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ABSTRACT

In this paper, we investigate a nonlinear generalization of the Black—Scholes equa-
tion for pricing American-style call options, where the volatility term may depend
on both the underlying asset price and the Gamma of the option. We propose a
numerical method for pricing American-style call options that involves transform-
ing the free boundary problem for a nonlinear Black—Scholes equation into the so-
called Gamma variational inequality with a new variable depending on the Gamma
of the option. We apply a modified projected successive over-relaxation method in
order to construct an effective numerical scheme for discretization of the Gamma
variational inequality. Finally, we present several computational examples of the
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nonlinear Black—Scholes equation for pricing American-style call options in the
presence of variable transaction costs.

Keywords: variational inequality; finite-difference scheme; American option pricing; nonlinear
Black—Scholes equation; variable transaction costs; projected successive over-relaxation (PSOR)
method.

1 INTRODUCTION

In a stylized financial market, the price of a European-style option can be computed
by solving the well-known Black—Scholes linear parabolic equation derived by Black
and Scholes (1973). Recall that a European call option gives its owner the right,
but no obligation, to purchase an underlying asset at the expiration price E at the
expiration time 7. In this paper, we consider American-style options that can be
exercised anytime in the time interval [0, T'].

The classical linear Black—Scholes model was derived under several restrictive
assumptions, namely the presence of no transaction costs; frictionless, liquid and
complete markets, etc. However, more realistic models are required for market data
analysis to overcome the drawbacks due to these restrictions of the classical Black—
Scholes theory. One of the first nonlinear models to take transaction costs into
account is the jumping volatility model of Avellaneda and Paras (1994). A nonlin-
ear modification of the original Black—Scholes model can also arise from feedback
and illiquid market effects due to the influence of large traders choosing given stock-
trading strategies (Frey and Patie 2002; Frey and Stremme 1997; Schénbucher and
Wilmott 2000), imperfect replication and investors’ preferences (Barles and Soner
1998), and the risk from unprotected portfolios (Jandatka and Sev&ovi& 2005; Kratka
1998:; Sevéovi¢ 2009). In this paper, we focus on a new nonlinear model that was
derived recently by Sevéovit and Zitiianska (2016) for pricing call or put options in
the presence of variable transaction costs. This model generalizes the well-known
Leland model with a constant transaction costs function (see Hoggard er al 1994;
Leland 1985) and the Amster et al (2005) model with a linearly decreasing trans-
action costs function. It leads to the following generalized Black—Scholes equation
with a nonlinear volatility function & depending on the product H = S 8% V' of the
underlying asset price S and the second derivative (Gamma) of the option price V':

3 V+16(S05V)2S295V+(r—q)SdsV—rV =0. V(T.S)=(S—E)*. (1.1)

where r,q = 0 are the interest rate and the dividend yield, respectively. The price
V(t.S) of such a call option, in the presence of variable transaction costs, is given
by a solution to the nonlinear parabolic equation (1.1) depending on the underlying
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stock price § > O attime ¢ € [0, T'], where T' > 0 is the time of maturity and £ > 0
is the exercise price.

For Buropean-style call options, various numerical methods for solving the fully
nonlinear parabolic equation (1.1) were proposed and analyzed by Duri§ ez al (2016).
Meanwhile, Sev&ovi& (2007) and Sev&ovi¢ and Zitianskd (2016) investigated a new
transformation technique (referred to as the Gamma transformation). They showed
that the fully nonlinear parabolic equation (1.1) can be transformed into a quasilinear
parabolic equation:

0. H—02B(H)—0,B(H)—(r—q)d,H +qH =0, where B(H) = 6(H)*H/2.

(1.2)
of a porous-media type for the transformed quantity H(z,u) = S 3?9 V(t,S), where
t=T—t,u=1In(S/E).

The advantage of solving the quasilinear parabolic equation in the divergent form
(1.2) as opposed to the fully nonlinear equation (1.1) is twofold. First, from an
analytical point of view, the theory of existence and uniqueness of solutions to
quasilinear parabolic equations of the form (1.2) is well developed and understood.
Using the general theory of quasilinear parabolic equations due to LadyZenskaya
et al (1968), the existence of Holder smooth solutions to (1.2) has been shown
in Sevovi¢ and Zitiianské (2016). Second, the quasilinear parabolic equations in
the divergent form can be numerically approximated by means of the finite-volume
method (see LeVeque 1985). Further, the semi-implicit approximation scheme pro-
posed in Section 4 fits into a class of numerical methods that have been shown to be
of the second-order of convergence (see, for example, Kilianovd and Sevéovié 201 3).
In a series of papers (Koleva 2011; Koleva and Vulkov 2013, 2016, 2017), Koleva
investigated the transformed Gamma equation (1.2) for pricing European-style call
and put options. They also derived the second-order positivity preserving numerical
scheme for solving (1.1) and (1.2).

Our goal is to study American-style call options that can be described using
the solution to a free boundary problem for a parabolic equation. Their prices can
be computed by means of the generalized Black—Scholes equation with a nonlin-
ear volatility function of the form (1.1). If the volatility function is constant, then
it is well known that American options can be priced by means of a solution to
a linear complementarity problem (see Kwok 1998). Similarly, for the nonlinear
volatility model, one can construct a nonlinear complementarity problem involv-
ing the variational inequality from the left-hand side of (1.1) and the inequality
V(t,S) = (S — E)T. However, due to the fully nonlinear character of the dif-
ferential operator in (1.1), directly computing the nonlinear complementarity prob-
lem becomes harder and numerically unstable. Therefore, we propose an alternative
approach and reformulate the nonlinear complementarity problem in terms of the
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new transformed variable H for which the differential operator has the form of a
quasilinear parabolic operator (see the left-hand side of (1.2)).

In order to apply the Gamma transformation technique to American-style options,
we derive a nonlinear complementarity problem for the transformed variable H,
and we solve the variational problem by means of a modified projected successive
over-relaxation (PSOR) method (see Kwok 1998). Using this method, we compute
American-style call option prices for the Black—Scholes nonlinear model to price
call options in the presence of variable transaction costs.

This paper is organized as follows. In Section 2, we present a nonlinear option
pricing model under variable transaction costs. Section 3 is devoted to the transfor-
mation of the free boundary problem into the so-called Gamma variational inequal-
ity. In Section 4, we present a finite-volume discretization of the complementarity
problem and its solution, obtained using the PSOR method. Finally, in Section 5, we
present the results of various numerical experiments for pricing American-style call
options, the early exercise boundary position and a comparison with models with
constant volatility terms.

2 NONLINEAR BLACK-SCHOLES EQUATION FOR PRICING
OPTIONS IN THE PRESENCE OF VARIABLE TRANSACTION
COSTS

In the original Black—Scholes theory, continuous hedging of the portfolio including
underlying stocks and options is allowed. In the presence of transaction costs for
purchasing and selling the underlying stock, this continuous feature may lead to an
infinite number of transaction costs, yielding unbounded total transaction costs.

One of the basic nonlinear models that includes transaction costs is the Leland
model for option pricing (Leland 1985), where the possibility of rearranging a port-
folio at discrete time can be relaxed. Recall that, in the derivation of the Leland
model (Hoggard et al 1994; Hull 1989; Leland 1985), it is assumed that an investor
follows the delta hedging strategy in which the number § of bought/sold underlying
assets depends on the delta of the option, ie, § = dg V. Then, applying self-financing
portfolio arguments, one can derive the extended version of the Black—Scholes
equation:

4V 4+ (r—q)SdsV + 2028205V — rV = ricS. (2.1)
Here, the transaction cost measure rr¢ is given by
E[ATC] 22)
rec = ! <
=2 SAt

where ATC is the change in transaction costs during a time interval of length At > 0.
If C = 0 represents a percentage of the cost of the sale and purchase of a share
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relative to the price S, then ATC = %C S|AS|, where A§ is the number of bought
(A8 > 0) or sold (A§ < 0) underlying assets during the time interval Ar. The
parameter C > 0 measuring transaction costs per unit of the underlying asset may
either be constant or depend on the number of transacted underlying assets, ie, C =
C(Ad)).

Further, assuming the underlying asset follows the geometric Brownian motion
dS = puSdt + oS dW, it can be shown that A§ = AdgV =~ orSa%. Vd/At, where
@ ~ N(0,1) is a normally distributed random variable. Hence,

_ 1E[C(a|@])a|®]]
== = =

2 At el

where « := 05(9%V |+ At (see Jandatka and Seveovi¢ 2005; Seviovié er al 2011).
In order to rewrite (2.1), we recall the mean value modification of the transaction
costs function introduced in Sev&ovi¢ and Zitianské (2016).

DEFINITION 2.1 (Sevéovi¢ and Zitianskd 2016, Definition 1) Let C = C(é),
C: Rg’ — R, be a transaction costs function. The integral transformation C : Rg =
R of the function C,

Cl)= @E[G(Wl)@u = /0 C(Ex)xe /% dx. (2.4)

is called the mean value modification of the transaction costs function. Here, @ is a
random variable with a standardized normal distribution, ie, @ ~ N(0, 1).

If we assume that C : Rf — R is a measurable and bounded transaction costs
function, then the price of the option based on these variable transaction costs is
given by the solution of the following nonlinear Black—Scholes partial differential
equation (PDE) (see Sevcovi¢ and Zitiianskd 2016, Proposition 2.1):

OV + (r—q)SdsV + 16(S93V)2S295V —rV =0, (2.5)

where the nonlinear diffusion coefficient 62 is given by

. 2 s sgn(S0%V)
S(8BLVY = 02(1 - \/;C(oslangﬂ)—;ﬁ—). (2.6)

A realistic example of a piecewise linear decreasing transaction costs function was
proposed and analyzed by SevEovi¢ and Zitiianska (2016). It is written as follows:

Co if0< & <&,
CE)=4Cy—«x(E—-E) ifé- <& <éy, (2.7)
Co=Co—k(E+—§-) fE=E,,
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FIGURE 1 A piecewise linear transaction costs function with parameters Co = 0.02,
k=1,& =0.01, £+ = 0.02, and its mean value modification C (§) (dashed line).
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where 0 < §_ < &4,k > 0, Cp > 0 are model parameters. Such a transaction costs
function corresponds to a stylized market in which the investor pays a higher amount
Cy for a small volume of traded assets; however, if the traded volume of stocks is
higher, the investor pays a smaller amount Co. The modified mean value transaction
costs function can be analytically expressed using the following formula:

. /8
C)=Cy —Ké/ e /2 du, fork =0 (2.8)
£/

(see Sevtovit and Zitiianskd 2016, Equation (24)). According to Sev&ovi¢ and
Zitiianskd (2016, Proposition 2.2), lower/upper bounds and limiting behavior exist
for the mean value modification of the piecewise linear transaction costs function
C(§) ie,

Co<C(§)<Cp and Jim C() = Jim €)= Co. (2.9)

A graph of a piecewise linear transaction costs function C and its mean value
modification is depicted in Figure 1.

If the transaction costs function C = Cy > 0 is constant (ie, £+ = 0), we obtain
the well-known Leland model (see Hoggard et al 1994; Hull 1989; Leland 1985) in
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which the diffusion term has the form

A e i 2 G
6(S0%3V)? = 0?(1-Lesgn(d%V)) = 62(1—Lesgn(S93V)), Le = \/i )
S S g s % o/ AL
where Le is the Leland number.
Amster et al (2005) investigated a linear nonincreasing transaction costs function
of the form

C)=Co—«&, where& =0,

ie, &_ = 0, £+ = 0o. The mean value modification function has the form
C(£) = Co— /m/2kE, where & > 0.

Clearly, such a transaction costs function can attain negative values; this can be
considered a drawback of this model.

3 TRANSFORMATION OF THE FREE BOUNDARY PROBLEM INTO
THE GAMMA VARIATIONAL INEQUALITY

In the context of European-style options, the transformation method of the Gamma
equation was proposed and analyzed by Janda&ka and Sev&ovi¢ (2005). If we con-
sider the generalized nonlinear Black—Scholes equation (1.1) for our European-style
option, then, making the change of variables u = In(S/E) and t = T — ¢, and
computing the second derivative of (1.1) with respect to u, we derive the so-called
Gamma equation (1.2), ie,
dcH —3,B(H)—2B(H)—(r—q)d,H +qH =0, where B(H) = L5(H)?H.
(3.1)
More details on the derivation of the Gamma equation as well as the existence
and uniqueness of classical Holder smooth solutions can be found in Sev&ovié¢ and
Zittiansk4 (2016).

1
2

LEMMA 3.1 (Sevtovi¢ and Zitianskd 2016, Proposition 3.1, Remark 3.1) Let us
consider a call option with the payoff diagram V(T,S) = (S — E)T. Then, the
Junction H(t,u) = SSZS V(t,S), whereu = In(S/E)and t = T —t is a solution of
(3.1) subject to the Dirac initial condition H(0, x) = §(x) if and only if the function

+oo
V(t.S) :/ (S — Ee*)TH(t.u)du

is a solution of (1.1).
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3.1 American-style options

In this subsection, we investigate the transformation method of the free boundary
problem for pricing American-style options by means of a solution to the so-called
Gamma variational inequality.

The principal advantage of American-style option contracts is the flexibility they
offer holders, as these contracts can be exercised any time before the expiration date
T. The majority of derivative contracts traded in the financial markets are of the
American style. When modeling American options, unlike European-style options,
there is the possibility of exercising the contract early, at some time t* € [0, T') prior
to the maturity time 7.

It is well known that pricing an American call option on an underlying stock pay-
ing a continuous dividend yield ¢ > 0 leads to the free boundary problem. In addi-
tion to the unknown function V(f, §'), we have to find the early exercise boundary
function S (¢), t € [0, T']. The function Sz () has the following properties:

o if S;(1) > S fort € [0.T], then V(1,8) > (S — E)*;
o if Sp(t) < S fort € [0.T], then V(t.8) = (S — E)*.

Over the past few decades, many authors have analyzed the free boundary position
function S¢. Stamicar et al (1999) derived an accurate approximation to the early
exercise position for times ¢ close to expiry 7 for the Black—Scholes model with
constant volatility (see also Evans et al 2002; Lauko and Seveovi¢ 2011; Zhu 2006).
Their method was generalized for the nonlinear Black—Scholes model by Sev&ovi&
(2007).

Following Kwok (1998) (see also Sev&ovi¢ et al 2011), the free boundary problem
for pricing American-style call options consists of finding a function V (¢, S) and the
early exercise boundary function Sy such that V' solves the Black—Scholes PDE (1.1)
on a time-dependent domain: {(f, §), 0 < § < S¢(¢)} and V (¢, S¢ (1)) = Sp(t)—E,
and dsV(t,Sr(t)) = 1.

Alternatively, a C'! smooth function V' is a solution to the free boundary problem
for (1.1) if and only if it is a solution to the nonlinear variational inequality

3V + (r—q)SdsV + SB(SIZV) —rV <0, V(. S) = g(S),
BV + (r —q)S3sV + SB(SZV) —rV)x (V —g) =0 (3.2)

forany S > Oand ¢ € [0, T], where g(§) = (S — E)*.

3.2 Gamma transformation of the variational inequality

In this subsection, we present a novel transformation method to transform the non-
linear complementarity problem (3.2) for the function V(¢.S) into the so-called
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Gamma variational inequality involving the transformed function H (z. x). We need
two auxiliary lemmas.

LEMMA 3.2 Let V(t, S) be a function that is C' smooth in the t variable and C*
smooth in the S variable. Let u = In(S/E), t = T —t, and define the function
Y(z.u) =0,V + (r —q)SdsV + SB(S9%V) — rV. Then,

. | JUP
—0.H + 0,B(H) + 32B(H) + (r —q)d,H —qH = 5° “[O2Y —9,Y],
where H(t.u) = SO V(1. S).

PROOF By differentiating the function ¥ with respect to the u variable and using
the fact that d,, = Sdg, we obtain

Y = 0,(S3sV) +S(B + ,B) + (r —q)SH — qSosV.
2Y = 9,(S9sV + S2%V) + (r —q)S(H + 9, H) (3.3)
+ S(B + 3uB) + S(2B + 9,B8) —qSdsV —qH.
where S = Ee¥. Then, 02Y — 0,Y = Ee“*W[H], where
W[H] := —0.H + 0, (H) + 02B(H) + (r — q)d,H — qH. (3.4)

as claimed. O

In the particular case where ¥ = 0, the function V'(¢, §') represents the price of a
European-style call option. It is a solution to the nonlinear Black—Scholes equation
(1.1) if and only if the function H is a solution to the so-called Gamma equation
(3.1) subject to the initial condition H(x.0) = 6(x), where § is the Dirac function
(see Seveovi¢ 2007; Sevéovi and Zitiianskd 2016).

LEMMA 3.3 If the function Y fulfills the asymptotic behavior
lim Y(r,u) =0 and lim e "9,Y(r,u) =0,
U—>—00 U—>—00

then

“+o0
/ (S — Ee")y " W[H](r. 1) du = Y (2. ) |ucin(s/)

—0o0

=03V + (r—q)SosV + SB(SHZV) —rV.
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PROOF Using Lemma 3.2 and (3.3), we can express the term

+oo
/ (S — Ee*) " W[H](v.u) du

(e0]

as follows:

+o0
/ (S — Ee“)+%e_” [02Y — 8, Y] du

o0

I In(S/E)
= E/ (Se™ — E)[02Y — 9, Y]du
—0Q

1 In(S/E)
== / [Se~ 8, Y — (Se™ — E)d,Y du] + [(Se™ — E), Y"S/®)
)

0

1 +060
— —/ Ed,Y du
EJ
= Y(7.u)|u=in(s/E)
=3,V + (r—q)SosV + SB(SZV) —rV,
and the proof of the lemma is as follows. O

THEOREM 3.4 The function V(t.S) is a solution to the nonlinear complemen-
tarity problem (3.2) if and only if the transformed function H is a solution of the
Jfollowing Gamma variational inequality and complementarity constraint:

+o0 +oo
—/ (S — Ee") " W[H](r.u)du = 0. / (S — Ee)TH(r.u)du = g(S).
—00 —0o0
(3.5)
+o0 +oo
/ (S — Ee")"W[H](v.u) du x (/ (S — Ee")" H(t,u)du — g(S)) =0
—00 —o0
(3.6)
forany § = 0andt € [0, T
PROOF This directly follows from Lemma 3.2 and Lemma 3.3. O

REMARK 3.5 Tocalculate V(T, §) in Theorem 3.4, we use the fact that H(0, %) =
H(u), u € R, where H(u) := 8(u) is the Dirac delta function such that
f_t:f S(u)du = 1, and

+o0
/ 8t — o)) du = ¢ (u0)

o0

for any continuous function ¢.
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We approximate the initial Dirac delta function as follows:
H(x,0)~ f(d)/(6VT%),

where 0 < t* < 1 is a sufficiently small parameter, and f(d) is the probability
density function of the normal distribution, that is, f(d) = e—d?/2 /27 and d =
(x+(r—q—0?/2)t*)/o+/T*. This approximation follows from the observation that
for a solution of the linear Black—Scholes equation with a constant volatility o > 0
at time T — t* close to expiry T, the value H'"(x,t*) = S93VIiI(S. T —1*) is
given by H'™(x, t*) = f(d)/(6+/T*). Moreover, H™(-, 7*) — §(-) as t* — 0 in
the sense of distributions.

REMARK 3.6  Zakamouline (2008, 2009) generalized the Leland option pricing
model for pricing options on multiasset portfolios under constant transaction costs.
This approach has since been generalized by Amster and Mogni (2017) for the case
of variable transaction costs. Since the Gamma transformation method is proposed
for single underlying asset nonlinear models, it is unclear how to generalize it for
multidimensional problems.

4 SOLVING THE GAMMA VARIATIONAL INEQUALITY USING THE
PROJECTED SUCCESSIVE OVER-RELAXATION METHOD

According to Theorem 3.4, the American call option pricing problem can be rewrit-
ten in terms of the function H(t,u) satisfying the Gamma variational inequal-
ity (3.5-3.6) with the complementarity constraint (3.6). We follow Sev&ovi¢ and
Zittianskd (2016) in order to derive an efficient numerical scheme for solving the
Gamma variational inequality for a general form of the function S(H) including
the case of a variable transaction costs model. In order to apply the PSOR method
(see Kwok 1998) to the variational inequality (3.5-3.6), we have to discretize the
nonlinear operator ¥ defined in (3.4).

The proposed numerical discretization is based on the finite-volume method.
Assume that the spatial variable u belongs to a bounded interval (—L. L) for a suf-
ficiently large L > 0. We divide the spatial interval [—L, L] into a uniform mesh of

discrete points u; = ih, wherei = —n. ..., n with a spatial step s = L/n. The time
interval [0, T'] is uniformly divided with a time step k = T/m into discrete points
tj = jk for j = 1,...,m. The finite-volume discretization of the operator ¥[H ]

leads to a tridiagonal matrix multiplied by the vector
H =@#H ..., H_)" e R,
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More precisely, the vector W[H]/ at time level 7; is given by W[H]/ = —(4/H/ —
d’), where the (2n — 1) x (2n — 1) matrix A’ has the form

7 J
b—n+1 Cln+1 0 0
j J J
_ AZpyz Dlpir Cpya .
Al = 0 . . . 0 1. 4.1)
J J
L) bn—z Cn—2
J J
0 -1 bn—l

with coefficients
; k - k
al = —ﬁﬁ’(Hij_ll) + 5=,

J
2

I

K irysied k.
_h—Z'B (Hy )~ 271(' q).
bij =(1+kq)— (aij + c,-j).
df = {7 + f_,(ﬂ(Hij_l) — BCH ).

Finally, using a simple numerical integration rule, the variational inequality (3.5-3.6)
can be discretized as follows:

n
VS.T—1)=h Y (S—Ee*)rH], j=12,...m. (4.2)
i=—n

Then, the full space—time discretized version of inequalities occurring in (3.5-3.6) is
given by

n

h > (S — Ee")T[(4TH); —df] = 0, 4.3)

i=—n

h Y (S—Ee")TH] = g(5)=(S-E)7. (4.4)

i=—n

Let us define the auxiliary invertible matrix P = (P};) as follows:
Pji = hmax(S; — Ee".0) = hE max(e” —e",0). 4.5)

where v; = (Uj 41 +uj—1)/2for ] = —n....,. n.

Journal of Computational Finance www.risk.net/journals
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Next, our purpose is to solve the problem (4.3)-(4.4) by means of the PSOR
method. Using the matrix P, we can rewrite the system (4.3)—(4.4) as follows:

(PAH); = (Pd);, (PH); = gi, (4.6)
(PAH — Pd); x (PH —g); =0, foralli,

where A = A/, g; = (S; — E)* and H = H/. The complementarity problem (4.6)
can be solved by means of the PSOR algorithm, given by the following iterative
scheme:

(1) fork = 0, set vj,k — Uj_l;

(2) until k& < kpyyx, repeat:

K 1 - - e
wf* = (= Attt = X Ao + 7).
11

I<i [>i

vj,k+1 Jk+1
i

= max{vi”k + o(w; vi]’k). gif

(3) set v/ = plk+l

fori = —n,...,nand j = 1,..., m, where v/ = PHJ,d’ = Pd/ and 4 =
PA/ P~!. Here, w € [1,2] is a relaxation parameter that can be tuned in order to
speed up the convergence process. Finally, using the value H/ = P~ v/ and (4.2),
we can evaluate the option price V.

5 NUMERICAL EXPERIMENTS

In this section, we focus our attention on numerical experiments for computing
American-style call option prices based on the nonlinear Black—Scholes equation
involving a piecewise linear decreasing transaction costs function C. In Figure 2, we
show the corresponding function f(H ) given by

2= Ze ()
B(H) = 2(1 ncmm«/ﬁgm H.

where C is the mean value modification of the transaction costs function C.

The parameters Cy, k, £+, At characterizing the nonlinear piecewise linear vari-
able transaction costs function C and other model parameters are summarized in
Table 1. Here, At is the time interval between two consecutive portfolio rearrange-
ments, 7 is the maturity time, o is the historical volatility, ¢ is the dividend yield,
E is the exercise price and r denotes the risk-free interest rate. A small parameter
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FIGURE 2 A graph of the function B(H) related to the piecewise linear decreasing
transaction costs function (see Jandacka and Sevcovi¢ 2005).

O
o

n

o

S

o

TABLE 1 Model and numerical parameters used in numerical experiments.

Model Numerical
parameters parameters
Cp = 0.02 m = 200,800
k=03,6-=0.05¢& =01 n=250.500
At = 1/261 h =001
o =03 * = 0.005
r =0.011, ¢ = 0.008 k=T/m
T =1, E=50 L.=12.5

0 < t™ < 1 represents a smoothing parameter for approximating the Dirac delta
function (see Remark 3.5).

For the numerical parameters from Table 1, we computed option values Vi for
several underlying asset prices S. The prices were calculated by means of numerical
solutions for both bid and ask option prices. These are shown in Table 2. The bid
price Vgig,,. is compared with the price Vpinmin, Which is computed by means of the
binomial tree method (see Kwok 1998) with constant lower volatility,

2 1
52 :az(l—C ‘/—— ):
min O no_m ?
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TABLE 2 American call option prices obtained from the numerical solution of the
nonlinear model with variable transaction costs for different meshes.

(a) American bid call option prices, Vi,

n = 250,m = 200 n =500, m = 800

S VBinMin VBidwe  VBinMax S VBinMin VBidye  VBinMax

40 0.0320 0.0513 1.3405 40 1.4511 1.6594  2.8670
42 0.1075 0.3252 1.8846 42 2.0137 2.3869  3.6039
44 0.2901 0.8232 25527 44 26979  3.2309  4.4371
46  0.6535 1.5097 3.3483 46  3.5064 4.1868  5.3645
48 1.2675 2.3859 42711 48 44382  5.2488  6.3833
50 2.1740 3.4244 53175 50 5.4897  6.4133  7.4889
52  3.3738 46126  6.4817 52  6.6553 7.6764  8.6772
54 4.8304  5.9521 7.7555 54  7.9270 9.0342  9.9423
56 6.4862 7.4377  9.1295 56  9.2959 10.4824 11.2798
58 8.2809  9.0643 10.5943 58 10.7632 12.0179 12.6832
60 10.1635 10.8273 12.1397 60 12.2892 13.6385 14.1481

(b) American ask call option prices, Vasky.

n = 250, m = 200 n =500, m = 800

S Vginmin  VaAskye  VBinMax S VBinMin  VAskwe  VBinMax

40 1.4511 1.6594 2.8670 40 1.4420 1.6692 2.8519
42 2.0137 2.3869 3.6039 42 2.0027 2.3945 3.5870
44 2.6979 3.2309 4.4371 44 2.6851 3.2412 4.4187
46 3.5064 4.1868 5.3645 46 3.4922 4.2134 5.3450
48 4.4382 5.2488 6.3833 48 4.4231 5.2601 6.3627
50 5.4897  6.4133 7.4889 50 5.4742  6.4300 7.4678
52 6.6553 7.6764  8.6772 52 6.6395  7.6922 8.6557
54  7.9270 9.0342 9.9423 54  7.9115 9.2167  9.9211
56 9.2959 10.4824 11.2798 56 9.2812 11.0264 11.2586
58 10.7532 12.0179 12.6832 58 10.7393 12.2017 12.6628
60 12.2892 13.6385 14.1481 60 12.2763 13.6505 14.1283

Comparison with the option prices Vainmin and Vainmax computed by means of the binomial tree method for the
constant volatilities omin and omax.

the upper bound price Vginmax, meanwhile, corresponds to the solution with higher

constant volatility:
2 1
~2 2
=0°(1=C ‘/ — :
(’max ( _0 T o /At )
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FIGURE 3 An early exercise boundary function S¢(¢), ¢ € [0, T], computed for a model
with variable transaction costs (solid line, Gamma) compared with an early exercise
boundary computed by means of binomial trees with constant volatilities o, (dashed
bottom curve) and o (dashed top curve).

BinMin
— Gamma
-~ BinMax

Similarly, as for the ask price Vag,,., the lower bound Vgiywmin corresponds to the
solution of the binomial tree method with lower volatility,

2 2 1
o= +99\/;am)'

whereas the upper bound Vgijyzmax corresponds to the solution with higher constant

2 1
~2 2
— 0214 Coy/= :
S “( o nam)

With regard to SevZovi¢ and Zitianskd (2016), for a European-style option, one
can derive the following lower and upper bounds by using the parabolic comparison
principle:

volatility:

Vorin (S08) < Vipge (8, S) < Vg (£, S). S >0,1€]0,T].

max

In the case of American-style options, analogous inequalities for the numerical
solution can be observed in Table 2.

In Table 3, we present a comparison of the results obtained by our method based on
a solution to the Gamma variational inequality, in which we considered the constant
volatilities Omin and omax, and those obtained by the well-known method based on
binomial trees for American-style call options (see Kwok 1998). The difference in
the prices is of the order of the mesh size 7 = L/n.
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FIGURE 4 A graph of American (a) bid and (b) ask call option prices V(1. §), S € [40.60],
at + = 0 computed by means of the nonlinear Black—Scholes model with variable trans-
action costs, with mesh size n = 500, m = 800, compared with solutions V;.;, and Vg,
calculated by binomial trees with constant volatilities oy, and omax.

min

60

—— Payoff

—— Gamma
BinMin

~=- BinMax

In Figure 3, we present the free boundary function Sr(f) obtained using our
method, with the variable transaction costs function C for the bid option value, com-
pared with the binomial trees with oy, and oymax. In Figure 4, we plot the graphs of
the solution V. (7, S) at t = 0 for both bid and ask prices. We also plot the prices
obtained by the binomial tree method with constant lower volatility o,,;;, and higher
volatility omax, respectively.

6 CONCLUSIONS

In this paper, we investigated a novel nonlinear generalization of the Black—Scholes
equation for pricing American-style call options, assuming variable transaction costs
for trading the underlying assets. In this way, we presented a model that addresses
a more realistic financial framework than the classical Black—Scholes model. From
a mathematical point of view, we analyzed a problem that consists of a fully non-
linear parabolic equation in which the nonlinear diffusion coefficient depends on
the second derivative of the option price. Further, for the American call option, we
transformed the nonlinear complementarity problem into the so-called Gamma varia-
tional inequality. We solved the Gamma variational inequality by means of the PSOR
method and presented an effective numerical scheme for discretizing the Gamma
variational inequality. Then, we performed numerical computations using the model
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with variable transaction costs and compared our results with lower and upper
bounds computed by means of the binomial tree method with constant volatilities.
Finally, we presented a comparison of early exercise boundary functions.
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