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Abstract
In this paper we investigate a dynamic stochastic portfolio optimization problem
involving both the expected terminal utility and intertemporal utility maximization.
We solve the problem by means of a solution to a fully nonlinear evolutionary
Hamilton–Jacobi–Bellman (HJB) equation. We propose the so-called Riccati method
for transformation of the fully nonlinear HJB equation into a quasi-linear parabolic
equationwith non-local terms involving the intertemporal utility function. As a numer-
ical method we propose a semi-implicit scheme in time based on a finite volume
approximation in the spatial variable. By analyzing an explicit traveling wave solution
we show that the numericalmethod is of the second experimental order of convergence.
As a practical application we compute optimal strategies for a portfolio investment
problem motivated by market financial data of German DAX 30 Index and show the
effect of considering intertemporal utility on optimal portfolio selection.

Keywords Dynamic stochastic portfolio optimization · Dynamic utility ·
Hamilton–Jacobi–Bellman equation · Riccati transformation · Finite volume scheme
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1 Introduction

In this paper, we investigate the impact of presence of a nontrivial intertemporal
utility function on stochastic optimal portfolio selection problem. The problem can be
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formulated in terms of the expected terminal and intertemporal utility maximization
problem, in which the underlying stochastic process is controlled by a vector of time-
dependent weights of assets entering a financial portfolio.

To solve the expected terminal and intertemporal utility maximization problem, we
follow a methodology based on solving a fully nonlinear parabolic Hamilton–Jacobi–
Bellman equation for the intermediate value function of the corresponding optimal
control problem. A similar problem was investigated by Federico, Gassiat and Gozzi
[7], where they studied a problemof terminal and intertemporal utilitymaximization in
an investment-consumption portfolio setting and the current utility being dependent
also on the wealth process. They studied properties of solutions to a dual control
problem.

The novelty of our paper is generalization of the transformation method proposed
and analyzed by Abe and Ishimura [1], Ishimura and Ševčovič [10] and Kilianová
and Ševčovič [12,13] for the case of a nontrivial intertemporal utility function. The
transformation is also referred to as the Riccati transformation as it involves the ratio
between the second and the first derivatives of the value function. The transformed
function can be viewed as the absolute risk aversion coefficient of an investor. Sec-
ondly, we generalize the underlying stochastic process to more general processes with
arbitrary drift and volatility functions. Such a general setting can include, in par-
ticular, processes arising in the so-called worst-case portfolio optimization studied
recently by Kilianová and Trnovská [14]. In contrast to the problem involving the ter-
minal utility maximization only (cf. [1,10,12,13]), the resulting transformed equation
is a non-local quasi-linear parabolic equation containing non-local terms involving
the intertemporal utility function. The non-local parabolic equation can be further
transformed into a coupled system of two quasi-linear local parabolic equations. We
analyze these governing equations and show how their solutions are related to solving
the original HJB equation. As a tool for solving the associated terminal and intertem-
poral utility maximization problem, we generalize the numerical method proposed
by Kilianová and Ševčovič [12,13] for the case when a non-local term appears in
the quasi-linear parabolic equation. We furthermore derive a-priori lower and upper
bounds of a solution which are given in terms of the risk aversion coefficients of
the terminal and intertemporal utility functions. The main advantage of the Riccati
transformation method is twofold. First, the transformed function has a practical rep-
resentation and meaning as an intertemporal risk aversion of an investor and it is a
globally bounded function even in the case when the utility function is unbounded.
Moreover, there are natural boundary conditions for a solution defined on a truncated
numerical domain. Secondly, the nonlinearity appearing as a diffusion function in the
transformed equation can be computed in a fast and efficient way using modern tools
of conic convex programming.

As a practical application we compute optimal strategies for a portfolio investment
problemmotivated by themarket financial data fromGermanDAX30 Index.We com-
pare the optimal portfolio selection strategies for the case of absence of intertemporal
utility maximization to the case when a non-trivial intertemporal utility is considered.
We illustrate the effect of an intertemporal utility function on the optimal portfolio
selection.
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The paper is organized as follows. In the next sectionwe introduce and discuss basic
model assumptions made on the underlying stochastic process. The process of loga-
rithmized portfolio wealth xt at time t is controlled by a vector of weights θ t belonging
to a compact convex subset of Rn . A dynamic stochastic optimization problem with
intertemporal utility is formulated in Sect. 3. Following the Bellman optimality prin-
ciple, we present a fully nonlinear backward parabolic equation for the intermediate
value function satisfying a given terminal condition. In Sect. 4 we present the so-called
Riccati transformation of the value function, leading us from the fully nonlinear HJB
equation to a single quasi-linear parabolic equation in the divergent form containing
a non-local term. We furthermore analyze qualitative properties of an auxiliary value
function arising from a parametric convex programming problem. Existence of a clas-
sical Hölder smooth solution and its a-priori bounds are also derived in this section.
Section 5 is devoted to a numerical approximation scheme for solving the transformed
quasi-linear parabolic function. The scheme is based on the finite volume approxi-
mation method involving dual finite volumes. We compare the numerical scheme to
the fixed policy iteration method for solving HJB equations as investigated by e.g. by
Huang et al. [8], Reisinger and Witte [28]. Finally, in Sect. 6 we test the accuracy of
the proposed numerical method on an explicit traveling wave example and compute
the experimental order of convergence. We show that the experimental order of con-
vergence is approximately two which indicates the second order of convergence of the
numerical method. Subsequently, we apply the proposed method to optimal portfolio
selection problem and present corresponding results with and without intertemporal
utility maximization.

2 Underlying stochastic process with control

Throughout the paper we will assume that the underlying stochastic process {xt }
satisfies the stochastic differential equation (SDE)

dxt = μ(xt , t, θ t )dt + σ(xt , t, θ t )dWt , (1)

where the control process {θ t } is adapted to the process {xt }, {Wt } is the standard
one-dimensionalWiener process and functions (x, t, θ) �→ μ(x, t, θ) and (x, t, θ) �→
σ(x, t, θ)2 areC1,1 smooth in x, t and θ variable, i.e. their first derivatives areLipschitz
continuous functions.

Remark 1 Themotivation for studying the SDE (1) as an underlying stochastic process
controlled by θ arises from the stochastic dynamic optimal portfolio management. Let
xi

t = ln yi
t denote the logarithm of the asset value yi

t entering a portfolio consisting
of n assets with vector of weights θ . Then dxi

t = dyi
t /yi

t is the return on the asset i .
Suppose that the process of each such a return is driven by

dxi
t = μi dt +

n∑

k=1

σ ki dW k
t
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where W j
t is a one-dimensional Wiener process such that the increments dW j

t and
dW i

t are independent for j �= i . The mean return on the increment of the portfolio
xθ = ∑n

i=1 θ i x i with the vector of weights θ is μT θ dt and its variance is equal to∑n
i, j,k=1 θ iσ kiσ k jθ j dt .

Following Merton [23,24] we can describe the stochastic process xθ
t by the follow-

ing one-dimensional SDE of the form (1):

dxθ
t = μT θ dt + σ(θ)dWt

where Wt is the one-dimensional Wienner process, σ(θ)2 = θT �θ and � is the
covariance matrix, �i j = ∑n

k=1 σ kiσ k j .

Example 1 As an example of the stochastic process (1), one can consider a portfolio
optimization problemwith regular cash inflow (e.g. pension planning). In this example,
the volatility function is given by

σ(x, t, θ)2 = θT �θ , (2)

where � is a positive definite covariance matrix of asset returns. The drift function is
given by

μ(x, t, θ) = μT θ − 1

2
σ(x, t, θ)2 + εe−x + r , (3)

where μ is the vector of mean returns of assets, ε is an inflow (ε > 0)/outflow (ε < 0)
to/from the portfolio, r ≥ 0 is an interest rate of a risk-free bond. The stochastic process

{xθ
t } controlled by {θ t } is a logarithmic transformation of the stochastic process {y θ̃

t }t≥0
driven by the stochastic differential equation

dy θ̃
t = (ε + (r + μ(θ̃))y θ̃

t )dt + σ(θ̃)y θ̃
t dWt , (4)

where θ̃(y, t) = θ(x, t) with x = ln y (cf. Kilianová and Ševčovič [12]).
Another example stems from the so-called worst-case portfolio optimization prob-

lem investigated by Kilianová and Trnovská [14]. The volatility function is given by

σ(x, t, θ)2 = max
�∈K

θT �θ,

whereK is an uncertainty convex set of positive definite covariancematrices. Typically,
only a part of the covariance matrix is exactly prescribed while other entries are
not precisely determined. For instance, if only the diagonal d is known, we have
K = {� � 0, diag(�) = d}. The drift function is given by

μ(x, t, θ) = min
μ∈E

μT θ − 1

2
σ(x, t, θ)2 + εe−x + r ,

where E is a given uncertainty convex set of mean returns.
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3 Dynamic stochastic optimization problemwith intertemporal
utility function

Our goal is to extend the model of terminal utility maximization studied previously
in Kilianová and Ševčovič [12] by including an intertemporal utility function. Max-
imization of dynamic utility has been investigated in vast literature in the past by a
number of methods. In this paper, we assume that the investor has a certain utility c
from intertemporal wealth but a different utility u from terminal wealth. We assume
the overall utility to be time-additive. Then we can formulate the problem of dynamic
utility maximization as follows:

max
θ |[0,T )

E

[
u(xθ

T ) +
∫ T

0
c(xθ

s , s)ds
∣∣ xθ

0 = x0

]
, (5)

(c.f. [7]where they included consumption aswell). Here {xθ
t } is Itō’s stochastic process

of the form (1) on a finite time horizon [0, T ], u : R → R is a given terminal
utility function and x0 a given initial state condition of {xθ

t } at t = 0. The function
θ : R × [0, T ) → R

n maps (x, t) �→ θ(x, t) and it represents an unknown control
function governing the underlying stochastic process {xθ

t }. The function c : R ×
[0, T ) → R is the intertemporal utility function. In what follows, we will assume
c is a C2 smooth function and it is non-decreasing in the x variable. Clearly, one
can add a time discounting factor to both utility functions in (5). We assume that
the control parameter θ belongs to a closed convex subset � of the compact simplex
Sn = {θ ∈ R

n | θ ≥ 0, 1T θ = 1} ⊂ R
n , where 1 = (1, . . . , 1)T ∈ R

n .
If we introduce the value function

V (x, t) := sup
θ |[t,T )

E

[
u(xθ

T ) +
∫ T

t
c(xθ

s , s)ds|xθ
t = x

]
(6)

then V (x, T ) := u(x). Following Bertsekas [5], the value function V = V (x, t)
satisfies the fully nonlinear Hamilton–Jacobi–Bellman (HJB) parabolic equation:

∂t V + max
θ∈�

(
μ(x, t, θ) ∂x V + 1

2
σ(x, t, θ)2 ∂2x V

)
+ c(x, t) = 0 ,

V (x, T ) = u(x), (7)

for (x, t) ∈ R × [0, T ); see also [12] and Kossaczký, Ehrhardt, Günther [17,18].
As an example of the terminal utility function, one can consider e.g. a constant

absolute risk aversion (CARA) function:

u(x) = −e−ax ,

with constant absolute risk aversion a ≡ a(x) > 0, where

a(x) = −u′′(x)

u′(x)
for x ∈ R.
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502 S. Kilianová, D. Ševčovič

Wenote that aCARAutility function in the variable x corresponds to aCRRA(constant
relative risk aversion) utility function u(y) = −y−a in the variable y = ex . In practical
applications, y can stand for a portfolio value and x = ln y its log-transform, for which
(1) holds.

Another choice for the utility function u can be a decreasing/increasing absolute risk
aversion (DARA/IARA) function with a(x) decreasing/increasing in the x variable.
Typically, the intertemporal utility function c is a non-decreasing concave discounted
function, i.e.

c(x, t) = −κe−dx−�(T −t), (8)

where κ, d ≥ 0 and � is a discounting factor. We note that including a discount factor
e−rT into the terminal utility function u does not play any role in the solution, as one
can transfer this constant into the coefficient κ of the intertemporal utility function c
simply by multiplying (5) by erT .

4 The Riccati transformation of the HJB equation with intertemporal
utility function

Following the papers by Abe and Ishimura [1], Ishimura and Ševčovič [10] and Kil-
ianová and Ševčovič [12], the Riccati transformation of the value function V can be
introduced as follows:

ϕ(x, τ ) = −∂2x V (x, t)

∂x V (x, t)
, where τ = T − t . (9)

Suppose for amoment that the value function V (x, t) is increasing in the x-variable.
This is a natural assumption in the case when the terminal utility function u(x) is
increasing itself. Then the HJB Eq. (7) can be rewritten as follows:

∂t V − α(·, ϕ)∂x V + c = 0, V (·, T ) = u(·), (10)

where α(x, τ, ϕ) is the value function of the following parametric optimization prob-
lem:

α(x, τ, ϕ) = min
θ∈�

(
−μ(x, t, θ) + ϕ

2
σ(x, t, θ)2

)
, τ = T − t . (11)

The proof of the following result is a straightforward generalization of [12, Theorem
4.1] for amore general drift and volatility functions depending on x and t and therefore
it is omitted.

Theorem 1 Assume that the functions (x, t, θ) �→ μ(x, t, θ) and (x, t, θ) �→
σ(x, t, θ)2 are C1,1 smooth in x, t and θ variables, and such that the objective
function f (x, t, ϕ, θ) := −μ(x, t, θ) + ϕ

2 σ(x, t, θ)2 is strictly convex in the vari-
able θ ∈ � for any ϕ ∈ (ϕmin,∞) where � ⊂ R

n is a compact convex set. Then
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the value function α is C1,1 smooth for x ∈ R, τ ∈ [0, T ], ϕ ∈ (ϕmin,∞). More-
over, ϕ �→ α(·, ϕ) is a strictly increasing function. For the derivative of α we have
α′

ϕ(x, τ, ϕ) = (1/2)σ (x, T − τ, θ̂(x, τ, ϕ))2 where θ̂(x, τ, ϕ) ∈ � is the argument of
the minimum of α(x, τ, ϕ) with respect to θ .

Example 2 If we consider an example of the decision set � = {θ ∈ R
2, θ1, θ2 ≥

0, θ1 + θ2 = 1}, n = 2, μ = μT θ , σ 2 = θT �θ , then the value function α has the
form:

α(ϕ) =
{

Aϕ − B
ϕ

+ C, if ϕ > ϕ∗,
Eϕ + D, if ϕ ≤ ϕ∗,

where constants A > 0, B > 0, C, D, E > 0, ϕ∗ > 0 depend on the mean return
vector μ and covariance matrix � and are such that α is C1,1 continuous function
having one point of discontinuity of the second derivative α′′ at ϕ∗. The minimizer
θ̂ = θ̂(ϕ) increases the number of positive weights when ϕ passes through ϕ∗. For
n > 2, the number of discontinuities of α′′

ϕ increases (cf. [12]).

In what follows, we shall denote by ∂xα the total differential of the function
α(x, τ, ϕ) where ϕ = ϕ(x, τ ), that is

∂xα(x, τ, ϕ) = α′
x (x, τ, ϕ) + α′

ϕ(x, τ, ϕ) ∂xϕ,

where α′
x and α′

ϕ are partial derivatives of α with respect to variables x and ϕ, respec-
tively.

The relationship between the transformed function ϕ and the value function V is
given by the following theorem.

Theorem 2 Assume that the utility function u(x) and the intertemporal utility function
c(x, t) are C2 smooth functions and such that u is increasing and c is non-decreasing in
the x variable. Then an increasing function V (x, t) in the x variable is a solution to the
Hamilton–Jacobi–Bellman Eq. (7) if and only if the transformed function ϕ(x, τ ) =
−∂2x V (x, t)/∂x V (x, t), t = T − τ , is a solution to the quasi-linear parabolic non-
local PDE:

−∂τϕ + ∂x (∂xα(·, ϕ) − α(·, ϕ)ϕ) = 1

b(T − τ)
∂x

(
e
∫ x

x∗ ϕ(ξ,τ )dξ
∂x c

)
, (12)

ϕ(x, 0) = −u′′(x)/u′(x), (x, τ ) ∈ R × (0, T ), (13)

and

V (x, t) = a(t) + b(t)
∫ x

x∗
e− ∫ ξ

x∗ ϕ(η,τ )dηdξ, t = T − τ, (14)
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504 S. Kilianová, D. Ševčovič

where the functions a(t) and b(t) are solutions to the system of ODEs:

d

dt
a(t) = γ (t)b(t) − c(x∗, t), a(T ) = u(x∗), (15)

d

dt
b(t) = ω(t)b(t) − ∂x c(x∗, t), b(T ) = u′(x∗). (16)

Here x∗ ∈ R is a fixed real number, γ (t) := α(x∗, τ, ϕ(x∗, τ )), and ω(t) :=
∂xα(x∗, τ, ϕ(x∗, τ )) − α(x∗, τ, ϕ(x∗, τ ))ϕ(x∗, τ ) where τ = T − t .

Proof Let V be a solution to the HJB Eq. (7) satisfying the terminal condition
V (x, T ) = u(x) and such that ∂x V (x, t) > 0 for each (x, t) ∈ R × [0, T ). Thus
V solves (10), i.e. ∂t V = α(x, τ, ϕ) ∂x V − c where ϕ = −∂2x V /∂x V . Therefore, V is
given by (14) with a(t) = V (x∗, t) and b(t) = ∂x V (x∗, t).

Since

−∂τϕ = −∂2x ∂t V

∂x V
+ ∂2x V ∂x∂t V

(∂x V )2
= −∂2x ∂t V

∂x V
− ϕ

∂x∂t V

∂x V
,

∂2x V = −ϕ∂x V , and ∂3x V = −∂x (ϕ∂x V ) = (ϕ2 − ∂xϕ)∂x V ,

it follows from the equation ∂t V − α(·, ϕ)∂x V + c = 0 that ϕ satisfies:

−∂τϕ = − 1

∂x V

(
∂2x α ∂x V +2∂xα ∂2x V +α ∂3x V +ϕ∂xα ∂x V +ϕα ∂2x V −∂2x c−ϕ∂x c

)

= − 1

∂x V

(
∂2x α ∂x V −ϕ∂xα ∂x V +α(ϕ2−∂xϕ)∂x V −ϕ2α ∂x V −∂2x c−ϕ∂x c

)

= −∂x (∂xα − αϕ) + 1

∂x V (x, t)

(
ϕ∂x c + ∂2x c

)

= −∂x (∂xα − αϕ) + e
∫ x

x∗ ϕ(η,t)dη

b(t)

(
ϕ∂x c + ∂2x c

)

= −∂x (∂xα − αϕ) + 1

b(t)
∂x

(
e
∫ x

x∗ ϕ(η,τ )dη
∂x c

)
, t = T − τ.

It means that the function ϕ is a solution to the Cauchy problem (12), (13). By
differentiating (10) with respect to x we obtain ∂t∂x V = ∂x (α∂x V ) − ∂x c =
∂xα ∂x V + α∂2x V − ∂x c = (∂xα − α ϕ)∂x V − ∂x c. Taking x = x∗ we conclude
∂t∂x V (x∗, t) = ω(t)∂x V (x∗, t) − ∂x c(x∗, t). As ∂x V (x∗, T ) = U ′(x∗) we obtain
b(t) = ∂x V (x∗, t) is the solution to the ODE (16). Furthermore, as ∂t V (x∗, t) =
α(x∗, τ, ϕ(x∗, τ ))∂x V (x∗, t) − c(x∗, t) = γ (t)b(t) − c(x∗, t), τ = T − t , and
V (x∗, T ) = u(x∗) we conclude a(t) = V (x∗, t) solves (15), as claimed.

On the other hand, suppose that a function ϕ solves (12), (13) and functions a, b
solve (15), (16). ThenV (x, t)givenby (14) satisfies−∂2x V (x, t)/∂x V (x, t) = ϕ(x, τ ),
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τ = T − t , and

V (x, T ) = a(T ) + b(T )

∫ x

x∗
e− ∫ ξ

x∗ ϕ(η,0)dηdξ

= u(x∗) + u′(x∗)
∫ x

x∗
e
∫ ξ

x∗ u′′(η)/u′(η)dηdξ = u(x).

The function b(t) satisfying (16) is a positive function. Indeed, as c is non-
decreasing at x∗ we have

d

dt

(
b(t)e− ∫ T

t ω(η)dη
)

= −∂x c(x∗, t)e− ∫ T
t ω(η)dη ≤ 0.

Integrating the above inequality over (t, T ) we obtain b(T ) − b(t)e− ∫ T
t ω(η)dη ≤ 0

and so

b(t) ≥ b(T )e
∫ T

t ω(η)dη = u′(x∗)e
∫ T

t ω(η)dη > 0,

for any t ∈ [0, T ]. Furthermore, as ∂x V (x, t) = b(t)e− ∫ x
x∗ ϕ(ξ,τ )dξ

> 0, the function
V (x, t) is increasing in the x variable.

Note that for any ξ we have

∫ x

x∗
∂ξ V

(
∂ξα − α ϕ

)
dξ = α∂x V − γ (t)b(t) +

∫ x

x∗
−∂2ξ V α − ∂ξ V αϕdξ

= α∂x V − γ (t)b(t).

Moreover, as ϕ solves (12), we have

−
∫ ξ

x∗
∂τϕ(η, τ )dη = −∂ξα + αϕ + ω(t)

+ 1

b(t)

(
e
∫ ξ

x∗ ϕ(η,τ )dη
∂ξ c(ξ, t) − ∂x c(x∗, t)

)
, t = T − τ.

Differentiating (14) with respect to t we obtain

∂t V (x, t) = da

dt
+

∫ x

x∗
e− ∫ ξ

x∗ ϕ(η,τ )dη

(
db

dt
+ b

∫ ξ

x∗
∂τϕ(η, τ )dη

)
dξ

= da

dt
+

∫ x

x∗
e− ∫ ξ

x∗ ϕ(η,τ )dη

(
db

dt
+ b(∂ξα − αϕ) − bω

−e
∫ ξ

x∗ ϕ(η,τ )dη
∂ξ c(ξ, t) + ∂x c(x∗, t)

)
dξ

= da

dt
+

∫ x

x∗
∂ξ V

(
∂ξα − α ϕ

)
dξ − c(x, t) + c(x∗, t)

= α(x, τ, ϕ(x, τ ))∂x V (x, t) − c(x, t), τ = T − t,
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which means that V (x, t) solves Eq. (10). Since ∂x V > 0, the function V solves the
HJB Eq. (7), as claimed. ♦

Notice that the system of parabolic-ordinary differential Eqs. (12)–(16) can also be
rewritten as a system of two quasi-linear parabolic equations. Indeed, let us denote

ψ(x, τ ) = 1

b(t)
e
∫ x

x∗ ϕ(ξ,τ )dξ
, t = T − τ. (17)

Then, by (14) we have ψ(x, τ ) = 1/∂x V (x, t). With regard to (10) we obtain

−∂τψ = − 1

(∂x V )2
∂x∂t V = − 1

(∂x V )2

(
∂xα ∂x V + α ∂2x V − ∂x c

)

= −∂xα ψ + α ϕ ψ + ψ2∂x c.

As ∂xψ = ϕ ψ , we obtain ∂xϕ ψ = ∂2x ψ − ϕ ∂xψ . Since ∂xα = α′
ϕ ∂xϕ + α′

x , we
conclude that the function ψ satisfies the following parabolic equation:

−∂τψ + α′
ϕ∂2x ψ − (α′

ϕϕ + α)∂xψ + α′
xψ − ψ2∂x c.

The terminal conditionψ(x, T ) canbededuced from the terminal conditionV (x, T ) =
u(x). That is,ψ satisfies the initial conditionψ(x, 0) = 1/u′(x). In summary, we have
shown the following theorem:

Theorem 3 Assume that the terminal utility function u(x) and the intertemporal
function c(x, t) are C2 smooth functions and such that u is increasing and c is non-
decreasing in the x variable. Then an increasing function V (x, t) in the x variable is a
solution to the Hamilton–Jacobi–Bellman Eq. (7) if and only if the pair (ϕ, ψ) of trans-
formed functions ϕ(x, τ ) = −∂2x V (x, t)/∂x V (x, t) and ψ(x, τ ) = 1/∂x V (x, t), t =
T − τ , is a solution to the system of quasi-linear parabolic PDEs:

−∂τϕ + ∂x (∂xα(·, ϕ) − α(·, ϕ)ϕ) = ∂x (ψ∂x c) , (18)

−∂τψ + α′
ϕ∂2x ψ − (α′

ϕϕ + α)∂xψ + α′
xψ − ψ2∂x c = 0, (19)

ϕ(x, 0) = −u′′(x)/u′(x), ψ(x, 0) = 1/u′(x), (x, τ ) ∈ R × (0, T ), (20)

and the value function V (x, t) is given by (14).

At this point, we would like to emphasize the advantage of the suggested approach.
By defining α as in (11) and subsequently setting up the PDEs in (12) or (18)–(19), one
can compute the functionα beforehand and then plug it into the corresponding PDEs as
a known function. In this way, we do not have to deal with the maximization operator
from (7) in each x and t separately which significantly simplifies the computation
process.

Next we derive a-priori bounds on a solution ϕ(x, τ ) of (12). We will use parabolic
comparison principle (cf. [27]). To this end, we need to restrict the form of the value
function α and utility functions u, c by the following assumptions:
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A1. The value function α(x, τ, ϕ) is separable in the following sense:

α(x, τ, ϕ) = α̃(ϕ) + α0(x, τ ),

where α̃ is aC1,1 smooth strictly increasing functionwith a bounded andLipschitz
continuous derivative for ϕ ∈ (ϕmin,∞) and α0 is a C2 smooth function in x ∈ R

and τ ∈ [0, T ] variables.
A2. There exist constants ϕ, ϕ ∈ R such that ϕmin ≤ ϕ ≤ 0 ≤ ϕ, and the functions

α0 and c satisfy the estimates:

∂2x α0(x, τ ) − ϕ∂xα0(x, τ ) ≤ 0 ≤ ∂2x α0(x, τ ) − ϕ∂xα0(x, τ ),

ϕ∂x c(x, t) ≥ −∂2x c(x, t) ≥ ϕ∂x c(x, t), ∂x c(x, t) ≥ 0, t = T − τ,

for any x ∈ R and τ ∈ [0, T ].
Example 3 If α(x, τ, ϕ) = α̃(ϕ) − ε(τ )e−x − r(τ ) with ε ≥ 0 is the value function
introduced in Sect. 2 then α̃ is defined on [−1,∞) and α0(x, τ ) = −ε(τ )e−x − r(τ )

satisfies the assumption (A2) with ϕ = −1 and any ϕ ≥ 0.

The intertemporal utility function c of the form c(x, t) = −κe−dx−�(T −t) with
κ, d ≥ 0 satisfies (A2) if ϕ ≥ d.

Theorem 4 Assume that the utility function u(x) is a C2 smooth strictly increasing
function for x ∈ R. Assume that the value function α and intertemporal utility function
c satisfy Assumption (A) with constants ϕ ≤ 0 ≤ ϕ.

If the utility function u satisfies the inequalities ϕ ≤ ϕ(x, 0) = −u′′(x)/u′(x) ≤ ϕ

for any x ∈ R, then, for the bounded solution ϕ to (12) we have a-priori estimate:
ϕ ≤ ϕ(x, τ ) ≤ ϕ for any τ ∈ [0, T ) and x ∈ R.

Proof Let ψ(x, τ ) be a C2 smooth nonnegative function, ψ(x, τ ) ≥ 0. Let us define
the parabolic operator:

L(ϕ) ≡ −∂τϕ + ∂x (∂xα(·, ϕ) − α(·, ϕ)ϕ) − ϕ ψ ∂x c .

Since α(x, τ, ϕ) = α̃(ϕ) + α0(x, τ ), we have L(ϕ̃) = ∂2x α0 − ϕ̃∂xα0 − ϕ̃ ψ ∂x c for
any constant function ϕ̃ ∈ R. Thus, for constant functions ϕ, ϕ and nondecreasing
function c, and α0 satisfying assumption (A2) we have

L(ϕ) ≥ −ϕψ∂x c ≥ ψ∂2x c ≥ −ϕψ∂x c ≥ L(ϕ).

Now let ϕ be a solution to (12). Then L(ϕ) = ψ∂2x c where ψ(x, τ ) = e
∫ x
x∗ ϕ(ξ,τ )dξ

b(T −τ)
> 0.

Note the fact that ∂xψ = ϕ ψ . Hence the bounded solution ϕ satisfies the following
inequalities: L(ϕ) ≥ L(ϕ) ≥ L(ϕ).

If the initial condition satisfies the inequalities ϕ ≤ ϕ(x, 0) = −u′′(x)/u′(x) ≤ ϕ

for any x ∈ R then, applying the parabolic comparison principle (cf. [27]), we obtain
that the bounded solution ϕ to (12) satisfies the inequalities ϕ ≤ ϕ(x, τ ) ≤ ϕ for any
τ ∈ [0, T ] and x ∈ R, as claimed. ♦
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By Hk+λ(�), 0 < λ < 1, we denote the Banach space consisting of all uniformly
continuous functions ϕ on �̄ = [xL , xR] whose k-th derivative is uniformly λ-Hölder
continuous, i.e. the Hölder semi-norm 〈ϕ〉(λ)

k = supx,y∈�,x �=y |∂k
x ϕ(x)−∂k

x ϕ(y)|/|x −
y|λ is finite. Let QT = � × (0, T ) be a bounded cylinder. Following Ladyzhenskaya
et al. [20] we introduce the parabolic Hölder space H2k+λ,k+λ/2(QT ) consisting of
all continuous functions ϕ : QT → R such that functions ∂k

τ ϕ, ∂2k
x ϕ are λ-Hölder

continuous in the x-variable and λ/2-Hölder continuous in the τ -variable.

Theorem 5 Let � = (xL , xR) be a bounded interval. Assume α(x, τ, ϕ) is C2 smooth
in the t ∈ [0, T ] and x ∈ � variables, C1,1 smooth in the ϕ variable, and such that
0 < α′− ≤ α′

ϕ(x, τ, ϕ) ≤ α′+ < ∞ for any x ∈ �, τ ∈ [0, T ], and ϕ ≥ ϕmin. Assume

c ∈ H2+λ,1+λ/2(�T ) for some 0 < λ < 1/2, and c(x, t) is a non-decreasing function
in the x variable.

If the initial conditions ϕ(·, 0), ψ(·, 0) ∈ H2+λ(�), then there exists a classical
solution (ϕ, ψ) to the system of quasi-linear parabolic Eqs. (18)–(20) satisfying pre-
scribed Dirichlet boundary conditions at xL , xR. Moreover, η,ψ ∈ H2+λ,1+λ/2(�T )

where η(x, τ ) = α(x, τ, ϕ(x, τ )). The function τ �→ ∂τϕ(x, τ ) is λ/2-Hölder contin-
uous for all x ∈ R whereas x �→ ∂xϕ(x, τ ) is Lipschitz continuous for all τ ∈ [0, T ].
Proof The proof is analogous to that of [12, Theorem 5.3] where we proved existence
of Hölder smooth solutions in the case when c ≡ 0. The methodology of the proof is
based on the Schauder type of estimates (c.f. [20]).

Since the diffusion function α need not be C2+λ smooth in the ϕ variable we
first rewrite the system (18)–(20) using the auxiliary function η = α(·, ϕ). Then
ϕ = β(·, η) where β is the inverse function to the strictly increasing function α,
i.e. ϕ = β(·, α(·, ϕ)). Moreover, β ′

η = 1/α′
ϕ and ∂τϕ = β ′

η∂τ η + β ′
τ . Then system

(18)–(20) can be rewritten in the form:

∂τ� = δ(·, η)∂2x � + F(·,�), �(x, 0) = �0, (21)

where � = (η, ψ), δ(·, η) = α′
ϕ(·, β(·, η)) = 1/β ′

η(·, η), and

F(·,�) = (−δ[∂x (ηβ) + ∂x (ψ∂x c) + β ′
τ ], −(β/β ′

η + η)∂xψ + α′
xψ − ψ2∂x c

)
.

Note that there are constants α′± such that 0 < α′− ≤ δ ≤ α′+ < ∞. Applying a C2+λ

regularization of the function η �→ δ(·, η) and following the proof of [12, Theorem
5.3] and the result on existence of classical solutions to the regularized equation (c.f.
[20, Ch. V, pp. 495-496]) we conclude existence of a weak solution � ∈ W 2,1

2 (QT )

of (21) satisfying the prescribed Dirichlet boundary and initial conditions. Recall that
the parabolic Sobolev space W 2,1

2 (QT ) consists of all square integrable functions� ∈
L2(QT ) such that ∂x�, ∂2x �, ∂τ� ∈ L2(QT ). The space W 2,1

2 (QT ) is continuously
embedded into the Hölder space Hλ,λ/2(QT ) for 0 < λ < 1/2 (c.f. [20]). The rest of
the proof is based on a simple bootstrap argument. A weak solution � ∈ W 2,1

2 (QT )

is a solution to the linear equation:

∂τ� = δ̃(x, τ )∂2x � + B̃1(x, τ )∂x� + B̃0(x, τ )�, �(x, 0) = �0(x), (22)
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where the diffusion coefficient δ̃(·) = δ(., η(·)), and 2 × 2 matrices B̃1, B̃0 belong to
Hλ,λ/2(QT ) because η,ψ ∈ Hλ,λ/2(QT ) and δ is a Lipschitz continuous function.
According to [20,Theorem12.2,Chapter III]wehave (η, ψ) ≡ � ∈ H2+λ,1+λ/2(QT )

where η = α(·, φ). The proof of theorem now follows. ��

5 Numerical approximation scheme

A numerical scheme that we propose for solving quasi-linear parabolic Eq. (12) is
based on a semi-implicit in time approximation method. Spatial discretization is based
on afinite volumeapproximation scheme (cf. LeVeque [21]) combinedwith a nonlinear
equation iterative solver method proposed by Mikula and Kútik [19]. This methodol-
ogy for solving the transformed HJB equation was proposed and analyzed in [12] and
[13] for the case of absence of an intertemporal utility function, i.e. c = 0. In such a
case, analysis of the experimental order of convergence suggested the second order of
convergence with respect to the spatial discretization step (see [12,19]).

Equation (12) belongs to a wide class of quasi-linear parabolic equations of the
general form:

∂τϕ = ∂2x A(x, τ, ϕ) + ∂x B(x, τ, ϕ) + C(x, τ, ϕ), (23)

satisfying the initial condition ϕ(x, 0) = −u′′(x)/u′(x) where x ∈ R, τ ∈ (0, T ).
Here A(x, τ, ϕ) = α(x, τ, ϕ), B(x, τ, ϕ) = −α(x, τ, ϕ)ϕ, and

C(x, τ, ϕ) = −e
∫ x

x∗ ϕ(η,τ )dη

b(T − τ)

(
ϕ(x, τ )∂x c(x, T − τ) + ∂2x c(x, T − τ)

)
.

5.1 A semi implicit time-space discretization of the transformed non-local
parabolic equation

Since the original spatial domain for the x variable is unbounded,wefirst truncate it into
a bounded computational domain [xL , xR] and we use uniform spatial discretization
mesh points xi = xL + ih for i = 0, . . . , n + 1 where h = (xR − xL)/(n + 1). Thus
x0 = xL and xn+1 = xR . Following the idea of dual finite volumes (cf. [21]), the inner
mesh points xi , i = 1, . . . , n, are the centers of dual finite volumes (xi− 1

2
, xi+ 1

2
). In

what follows, the dual volumeswill be denoted by (xi−, xi+), i.e. xi± = xi± 1
2
. Clearly,

h = xi+ −xi−. The time discretization levels are set to τ j = jk, j = 0, . . . , m, where
k = T /m and m is the number of time discretization steps. If we integrate Eq. (12)
over dual finite volumes, apply the midpoint rule on the left-hand side integral and
approximate the time derivative by the Euler forward finite difference, we arrive at the
following system of equations:

ϕ
j+1
i = k

h
(Ii + Ji ) + ϕ

j
i , i = 1, . . . , n, j = 0, . . . , m − 1, (24)
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where

Ii =
∫ xi+

xi−
∂x (∂x A + B) dx = [

A′
x + A′

ϕ∂xϕ + B
]x=xi+

x=xi−
, (25)

and the integral
∫ xi+

xi− Cdx over the interval (xi−, xi+) is approximated by means of
the mid-point rule integration, that is

Ji =
∫ xi+

xi−
Cdx ≈ −h

e
∫ xi

x∗ ϕ(η,τ )dη

b(T − τ)

(
ϕi∂x c(xi , T − τ) + ∂2x c(xi , T − τ)

)
. (26)

Let us denote

D j
i± = A′

ϕ(xi±, τ j , ϕ
j
i±), E j

i± = A′
x (xi±, τ j , ϕ

j
i±), F j

i± = B(xi±, τ j , ϕ
j
i±),

and approximate the derivatives ∂xϕ at dualmesh points xi± by the central differences:

∂xϕ| j
i+ ≈ ϕ

j
i+1 − ϕ

j
i

h
, ∂xϕ| j

i− ≈ ϕ
j
i − ϕ

j
i−1

h
.

Let us fix a point x∗ = xi∗ for some spatial index i∗. As for the integral
∫ x

x∗ ϕ(η, τ )dη

appearing in the non-local term Ji at time layer j (denoted as J j
i )we use the trapezoidal

integration rule:

∫ xi

x∗
ϕ j (η, τ )dη ≈ �

j
i − �

j
i∗

where�
j
i = h

2 (ϕ j (xL)+2ϕ j (x1)+· · ·+2ϕ j (xi−1)+ϕ j (xi )), which can be efficiently
calculated recursively as follows:

�
j
1 = h

2
(ϕ j (xL) + ϕ j (x1)),

�
j
i+1 = �

j
i + h

2
(ϕ j (xi ) + ϕ j (xi+1)) for i = 1, . . . , n − 1.

Hence

J j
i = −h

e�
j
i −�

j
i∗

b j

(
ϕ

j
i ∂x c(xi , T − τ j ) + ∂2x c(xi , T − τ j )

)
. (27)

Here b j is a discrete explicit/implicit Euler approximation of the solution b(T − τ j )

to the ODE (16): −db/dτ = ωb − ∂x c(x∗, T − τ), i.e.

b j+1 = (1 − kω j )b j + k∂x c(x∗, T − τ j ), b0 = u′(x∗), j = 0, . . . , m − 1,(28)
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when treated explicitly, or

b j = 1

1 + kω j
(b j−1 + k∂x c(x∗, T − τ j )), b0 = u′(x∗), j = 1, . . . , m, (29)

when treated implicitly. Here ω j = ω(T − τ j ) = (∂xα − αϕ)|x=x∗ can be approxi-
mated by

ω j = α′
x (x∗, τ j , ϕ

j
i∗) + α′

ϕ(x∗, τ j , ϕ
j
i∗)

ϕ
j
i∗+1 − ϕ

j
i∗−1

2h
− α(x∗, τ j , ϕ

j
i∗)ϕ

j
i∗

= E j
i∗ + D j

i∗
ϕ

j
i∗+1 − ϕ

j
i∗−1

2h
+ F j

i∗ .

To compute a solution at the new time layer τ j+1, we take the terms D j
i±, E j

i±, F j
i±

from the previous time layer τ j and the terms ∂xϕ| j+1
i± from the new layer τ j+1.

Rearranging the new-layer terms to the left-hand side and the old-layer terms to the
right-hand side, we obtain a tridiagonal system of linear algebraic equations:

− k

h2 D j
i+ϕ

j+1
i+1 +

(
1 + k

h2 (D j
i+ + D j

i−)

)
ϕ

j+1
i − k

h2 D j
i−ϕ

j+1
i−1

= k

h
(J j

i + E j
i+ − E j

i− + F j
i+ − F j

i−) + ϕ
j
i , (30)

which can be efficiently and fastly solved by the Thomas algorithm.
WeassumeNeumannboundary conditions at the boundaries xL , xR .Moreprecisely,

∂xϕ(x, τ ) = 0 at x = xL , xR , for all τ ∈ (0, T ]. The boundary conditions can be
deduced from the asymptotic behavior of Eq. (12) for x → ±∞. After discretization,
these boundary conditions attain the form:

ϕ
j
0 = ϕ

j
1 , ϕ

j
n+1 = ϕ

j
n .

5.2 Comparison with policy iterationmethod for solving HJB equations

In this section we discuss comparison of the numerical approximation scheme (30)
and the fixed policy iteration method for solving HJB equation investigated by Huang
et al. [8] and Reisinger and Witte [28].

Denote V j = V (·, T − τ j ), c j = c(·, T − τ j ). Then the time implicit time dis-
cretization of the HJB Eq. (7) can be written as follows:

− V j − V j−1

k
+ max

θ∈�

(
μ(·, θ)∂x V j + 1

2
σ(·, θ)2∂2x V j

)
+ c j = 0, V 0 = u,

(31)
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for j = 1, . . . , m. That is,

− V j − V j−1

k
−

(
−μ(·, θ j )∂x V j + 1

2
σ(·, θ j )2∂2x V j

)
+ c j = 0, (32)

where

θ j = argmin
θ∈�

(
−μ(·, θ)∂x V j − 1

2
σ(·, θ)2∂2x V j

)
. (33)

The fixed policy iteration method consists of replacing θ j by θ j−1 in (32) and solving
a linear equation for V j , i.e.

− V j − V j−1

k
−

(
−μ(·, θ j−1)∂x V j − 1

2
σ(·, θ j−1)2∂2x V j

)
+ c j = 0.

Since

−μ(·, θ j−1)∂x V j − 1

2
σ(·, θ j−1)2∂2x V j

= (−μ(·, θ j−1) + 1

2
σ(·, θ j−1)2ϕ j )∂x V j

= (−μ(·, θ j−1) + 1

2
σ(·, θ j−1)2ϕ j−1

+1

2
σ(·, θ j−1)2(ϕ j − ϕ j−1))∂x V j

= (α(·, ϕ j−1) + α′
ϕ(·, ϕ j−1)(ϕ j − ϕ j−1))∂x V j ,

the fixed policy iterationmethod for solvingHJBEq. (10) corresponds to the numerical
solution of the transformed Eq. (12) by means of the semi-implicit scheme (30) in
which α is approximated by its linearization at ϕ j−1 from the previous time step
τ j−1.

Remark 2 The main advantage of our method is twofold. First, we work with a trans-
formed function ϕ representing risk aversion of the investor. The boundary conditions
for a truncated domain can be set up in a natural way, e.g. homogeneous Neumann
boundary conditions. For the original problem formulated in terms of the intertemporal
value function V , one can expect unbounded exponential like solution and numeri-
cal problems when working small and large values of V and treatment of boundary
conditions for V .

Secondly, the advantage consists of the possibility of evaluationof the value function
α in a fast and efficient way instead of computation of θ j in (33). This might be
useful when treating problems involving convex conic programming, e.g. worst-case
portfolio selection problem, for which one can use efficient tools for solving convex
conic programming optimization problems (cf. [14]).
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6 Computational results and conclusions

6.1 Numerical benchmark to a traveling wave solution

Suppose that the value function α depends only on the ϕ variable (e.g. we set ε = 0,
r = 0 in (2)–(3)) and the intertemporal utility function is given as follows:

c(x, t) = W (x − v(T − t)), where W (ξ) = (−v + α(−u′′(ξ)/u′(ξ))
)

u′(ξ).

Note that c(x, T − τ) = W (x − vτ). Here v ∈ R is a given constant traveling wave
speed. Then the function V (x, t) = u(x − v(T − t)) satisfies the equation:

∂t V (x, t) − α
(
−∂2x V (x, t)/∂x V (x, t)

)
∂x V (x, t)

= − (−v + α(−u′′(x + v(T − t))/u′(x − v(T − t)))
)

u′(x − v(T − t))

= −W (x − v(T − t)) = −c(x, t),

i.e. V (x, t) is a solution to the HJB Eq. (10) and V (x, T ) = u(x). Hence the function

ϕ(x, τ ) = −u′′(x − vτ)/u′(x − vτ) (34)

is a traveling wave solution to (12) satisfying the initial condition ϕ(x, 0) =
−u′′(x)/u′(x). The explicit solution of the form (34) can be used to test our numer-
ical approximation scheme. As a testing example one can consider utility and value
functions of the form:

u(x) = arctan(x), α(ϕ) = ϕ − 1/(ϕ + 2).

Then u represents a convex-concave utility function with variable absolute risk aver-
sion a(x) given by

a(x) = −u′′(x)

u′(x)
= 2x

1 + x2
.

If we set c(x, t) = W (x −v(T − t)) then ϕ(x, τ ) = a(x −vτ) = −u′′(x −vτ)/u′(x −
vτ) is a solution to (12) satisfying the initial condition ϕ(x, 0) = a(x) = 2x/(1+ x2).
Consequently, V (x, t) = u(x − v(T − t)) is the traveling wave solution to the HJB
Eq. (10). The traveling wave solution ϕ is depicted in Fig. 1 (left) for times τ j =
jT /10, j = 0, . . . , 10, where T = 1 and v = 5. As for a numerical solution, we
considered the truncated computational domain [xL , xR] = [−20, 20] and Dirichlet
boundary conditions ϕ(xL , τ ) = a(xL − vτ), ϕ(xR, τ ) = a(xR − vτ), for all τ > 0,
which coincide with exact values of the explicit solution.

Let ϕexpl be the explicit traveling wave solution and ϕnum be the numerical solution
constructed by means of our approximation scheme presented in Sect. 5. The L2 and
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Fig. 1 (Left) A graph of the traveling wave solution ϕ(x, τ ) and (right) graph of the difference between the
explicit and numerical solution for times τ = jT /10, j = 0, . . . , 10, and parameters T = 1, v = 5, h =
0.01

L∞ discrete norms are defined as follows:

‖ϕ‖L2 =
√

h
∑

i

ϕ2
i , ‖ϕ‖L∞ = max

i
|ϕi |,

and the error between solutions as

error∞,p(h) = ‖ϕexpl − ϕnum‖L∞((0,T ):L p)

= max
τ j

‖ϕexpl(·, t j ) − ϕnum(·, t j )‖L p , p = 2,∞.

We consider the following relation between spatial and time discretization steps: k =
h2. Supposing error(h) = O(hδ), estimation of the order parameter δ can be obtained
by means of the experimental order of convergence (or convergence ratio). It can be
defined with respect to the norm of the space L∞((0, T ) : L2(xL , xR)) as follows:

E OC j = ln(error(h j+1)/error(h j ))

ln(h j+1/h j )
, j = 1, . . . , J ,

where h1 > h2 > · · · > h J . The results of computation of EOCs are summarized in
Table 1.

The numerical results indicate the second order of convergence of the proposed
numerical method. This is in accordance with the earlier result of the authors in [12]
where we showed the same order of experimental convergence for the special case
when c = 0.

An example of the difference of explicit and numerical solution ϕexpl − ϕnum is
depicted in Fig. 1 (right). We can observe that the error is largest where the function
ϕ is steep.
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Table 1 The L∞((0, T ) : L2(xL , xR)) and L∞((0, T ) : L∞(xL , xR)) norm of the error of the numerical
solution with the spatial step h and time step k = h2 and the exact traveling wave solution

h L∞((0, T ) : L2)-err E OCk=h2 L∞((0, T ) : L∞))-err E OCk=h2

0.05 1.1886e−01 – 5.8577e−02 –

0.025 3.2102e−02 1.8885 1.5919e−02 1.8796

0.0125 8.1969e−03 1.9695 4.0718e−03 1.9670

0.01 5.2598e−03 1.9882 2.6133e−03 1.9874

0.005 1.3196e−03 1.9949 0.6558e−03 1.9945

Corresponding experimental orders of convergence

6.2 Dynamic portfolio optimization example

Nowwe illustrate the solution of the proposed scheme on an example of dynamic port-
folio optimization. FollowingKilianová andŠevčovič [12,13],we consider a stochastic
dynamic portfolio optimization problem for a portfolio consisting of 30 stocks form-
ing the German DAX30 stock index from August 2010 to April 2012. We chose the
same data set as in [12,13] for the purpose of comparison. As for the drift and volatility
function, we will assume their form:

μ(x, t, θ) = μT θ − 1

2
θT �θ + εe−x , and σ(x, t, θ)2 = θT �θ ,

where� is a positive definite covariancematrix. The function α(x, τ, ϕ) can be rewrit-
ten as follows: α(x, τ, ϕ) = α̃(ϕ) − εe−x , where α̃ is the value function of the
parametric quadratic optimization problem

α̃(ϕ) = min
θ∈�

(
−μT θ + ϕ + 1

2
θT �θ

)
. (35)

A graphical example of the function α̃ in which μ and � were obtained from the
DAX30 data set is depicted in Fig. 2. We can observe jumps in the graph of the second
derivative of α. Indeed, according to Theorem 1, the function α is C1,1 continuous
only. Furthermore, jumps in α′′ correspond to the points ϕ where the set of indices
{i : θ i > 0} with positive weights is enlarged by a new index (cf. [12,13]).

As for the utility functions, we use

u(x) = −e−ax

for the terminal utility and

c(x, t) = −κe−dx−�(T −t)

for the intertemporal utility.
Utility functions parameters used in our example are: a = 9, κ = 1, d ∈ {0, 8, 11},

� = 0. Parameters corresponding tomodel data are: ε = 1. Parameters of the numerical
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Fig. 2 A graph of the value function α̃ and its second derivative α̃′′(ϕ) for a portfolio consisting of DAX30
stocks. Source: Kilianová and Ševčovič [12,13]

scheme are: h = 0.01, k = 0.5h2, xL = −4, xR = 8, x∗ = x200 = −2.01, i∗ =
200. Note that the solution does not depend on x∗ so one can choose arbitrary x∗.
Nevertheless, a suitable choice of x∗ is very important in order to stabilize numerical
computation. The free parameter x∗ enters integral term in (12) as well as the ODE
for b, i.e. (16). We calculate the function α for ϕ ∈ (−1, 15) with a fine division step
hϕ = 0.05. The investment period is T = 1.

Figure 3 presents numerical results for d = 0 (the case of a trivial intertemporal
function c ≡ 0), d = 8 and d = 11. The main difference we can observe is that
while for the problem without intertemporal utility function we obtain a solution
ϕ(x, τ ) which is increasing on the interval [xL , xR], in problems with a nontrivial
intertemporal utility function the solution ϕ(x, τ ) turns out to be non-monotone in x .
It eventually becomes increasing in the x variable when τ is approaching the maturity
T . Furthermore, the range of values of ϕ is a smaller interval when compared to the
case without intertemporal utility function. This has a practical consequence: as ϕ has
a small variation in the x variable for d ≈ a, so does the vector of optimal weights θ

(see Fig. 3, right column). Notice that in the case when ε = 0, c ≡ 0 there is a constant
solution ϕ(x, τ ) ≡ ϕ(x, 0) = a to (12) corresponding to the so-calledMerton solution
to the optimal portfolio selection problem (cf. [24]). Note that the solution ϕ satisfies
a-priori estimates derived in Theorem 4.

In summary, there is a non-trivial effect on optimal portfolio selection when con-
sidering a non-trival intertemporal utility function c(x, t)which has a similar behavior
as the terminal utility function u(x). We furthermore showed that the optimal solution
ϕ(x, τ ) to the transformed HJB Eq. (12) need not be monotonically increasing. In
terms of the optimal portfolio selection vector θ , the optimal weight thetai for some
of the stocks entering the active set can attain local minimum with respect to the x
variable. Such a behavior cannot be observed in models without intertemporal utility
and non-trivial portfolio inflow ε > 0 investigated in the recent papers [12,13].

As far as numerical aspects of the Riccati transformation method are concerned, we
showed that using this transformation enables to solve a quasi-linear parabolic equation
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Fig. 3 A solution ϕ(x, τ ) at time instances jT /10, j = 0, . . . , 10, T = 1, h = 0.01, k = 0.5h2 and
optimal portfolio weights θ(x, τ = T ) for d = 0 (top left). The constant blue line is the initial condition,
then solutions ϕ(x, τ j ) move from left (green curve) to right for increasing τ j . Top right plot depicts
dependence of active portfolio weights θi > 0 at τ = T . Next rows correspond to d = 8 (middle) and
d = 11 (bottom)

by means of modern numerical methods based on finite volume approximation in a
more efficient way when compared to traditional numerical methods based on the
fixed policy iteration method or other explicit numerical approximation approaches
the original HJB equation.
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Acknowledgements The authors were supported by VEGA 1/0062/18 and DAAD ENANEFA-2018
Grants.

References

1. Abe, R., Ishimura, N.: Existence of solutions for the nonlinear partial differential equation arising in
the optimal investment problem. Proc. Japan Acad. Ser. A 84(1), 11–14 (2008)

2. Agarwal, V., Naik, N.Y.: Risk and portfolio decisions involving hedge funds. Rev. Financ. Stud. 17(1),
63–98 (2004)

3. Arrow, K.J.: Aspects of the Theory of Risk Bearing. (The Theory of Risk Aversion. Helsinki: Yrjo
Jahnssonin Saatio. Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago,
1971), 90–109 (1965)

4. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization,
Licensed edn. Birkhauser Verlag, Basel-Boston (1983)

5. Bertsekas, D.P.: Dynamic Programming and Stochastic Control. Academic Press, New York (1976)
6. Browne, S.: Risk-constrained dynamic active portfolio management. Manag. Sci. 46(9), 1188–1199

(2000)
7. Federico, S., Gassiat, P., Gozzi, F.: Utility maximization with current utility on the wealth: regularity

of solutions to the HJB equation. Financ. Stoch. 19, 415–448 (2015)
8. Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point and policy iteration for Hamilton–Jacobi–

Bellman equations in finance. SIAM J. Numer. Anal. 50(4), 1861–1882 (2012)
9. Ishimura, N., Koleva,M.N., Vulkov, L.G.: Numerical solution via transformationmethods of nonlinear

models in option pricing. AIP Conf. Proc. 1301(1), 387–394 (2010)
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13. Kilianová, S., Ševčovič, D.: Expected utility maximization and conditional value-at-risk deviation-

based sharpe ratio in dynamic stochastic portfolio optimization. Kybernetika 54(6), 1167–1183 (2018)
14. Kilianová, S., Trnovská, M.: Robust portfolio optimization via solution to the Hamilton–Jacobi–

Bellman Equation. Int. J. Comput. Math. 93, 725–734 (2016)
15. Koleva, M.N.: Iterative methods for solving nonlinear parabolic problem in pension saving manage-

ment. AIP Conf. Proc. 1404(1), 457–463 (2011)
16. Koleva, M.N., Vulkov, L.: quasi-linearization numerical scheme for fully nonlinear parabolic problems

with applications in models of mathematical finance. Math. Comput. Model. 57, 2564–2575 (2013)
17. Kossaczký, I., Ehrhardt, M., Günther, M.: The tree-grid method with control-independent stencil.
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22. Macová, Z., Ševčovič, D.:Weakly nonlinear analysis of theHamilton–Jacobi–Bellman equation arising
from pension savings management. Int. J. Numer. Anal. Model. 7(4), 619–638 (2010)

23. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous- time case. Rev. Econ.
Stat. 51, 247–257 (1969)

123



Dynamic intertemporal utility optimization 519

24. Merton, R.C.: Optimal consumption and portfolio rules in a continuous time model. J. Econ. Theory
71, 373–413 (1971)

25. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences.
Financ. Stoch. 8(2), 229–239 (2004)

26. Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32(1–2), 122–136 (1964)
27. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations, Springer, 2012. Risk

Aversion in the Small and in the Large. Econometrica. 32(1–2), 122–136 (1964)
28. Reisinger, C., Witte, J.H.: On the use of policy iteration as an easy way of pricing American options
29. Tourin, A., Zariphopoulou, T.: Numerical schemes for investment models with singular transactions.

Comput. Econ. 7(4), 287–307 (1994)
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