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Abstract In this paper we investigate two non-local geometric geodesic curvature
driven flows of closed curves preserving either their enclosed surface area or their
total length on a given two-dimensional surface. The method is based on projection
of evolved curves on a surface to the underlying plane. For such a projected flow we
construct the normal velocity and the external nonlocal force. The evolving family
of curves is parametrized by a solution to the fully nonlinear parabolic equation for
which we derive a flowing finite volume approximation numerical scheme. Finally,
we present various computational examples of evolution of the surface area and
length preserving flows of surface curves. We furthermore analyse the experimental
order of convergence. It turns out that the numerical scheme is of the second order
of convergence.

1 Introduction

In this article we discuss a motion of closed and nonselfintersecting curvesGt , t ≥ 0,
on a given two dimensional surface M ⊂ R

3. We suppose that the surface M is
represented by the graph of a given smooth function ϕ : R2 → R and the curve Gt is
evolved in the outer normal direction by the following nonlocal geometric evolution

M. Kolář (�) · M. Beneš
Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic
e-mail: kolarmir@fjfi.cvut.cz; michal.benes@fjfi.cvut.cz

D. Ševčovič
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equation:

VG = −KG + F , (1)

where Gt |t=0 = Gini ⊂ M is the initial condition—a C1 smooth Jordan curve,
VG is the normal velocity, KG is the geodesic curvature of the curve Gt , and F is
the nonlocal force term. We present results of the surface area preserving geodesic
curvature flow with the force FA, and the length preserving geodesic curvature flow
with the force FL. The surface area preserving flow has been analysed in the recent
paper [1]. In this paper we furthermore investigate the length preserving flow of
surface curves. We compare both types of preserving flows.

Recall that the length L(Gt ) and the enclosed surface area A(Gt ) of a surface
closed curve Gt satisfy the following identities:

d

dt
L(Gt ) =

∫
Gt
KGVGdS, d

dt
A(Gt ) =

∫
Gt
VGdS,

(see e.g. [1]). With help of these identities the nonlocal forces given by

FA = 1

L(Gt )

∫
Gt
KGdS, FL =

∫
Gt K

2
GdS∫

Gt KGdS
,

represent the surface area and length preserving flows, respectively.
The constrained motion driven by (1) is a generalization of the geometric motion

in the plane, which is broadly discussed in the literature (see, e.g., [2–6] for the
area-preserving flow or, e.g., [7] for the length-preserving flow). In general, the
physical context of moving interfaces driven by the curvature is also discussed in
[8, 9] within the context of the Allen-Cahn equation [10, 11] or within the context
of the recrystallization effects (see [12]).

2 Parametric Description and Projection to the Plane

In accordance with [1, 13], the geometric motion law (1) is treated by means of the
vertical projection Γt of a surface curve Gt to the plane, i.e., Gt = {(X, ϕ(X)T : X ∈
Γt)}. Here Γt denotes the time-dependent closed projected planar curve moving
in the normal direction (see Fig. 1). Then, Γt is described by the position vector
X = X(u, t), u ∈ [0, 1], where u is a parameter from a fixed interval, and X is
required to be 1-periodic in u.
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Fig. 1 An example of a curve Gt with an outer normal vector N on a given surface M =
graph(ϕ) and its projection Γt to the underlying plane R

2 (see [1])

Similarly to [1, 14, 15], one can derive a system of governing equations for the
parametrization X(u, t) of the curve Γt , provided that Gt evolves on the surface M

in the normal direction by the velocity VG . Then VG =
(

1+|∇ϕ|2
1+(∇ϕ·tΓ )2

) 1
2
vΓ where

vΓ is the normal velocity of the projected curve Γt (see [14]). We assume the
parametrization X is oriented counter-clockwise, and that the periodic boundary
conditions for X at u = 0 and u = 1 are imposed, i.e., X|u=0 = X|u=1 and
∂uX|u=0 = ∂uX|u=1. Then, the unit tangential vector tΓ , the outer unit normal
vector nΓ , and the curvature κΓ of Γt are expressed in terms of X as the following

tΓ = ∂uX
|∂uX| , nΓ = ∂uX⊥

|∂uX| , κΓ = − 1

|∂uX|
∂

∂u

(
∂uX
|∂uX|

)
· nΓ .

Here a · b denotes the Euclidean inner product of vectors a and b. For a curve Gt on
the surface M, its geodesic curvature can be expressed in terms of properties of Γt
as follows (see [1, 14]):

KG =
(1+ |∇ϕ|2)1/2κΓ − tTΓ ∇2ϕ tΓ

(1+|∇ϕ|2)1/2 (∇ϕ · nΓ )

(1+ (∇ϕ · tΓ )2)3/2 .

Having this geometrical framework, one can construct a geometric equation for
the normal velocity vΓ of Γt as vΓ = β(X,nΓ , κΓ ), where β is the normal
component of the velocity of the planar curve Γt , i.e., β = ∂tX · nΓ . For technical
details on the derivation of the following system of equations, we refer the reader
to, e.g., [1]. The curve Gt evolves according to the motion law (1) provided the
parametrization X(u, t) of the projected curve Γt satisfies the following system of
nonlinear parabolic equations:

∂tX = a
1

|∂uX|
∂

∂u

(
∂uX
|∂uX|

)
+ (b + cF

) ∂uX⊥

|∂uX| , (2)
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subject to the initial condition X|t=0 = Xini , and

a = 1

1+ (∇ϕ · tΓ )2
, b = tTΓ∇2ϕ tΓ (∇ϕ · nΓ )

(1+ (∇ϕ · tΓ )2)(1+ |∇ϕ|2) ,

c =
(

1+ (∇ϕ · tΓ )2

1+ |∇ϕ|2
) 1

2

.

3 Numerical Solution

In our approach the projected planar curve Γt is replaced by a piece-wise linear
curve, and for spatial discretization, the technique of flowing finite volume method
is used. The principle of the method can be found in, e.g., [1, 2, 16]. The method was
successfully applied in, e.g., dislocation dynamics [17], image processing [18] or
computational geometry [2]. The method is based on positioning of discrete nodes
Xi = X(ui , t) for i = 0, 1, . . . ,M , along the curve Γt . Then, linear segments
connecting the neighboring nodes represent the finite volumes. We denote the length
of a finite volume as di = |Xi − Xi−1| for i = 1, 2, . . . ,M , where X0 = XM .
Additionally, we denote ϕi = ϕ(Xi ), and Di = |(Xi , ϕi) − (Xi−1, ϕi−1)| as the
length of the segment of the discretized curve Gt . The approximation of the unit
tangent a normal vectors is as follows:

tj = Xj+1 − Xj−1

dj+1 + dj
, nj =

X⊥
j+1 − X⊥

j−1

dj+1 + dj
,

and the discrete geodesic curvature is calculated as:

Ki =
(1+ |∇ϕi |2)1/2κi − tTi ∇2ϕi ti

(1+|∇ϕi |2)1/2 (∇ϕi · ni )

(1+ (∇ϕi · ti )2)3/2 . (3)

Finally, the semidiscrete scheme for solving (2) then reads as follows:

dXi

dt

di+1 + di

2
=ai

(
Xi+1 − Xi

di+1
− Xi − Xi−1

di

)
+ (bi + ciF)

(X⊥
i+1 − X⊥

i−1)

2
,

(4)

aj = 1

1+ (∇ϕj · tj )2
, bj =

tTj ∇2ϕj tj (∇ϕj · nj )

(1+ (ϕj · tj )2)(1+ |∇ϕj |2) , (5)

cj =
(

1+ (∇ϕj · tj )2

1+ |∇ϕj |2
) 1

2

, (6)
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satisfying the initial condition Xi (0) = Xini (ui) for i = 1, 2, . . . ,M and F = FA

in the case of the surface area-preserving flow and F = FL in the case of length-
preserving flow (see [1]). The terms FA and FL are given by

FA = 1∑M
j=1 Dj

M∑
j=1

Kj

Dj+1 +Dj

2
, FL =

∑M
j=1 K2

j

Dj+1+Dj

2∑M
j=1 Kj

Dj+1+Dj

2

.

4 Computational Experiments

We present our qualitative and quantitative results of computational studies for the
surface area-preserving and length-preserving flows of closed curves evolving on a
surface driven by (1). Both problems are treated by the numerical scheme (4)–(6) for
parametric equation (2). In the following examples we demonstrate how solutions
of (1) evolve in time and converges towards stationary curves.

For the quantitative analysis, we measure the experimental orders of convergence
(EOC) for our numerical scheme. We perform evaluation of EOC in such a way that
the conserved quantities—the surface area A(Gt ) enclosed by the curve Gt and the
length L(Gt ) of the curve Gt serve as testing parameters for computations of EOCs.
In the case of the surface area-preserving flow, we evaluate differences given by
the area at the initial time A(Gini ), and the areas A(GTi ) at given data output times
Ti, i = 1, . . . , N , i.e., ei = |A(GTi )− A(Gini )|. For the length-preserving flow, the
differences between the initial length L(Gini ) and lengths L(GTi ) were measured
for same time levels Ti , i.e., ei = |L(Gini ) − L(GTi )|. Considering a mesh with M
segments, the following maximum and discrete L1 (with time stepping Δtk) norms
of errors depending on the number of finite volumes M are evaluated as follows:

errormax(M) = max
k=1,2,...,N

ek, errorL1(M) = 1

TN

N∑
k=1

ek.

The order of convergence of the scheme (4)–(6) between two meshes with M1 and
M2 volumes is estimated as

EOC =
ln
(
errorI (M1)
errorI (M2)

)

ln
(
M2
M1

) , I ∈ {max, L1}.
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Fig. 2 Examples of the length-preserving flow of the surface curve Gt on two different surfaces
M and its projection Γt to plane. The EOCs are shown in Table 1

In the following computational experiments shown in Figs. 2 and 3, we investigate
the length an surface area preserving flows driven by (1) on the surface M given
by a graph of the function ϕ(x, y) = x2 − y4 (top) and ϕ(x, y) = sin(πy)
(bottom). In both sets of examples, we chose a dumbbell shaped initial curve and its
rotation by 90◦ given by the parametrization Xini (u) = (sin(2πu),−(sin(2πu)2 +
0.1) cos(2πu)), u ∈ [0, 1]. We also computed EOCs for the length (Table 1)
and surface area preserving flow (Table 2). In both experiments the EOC is
approximately 2 which indicates that the numerical scheme is of the second order
of experimental convergence.
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Fig. 3 Examples of the surface area-preserving flow of the surface curve Gt on two different
surfaces M and its projection Γt to plane. The EOCs are shown in Table 2

Table 1 EOCs for the
length-preserving flow
depicted in Fig. 2

M errormax EOC errorL1 EOC

The surface M with ϕ(x, y) = x2 − y4

100 2.45246 ·10−3 – 2.45246 ·10−3 –

200 6.06811 ·10−4 2.0149 5.84099 ·10−4 2.0143

300 2.69402 ·10−4 2.0026 2.59340 ·10−4 2.0024

400 1.51633 ·10−4 1.9978 1.45975 ·10−4 1.9977

500 9.71800 ·10−5 1.9937 9.35550 ·10−5 1.9936

The surface M with ϕ(x, y) = sin(πy)

100 4.53052 ·10−3 – 4.30824 ·10−3 –

200 1.15305 ·10−3 1.9742 1.09608 ·10−3 1.9747

300 5.15109 ·10−4 1.9873 4.89453 ·10−4 1.9884

400 2.90710 ·10−4 1.9885 2.76130 ·10−4 1.9897

500 1.86633 ·10−4 1.9861 1.77203 ·10−4 1.9878
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Table 2 EOCs for the
surface area preserving flow
depicted in Fig. 3

M errormax EOC errorL1 EOC

The surface M with ϕ(x, y) = x2 − y4

100 3.7837 ·10−4 – 3.8695 ·10−4 –

200 9.4747 ·10−5 1.9976 9.6895 ·10−5 1.9976

300 4.2245 ·10−5 1.9920 4.3195 ·10−5 1.9925

400 2.3870 ·10−5 1.9843 2.4400 ·10−5 1.9852

500 1.5365 ·10−5 1.9741 1.5701 ·10−5 1.9757

The surface M with ϕ(x, y) = sin(πy)

100 4.82926 ·10−3 – 4.63840·10−3 –

200 1.23896 ·10−3 1.9626 1.19223·10−3 1.9599

300 5.51443 ·10−4 1.9964 5.30688·10−4 1.9962

400 3.10376 ·10−4 1.9978 2.98703·10−4 1.9977

500 1.98734 ·10−4 1.9979 1.91262·10−4 1.9978

5 Conclusions

We studied the length and surface area preserving non-local geometric flows driven
by the geodesic curvature and external force. We applied a projection method for
a flow of surface curves into the underlying plane. We presented a formula for the
normal velocity of a projected flow and we proposed a numerical discretization
scheme. The scheme is based on the flowing finite volume method resulting in a
semi-discrete scheme which can be solved by the method of lines. We presented
results of computation of the length and surface area preserving flows. We also
performed quantitative analysis of the experimental order of convergence of the
numerical method showing the second order of convergence.
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7. D. Ševčovič, S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric

ratio, IAENG Int. J. Appl. Math. 43(3), 160–171 (2013)
8. J. Rubinstein, P. Sternberg, Nonlocal reaction-diffusion equations and nucleation. IMA J.

Appl. Math. 48, 249–264 (1992)
9. M. Beneš, S. Yazaki, M. Kimura, Computational studies of non-local anisotropic Allen-Cahn

equation. Math. Bohem. 136, 429–437 (2011)
10. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation of a two-

component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)
11. S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to

antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)
12. I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and

Epitaxy, 2nd edn. (World Scientific Publishing Company, Springer, 2004)
13. K. Deckelnick, Parametric mean curvature evolution with a Dirichlet boundary condition. J.

Reine Angew. Math. 459, 37–60 (1995)
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