0, 1}-matrix of the form Hr
n = (ur, vr, 0, 0, 0, 0) where ur

i = 1 (vri = 1) if 
and only if the vertex 1 (2) of the r-th fulvene graph F0 is bridged to the i-th vertex of 
Fn−1.

In order to apply the spectral estimate from Theorem 4 we will derive an upper 
bound on the optimum value of μ∗ = max σ(B−1

n HT
n HnB

−1
n ). Clearly, the matrix 

B−1
n HT

n HnB
−1
n satisfies
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(B−1
n HT

n HnB
−1
n )rs = B−1(Hr

n)THs
nB

−1.

Now,

(Hr
n)THs

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

diag(1, 1, 0, 0, 0, 0), if r = s,

diag(1, 0, 0, 0, 0, 0), if r �= s and the r-th and s-th graph F0
are bridged to the same vertex of Fn−1,

0, otherwise.

Since

B−1 =

⎛
⎜⎜⎝

0 0 0 0 1 −1
0 0 1 0 0 −1
0 1 0 0 −1 1
0 0 0 0 0 1
1 0 −1 0 0 1

−1 −1 1 1 1 −2

⎞
⎟⎟⎠

it can be verified by an easy calculation that

max σ(B−1(Hr
n)THs

nB
−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3, if r = s,

2, if r �= s and the r-th and s-th graph F0
are bridged to the same vertex of Fn−1,

0, otherwise.

Thus, for any vector z = (z1, · · · , zfn) ∈ R
M , zi ∈ R

6, we have

zTB−1
n HT

n HnB
−1
n z =

fn∑
r,s=1

(zr)TB−1(Hr
n)THs

nB
−1zs

≤ 3‖z‖2 +
∑
r �=s

(zr)TB−1(Hr
n)THs

nB
−1zs

≤ 3‖z‖2 + 2
∑
r �=s

1
2(‖zr‖2 + ‖zs‖2) ≤ 5‖z‖2,

because for the symmetric matrix W = B−1(Hr
n)THs

nB
−1 it holds: |uTWv| ≤

max |σ(W )|12 (‖u‖2 + ‖v‖2). Hence,

μ∗ = max σ(B−1
n HT

n HnB
−1
n ) ≤ 5.

Finally, we establish the lower bound for the least positive eigenvalue λ+
1 (Fn). With 

regard to Theorem 4 we have
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Fig. 4. The family of graphs on 4 vertices with a unique 1-factor.

λ+
1 (Fn) ≥ 2

α(μ∗ + 1) + β +
√

(α(μ∗ + 1) + β)2 − 4αβ
,

where α = 1/λ+
1 (Fn−1), β = 1/λ+

1 (GBn
) = 1/λ+

1 (F0) = q. If we denote yn = 1/λ+
1 (Fn)

we obtain

yn ≤ 1
2

(
(μ∗ + 1)yn−1 + q +

√
((μ∗ + 1)yn−1 + q)2 − 4qyn−1

)
≤ (μ∗ + 1)yn−1 + q ≤ 6yn−1 + q.

Solving the above difference inequality yields yn ≤ q
5 (6n+1 − 1) and so

λ+
1 (Fn) ≥ 1

q

5
6n+1 − 1 ,

as claimed. ♦

Remark 3. The asymptotic behavior of λ+
1 (Fn) → 0 as n → ∞ is not surprising. For 

example, if we consider a cycle CN on N vertices then, we have λ+
1 (CN ) = 2 cos π

2
N−1
N

and so λ+
1 (CN ) = O(N−1) = O(|V (CN )|−a) with the polynomial decay rate a = 1. In 

the case of the graph Fn the number of its vertices growths exponentially N = O(qn+1), 
and so the lower bound λ+

1 (Fn) ≥ O(6−n−1) = O(|V (Fn)|−a) with the polynomial decay 
rate a = ln 6/ ln q=̇3.7234 as |V (Fn)| → ∞ can be expected.

6. Arbitrarily bridgeable connected graphs with a unique 1-factor

In this section we present a census of invertible graphs on m ≤ 6 vertices with a 
unique 1-factor, such that they can be arbitrarily bridged to an invertible graph through 
a set of k ≤ m/2 vertices. Recall that a graph G has a unique 1-factor if G contains 
a unique 1-regular spanning subgraph (i.e., a perfect matching). Note that any graph 
having a 1-factor should have even number of vertices.

For m = 2 the graph K2 is the unique connected graph with a unique 1-factor. It is 
a positively invertible bipartite graph with the spectrum σ(K2) = {−1, 1}.

For m = 4 there are two connected graphs Q1, Q2 with a unique 1-factor shown in 
Fig. 4. Both graphs are positively invertible with the spectra

σ(Q1) = {±1.6180,±0.6180}, σ(Q2) = {−1.4812,−1, 0.3111, 2.1701}.
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Fig. 5. The family of graphs on 6 vertices with a unique 1-factor.

The graph Q1 can be arbitrarily bridged over the singleton sets {1}, {2}, {3}, {4} and 
over pairs of vertices: {2, 3}, {1, 3}, {2, 4}. The graph Q1 can be arbitrarily bridged over 
the singletons {2}, {3}, {4} and over the pair {2, 3}.

The situation is more interesting and, at the same time, more complicated, for con-
nected graphs on m = 6 vertices with a unique 1-factor. To this end, we recall the 
well-known Kotzig’s theorem stating that a graph with a unique 1-factor has a bridge 
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Table 1
The family of graphs on 6 vertices with a unique 1-factor, their signability and spectrum. Graphs H8 and 
H18 are iso-spectral but not isomorphic.

Graph invertibility spectrum
H1 pos, neg {−1.8019,−1.2470,−0.4450, 0.4450, 1.2470, 1.8019}
H2 pos, neg {−1.9319,−1.0000,−0.5176, 0.5176, 1.0000, 1.9319}
H3 pos {−1.7397,−1.3738,−0.5945, 0.2742, 1.0996, 2.3342}
H4 pos {−1.7746,−1.0000,−1.0000, 0.1859, 1.3604, 2.2283}
H5 neg {−1.6180,−1.6180,−0.4142, 0.6180, 0.6180, 2.4142}
H6 pos, neg {−2.2470,−0.8019,−0.5550, 0.5550, 0.8019, 2.2470}
H7 pos {−1.8942,−1.3293,−0.6093, 0.3064, 0.7727, 2.7537}
H8 pos {−1.9032,−1.0000,−1.0000, 0.1939, 1.0000, 2.7093}
H9 pos {−1.6180,−1.3914,−1.0000, 0.2271, 0.6180, 3.1642}
H10 neg {−1.8608,−1.6180,−0.2541, 0.6180, 1.0000, 2.1149}
H11 int inv {−1.8241,−1.6180,−0.5482, 0.3285, 0.6180, 3.0437}
H12 neg {−2.1420,−1.3053,−0.3848, 0.4669, 0.7661, 2.5991}
H13 pos {−1.8563,−1.4780,−0.7248, 0.1967, 0.8481, 3.0143}
H14 pos {−1.9202,−1.0000,−0.7510, 0.2914, 1.0000, 2.3799}
H15 pos {−1.6783,−1.3198,−1.0000, 0.1397, 1.2297, 2.6287}
H16 pos {−2.1364,−1.2061,−0.5406, 0.2611, 1.0825, 2.5395}
H17 pos {−1.8619,−1.2827,−1.0000, 0.2512, 0.4897, 3.4037}
H18 pos {−1.9032,−1.0000,−1.0000, 0.1939, 1.0000, 2.7093}
H19 nonint inv {−1.7321,−1.0000,−1.0000,−0.4142, 1.7321, 2.4142}
H20 pos {−2.3117,−1.0000,−0.6570, 0.3088, 0.7272, 2.9327}

‘pos’/‘neg’ stands for a positively/negatively invertible graph, ‘int inv’ means an integrally invertible graph 
which is neither positively nor negatively invertible, ‘nonint inv’ stands for a graph with an adjacency 
matrix which is invertible but it is not integral.

that belongs to the 1-factor sub-graph. Splitting of 6 vertices into two subsets of 3 ver-
tices connected by a bridge leads to graphs H1, H4, H19 shown in Fig. 5. Splitting into 
subsets of 2 and 4 vertices is impossible because the bridge should belong to the 1-factor 
and so the hanging leaf vertex of a 2-vertices sub-graph is not contained in the 1-factor. 
Splitting into a 1 vertex graph and 5-vertices graph lead to the remaining 17 graphs 
shown in Fig. 5. One can construct these 17 graphs from the set of all 10 graphs on four 
vertices (including disconnected graphs) by bridging to K2 using up to 4 edges.

In summary, there exist 20 undirected connected graphs on m = 6 vertices with a 
unique 1-factor shown in Fig. 5. (See Table 1.) All of them have invertible adjacency 
matrix. Except of the graph H19 they are integrally invertible.

In this census, there are three bipartite graphs H1, H2, H6 which are simultaneously 
positively and negatively invertible. There are twelve graphs

H3, H4, H7, H8, H9, H13, H14, H15, H16, H17, H18, H20,

which are positively invertible. The three graphs H5, H10, H12 are negatively invertible. 
The integrally invertible graph H11 is neither positively nor negatively invertible. The 
graphs H8 and H18 are iso-spectral but not isomorphic.
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 2, 3 vertices.

k = 3
{2, 4, 6}, {2, 4, 5}, {2, 3, 5}, {1, 3, 5}

3} {2, 4, 6}, {2, 3, 5}, {1, 3, 5}, {2, 3, 4}, {1, 3, 4}
{2, 4, 6}, {2, 3, 5}, {2, 3, 4}
{2, 4, 6}, {2, 4, 5}
{2, 3, 6}, {2, 4, 5}, {2, 3, 5}, {1, 3, 5}

2} {2, 4, 6}, {1, 3, 5}, {2, 3, 4}, {1, 2, 3},
{1, 3, 5}, {2, 3, 4}, {1, 2, 3}
{2, 3, 4}, {1, 2, 4}
{2, 3, 4}, {1, 2, 3}
{2, 4, 5}, {1, 3, 4}, {1, 2, 4}
{2, 4, 5}, {1, 3, 4}, {1, 2, 4}
{2, 4, 5}, {1, 3, 4}, {1, 2, 4}
{2, 4, 5}, {1, 2, 5}
{2, 4, 6}, {1, 2, 6}, {2, 3, 4}, {1, 2, 3}
{2, 4, 5}, {1, 2, 5}
{1, 3, 5}, {1, 2, 3}
{2, 3, 4}, {1, 2, 3}
{3, 4, 5}, {1, 3, 5}, {2, 3, 4}, {1, 2, 3}
–
{1, 2, 3}, {2, 3, 4}
Table 2
The family of graphs on 6 vertices with a unique 1-factor which can be arbitrarily bridged through k = 1,

Graph k = 1 k = 2
H1 {6}, {5}, {4}, {3}, {2}, {1} {4, 6}, {2, 6}, {4, 5}, {3, 5}, {2, 5}, {1, 5}, {2, 4}, {2, 3}, {1, 3}
H2 {6}, {5}, {4}, {3}, {2}, {1} {4, 6}, {2, 6}, {3, 5}, {2, 5}, {1, 5}, {3, 4}, {2, 4}, {1, 4}, {2, 3}, {1,
H3 {6}, {5}, {4}, {3}, {2} {4, 6}, {2, 6}, {3, 5}, {2, 5}, {3, 4}, {2, 4}, {2, 3}
H4 {6}, {5}, {4}, {2} {4, 6}, {2, 6}, {4, 5}, {2, 5}, {2, 4}
H5 {6}, {5}, {4}, {3}, {2}, {1} {3, 6}, {2, 6}, {4, 5}, {3, 5}, {2, 5}, {1, 5}, {2, 4}, {2, 3}, {1, 3}
H6 {6}, {5}, {4}, {3}, {2}, {1} {5, 6}, {4, 6}, {2, 6}, {3, 5}, {1, 5}, {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1,
H7 {5}, {4}, {3}, {2}, {1} {3, 5}, {1, 5}, {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
H8 {4}, {3}, {2}, {1} {3, 4}, {2, 4}, {1, 4}, {2, 3}, {1, 2}
H9 {4}, {3}, {2}, {1} {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
H10 {5}, {4}, {3}, {2}, {1} {4, 5}, {2, 5}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {1, 2}
H11 {5}, {4}, {3}, {2}, {1} {4, 5}, {2, 5}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {1, 2}
H12 {6}, {5}, {4}, {3}, {2}, {1} {5, 6}, {4, 5}, {2, 5}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {1, 2}
H13 {5}, {4}, {2}, {1} {4, 5}, {2, 5}, {1, 5}, {2, 4}, {1, 2}
H14 {6}, {4}, {3}, {2}, {1} {4, 6}, {2, 6}, {1, 6}, {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
H15 {5}, {4}, {2}, {1} {4, 5}, {2, 5}, {1, 5}, {2, 4}, {1, 2}
H16 {6}, {5}, {3}, {2}, {1} {5, 6}, {3, 5}, {1, 5}, {2, 3}, {1, 3}, {1, 2}
H17 {4}, {3}, {2}, {1} {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
H18 {5}, {4}, {3}, {2}, {1} {4, 5}, {3, 5}, {1, 5}, {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
H19 – –
H20 {6}, {4}, {3}, {2}, {1} {4, 6}, {1, 6}, {3, 4}, {2, 4}, {2, 3}, {1, 3}, {1, 2}
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