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Abstract
In this paper we focus on qualitative properties of solutions to a nonlocal nonlinear 
partial integro-differential equation (PIDE). Using the theory of abstract semilinear 
parabolic equations we prove existence and uniqueness of a solution in the scale 
of Bessel potential spaces. Our aim is to generalize known existence results for a 
wide class of Lévy measures including with a strong singular kernel. As an applica-
tion we consider a class of PIDEs arising in the financial mathematics. The classical 
linear Black–Scholes model relies on several restrictive assumptions such as liquid-
ity and completeness of the market. Relaxing the complete market hypothesis and 
assuming a Lévy stochastic process dynamics for the underlying stock price process 
we obtain a model for pricing options by means of a PIDE. We investigate a model 
for pricing call and put options on underlying assets following a Lévy stochastic 
process with jumps. We prove existence and uniqueness of solutions to the penalized 
PIDE representing approximation of the linear complementarity problem arising in 
pricing American style of options under Lévy stochastic processes. We also present 
numerical results and comparison of option prices for various Lévy stochastic pro-
cesses modelling underlying asset dynamics.
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1 Introduction

In this paper, we analyze solutions to the semilinear parabolic partial integro-differ-
ential equation (PIDE) of the form:

x ∈ ℝ, � ∈ (0, T) , where g is Hölder continuous in the � variable and it is Lipschitz 
continuous in the u variable. Here � is a positive Radon measure on ℝ such that 
∫
ℝ
min(z2, 1)𝜈(dz) < ∞.
Our purpose is to prove existence and uniqueness of a solution to (1) in the frame-

work of Bessel potential spaces. These functional spaces represent a nested scale 
{X�}�≥0 of Banach spaces such that

for any 0 ≤ �2 ≤ �1 ≤ 1 where A is a sectorial operator in the Banach space X with 
a dense domain D(A) ⊂ X . For example, if A = −Δ is the Laplacian operator in 
ℝ

n with the domain D(A) ≡ W2,p(ℝn) ⊂ X ≡ Lp(ℝn) then X� is embedded in the 
Sobolev–Slobodecki space W2� ,p(ℝn) consisting of all functions having 2�-fractional 
derivative belonging to the Lebesgue space Lp(ℝn) of p-integrable functions (cf. 
[18]). In this paper, our goal is to prove existence and uniqueness of solutions to (1) 
for a general class of the so-called admissible activity Lévy measures � satisfying 
suitable growth conditions at ±∞ and the origin.

A motivation for studying solutions of the PIDE (1) arises from financial mod-
eling. In the last 4 decades, the Black–Scholes model and its various generalizations 
become popular in the financial industry because of their simplicity and possibility 
to price options by means of explicit analytic formulas. However, practical applica-
tion of the classical linear Black–Scholes equation has serious drawbacks, e.g. evi-
dence from the stock market indicating that this model is less realistic as it assumes 
that the market is liquid, complete and without transaction costs. Moreover, sample 
paths of a Brownian motion are continuous, but stock prices of a typical company 
usually suffer from sudden jumps on an intra-day scale, making the price trajectories 
discontinuous. In the classical Black–Scholes model, the logarithm of the price pro-
cess has a normal distribution. However, the empirical distribution of stock returns 
exhibits fat tails. Furthermore, if we calibrate theoretical prices to the market prices, 
we realize that the implied volatility is neither constant as a function of strike nor as 
a function of time to maturity, contradicting thus assumptions of the Black–Scholes 
model. Several alternatives have been proposed in the literature for generalization 
of this model. The models with jumps can, at least in part, solve problems inherent 
to the Black–Scholes model. Jump-diffusion models also have an important role in 
derivative markets. In the classical Black–Scholes model the market is assumed to 

(1)

�u

��
(�, x) =

�2

2

�2u

�x2
(�, x) + �

�u

�x
(�, x) + g(�, u(�, x))

+ ∫
ℝ

[
u(�, x + z) − u(�, x) − (ez − 1)

�u

�x
(�, x)

]
�(dz),

u(0, x) =u0(x),

X1 ≡ D(A) ↪ X�1 ↪ X�2 ↪ X0 ≡ X,
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be complete, implying that every pay-off can be perfectly replicated. On the other 
hand, in jump-diffusion models there is no perfect hedge and this way options are 
not redundant.

taking into account jumps in the underlying asset process, the price V(t, S) of an 
option on the underlying asset with a price S and time t ∈ [0, T] is a solution to the 
following nonlocal nonlinear partial integro-differential equation:

S > 0, t ∈ (0, T) . Here 𝜎 > 0 is the volatility of the underlying asset process {St}t≥0 , 
r ≥ 0 is the risk-less interest rate and � is a Lévy measure. A solution V is subject to 
the terminal condition V(S, T) = Φ(S) where Φ represents the pay-off diagram of a 
plain vanilla option, i.e. Φ(S) = (S − K)+ for a call option, or Φ(S) = (K − S)+ for a 
put option, K > 0 is the strike price.

In the case when the Lévy measure � is defined through the Dirac function, i.e. 
�(dz) = �(z)dz or � ≡ 0 the aforementioned nonlocal PIDE reduces to the classical 
linear Black–Scholes linear PDE:

In the past years, existence results of PIDE (1) have been intensively studied in the 
literature. Bensoussan and Lions [9] (see Theorem 3.3 and Theorem 8.1) and also 
Garroni and Menaldi (see [17]) investigated the existence and uniqueness of classi-
cal solutions for the case 𝜎 > 0 . Mikulevicius and Pragarauskas [28] extended these 
results for the case � = 0 . Furthermore, in [29, 30] they investigated existence and 
uniqueness of classical solutions in Hölder and Sobolev spaces of the Cauchy prob-
lem to the partial-integro-differential equation of the order of kernel singularity up 
to the second order. Qualitative results using the notion of viscosity solutions were 
provided by Crandall and Lions [13]. They were generalized to PIDEs by Awatif [6] 
and Soner [35] for the first order operators and by Alvarez and Tourin [2], Barles 
et al. [7], and Pham [31] for the second order operators. Mariani and SenGupta [25, 
26] proved existence of weak solutions of a generalized integro-differential equation 
using the Schaefer fixed point theorem. On other hand, Amster et al. [33] proved the 
existence of solutions using the method of upper and lower solutions in a general 
domain in the case of several assets and for the regime-switching jump-diffusion 
model in [16]. Arregui et al. [4, 5] applied the theory of abstract parabolic equations 
in Banach spaces (cf. [18]) for the proof of existence and uniqueness of solutions of 
a system of nonlinear PDEs for pricing of XVA derivatives. In the recent paper Cruz 
and Ševčovič [14] investigated a nonlinear extension of the option pricing PIDE 
model (2) from numerical point of view.

As a motivation we consider a model for pricing vanilla call and put options 
on underlying assets following Lévy stochastic processes. Using the theory of 
abstract semilinear parabolic equations we prove existence and uniqueness of 

(2)

�V

�t
+

�2

2
S2

�2V

�S2
+ rS

�V

�S
− rV

+ ∫
ℝ

[
V(t, Sez) − V(t, S) − (ez − 1)S

�V

�S
(t, S)

]
�(dz) = 0,

�V
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+
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solutions in the Bessel potential space representing a fractional power space of 
the space of Lebesgue p-integrable functions with respect to the second order 
Laplace differential operator. We generalize known existence results for a wider 
class of Lévy measures having strong singular kernel with the third order of sin-
gularity. We also prove existence and uniqueness of solutions to the penalized 
PIDE representing approximation of the linear complementarity problem for a 
PIDE arising in pricing American style of options.

The paper is organized as follows. In Sect.  2 we recall typical examples of 
Lévy measures arising in the financial modelling of stochastic processes with 
random jumps. We introduce a notion of an admissible activity Lévy measure. 
We show that this class of Lévy measures includes jump-diffusion finite activity 
measures present in e.g. Merton’s or Kou’s double exponential models as well as 
infinite activity Lévy measure appearing in e.g. Variance Gamma, Normal Inverse 
Gaussian or the so-called CGMY models. Section 3 is devoted to the proof of the 
main result on existence and uniqueness of solution to the PIDE (1) in the frame-
work of the Bessel potential spaces X� representing the fractional power spaces 
of the Lebesgue space Lp(ℝ) with respect to the second order Laplacian operator. 
We follow the methodology of abstract semilinear parabolic equations developed 
by Henry in [18]. First, we provide sufficient conditions guaranteeing existence 
and uniqueness of a solution to the PIDE (1) in Bessel potential spaces. In Sect. 4 
we investigate qualitative properties of solutions to a PIDE of the Black–Scholes 
type arising in pricing derivative securities on underlying assets following Lévy 
processes. Section  5 is focused on application of the results for the nonlinear 
extension of the Black–Scholes PIDE for pricing American style of put options 
by the penalization method.

Finally, in Sect. 6 we present results of a numerical solution to PIDE Variance 
Gamma and Merton’s models.

2  Preliminaries, definitions and motivation

A stochastic process {Xt, t ≥ 0} is called a Lévy stochastic process if its characteris-
tic function has the following Lévy–Khintchine representation �

[
eiyXt

]
= et�(y) with

where � ≥ 0 , � ∈ ℝ , and � is a positive Radon measure on ℝ⧵{0} satisfying:

(cf. [3, 12, 32]).

Definition 2.1 A Lévy measure � is called an admissible activity Lévy measure if 
there exists a nonnegative measurable function h such that �(dz) = h(z)dz such that

�(y) = −
�2

2
y2 + i�y + �

+∞

−∞

(
eiyz − 1 − iyz1|z|≤1

)
�(dz),

(3)∫
ℝ

min(z2, 1)𝜈(dz) < ∞,
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for any z ∈ ℝ and the shape parameters � ≥ 0 , D± ∈ ℝ and � ≥ 0 . Here C0 > 0 is a 
constant.

The condition (3) is satisfied for any measure � belonging to the class of admis-
sible activity Lévy measures with shape parameters 0 ≤ 𝛼 < 3 , and either 𝜇 > 0 or 
� = 0 and D− < 0 < D+.

2.1  Examples of admissible Lévy measures arising in the financial modelling

The class of admissible activity Lévy measures includes various measures often 
used in financial modelling of underlying stock dynamics with jumps. For example, 
in the context of financial modelling the first jump-diffusion model was proposed by 
Merton [27]. Its Lévy measure is given by:

where m ∈ ℝ, 𝜆, 𝛿 > 0, are given parameters.
Another popular model is the so-called double exponential model introduced by 

Kou [19]. In this model, the Lévy measure � is given by

where 𝜆 > 0 is the intensity of jumps, � is the probability of occurrence of positive 
jumps and the parameters 𝜆± > 0 correspond to the level of the decay of distribution 
of positive and negative jumps. It implies that the distribution of jumps is asymmet-
ric and the tails of the distribution of returns are semi-heavy. Both Merton’s as well 
as Kou’s measure � belong to the class of the so-called finite activity Lévy measures, 
i.e. 𝜈(ℝ) = ∫

ℝ
𝜈(dz) < ∞ having a finite variation ∫|z|≤1 |z|𝜈(dz) < ∞.

As an example of infinite activity Lévy processes we can consider the Vari-
ance Gamma (see [24]), Normal Inverse Gaussian (NIG) and CGMY pro-
cesses (see [8]). The Variance Gamma process is a process with infinite activity, 
�(ℝ) = ∫

ℝ
�(dz) = ∞ and finite variation, ∫|z|≤1 |z|𝜈(dz) < ∞ where

Here the parameters A,B > 0 depend on the volatility and drift of the Brownian 
motion, C0 > 0 , and the variance of a subordinator (the Gamma process) (see [12]). 
The measure � is an admissible activity Lévy measure with shape parameters � = 0 , 
D+ = A + B > 0 , D− = A − B < 0 , and � = 1 . The NIG process is a process of infi-
nite activity and infinite variation with the following Lévy measure:

(4)0 ≤ h(z) ≤ C0|z|−𝛼
(
eD

−z1z≥0 + eD
+z1z<0

)
e−𝜇z

2

,

(5)�(dz) = �
1

�
√
2�

e
−

(z−m)2

2�2 dz ,

(6)𝜈(dz) = 𝜆
(
𝜃𝜆+e−𝜆

+z1z≥0 + (1 − 𝜃)𝜆−e𝜆
−z1z<0

)
dz,

(7)�(dz) = C0|z|−1eAz−B|z|dz.

(8)�(dz) = C|z|−1eAzK1(B|z|)dz,
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where A,B > 0 have the same meaning as in the Variance Gamma process. 
Here K1 is the modified Bessel function of the second kind (see [12]). Since 
K1(x) ∼

√
�∕2x−1∕2e−x as x → ∞ and K1(x) ∼ x−1 as x → 0 (see [1]) the meas-

ure � is an admissible activity Lévy measure with the shape parameters � = 0 , 
D+ = A + B > 0 , D− = A − B < 0 , � = 2 . The Variance Gamma and NIG processes 
are special cases of generalized hyperbolic models.

Finally, the so-called CGMY distribution process introduced by Carr et al.  [10, 
11] has four parameters C, G, M and Y with the the Lévy measure given by:

where C,G,M > 0 and Y < 2 . The parameter C measures the overall level of activ-
ity. The parameters G and M are the left and right tail decay parameters, respec-
tively. When G = M the distribution is symmetric. The process has infinite activ-
ity and finite variation when Y ∈ (0, 1) and infinite variation for Y ∈ [1, 2) . The 
measure � is an admissible activity Lévy measure with the shape parameters 
𝜇 = 0, 𝛼 = 1 + Y < 3 , and D+ = G > 0,D− = −M < 0.

3  Existence and uniqueness results

The goal of this section is to prove the main result of the paper regarding existence 
and uniqueness of a solution to the linear and nonlinear PIDE for a wide class of 
admissible activity Lévy measures. We can rewrite the PIDE (1) in the abstract form 
as follows:

where the linear operators A and f are defined by:

and g is a Hölder continuous mapping in the � variable and it is Lipschitz continuous 
in the u variable.

As a motivation for studying PIDE (10) we consider a model for pricing 
vanilla call and put options on underlying assets following Lévy stochastic pro-
cesses. The classical linear Black–Scholes equation can be transformed into 
equation v(10) where f ≡ 0, g ≡ 0 . A nontrivial integral part f[u] arises from a 
generalization of the Black–Scholes model to the case when the underlying asset 
price follows a stochastic Lévy process with jumps (see Sect.  4). In Sect.  5 we 
will investigate Eq. (10) with a nontrivial integral part f[u] and a nonlinearity g 

(9)𝜈(dz) = C0|z|−1−Y
(
eGz1z<0 + e−Mz1z>0

)
dz,

(10)
�u

��
+ Au = �

�u

�x
+ f [u] + g(�, u), x ∈ ℝ, � ∈ (0, T),

u(0, x) = u0(x), x ∈ ℝ,

(11)Au = −
�2

2

�2u

�x2
,

(12)f [u](x) =∫
ℝ

[
u(x + z) − u(x) − (ez − 1)

�u

�x
(x)

]
�(dz),
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corresponding to the penalization function. The resulting PIDE of the form (10) 
represents an approximation of a solution to the partial integro-differential vari-
ational inequality arising in pricing American style of options.

In order to prove existence, continuation and uniqueness of a solution to the 
problem (10) we follow the qualitative theory of semilinear abstract parabolic 
equations developed by Henry  [18]. First, we recall the concept of an analytic 
semigroup of linear operators and a sectorial operator in a Banach space.

Definition 3.1 [18] A family of bounded linear operators {S(t), t ≥ 0} in a Banach 
space X is called an analytic semigroup if it satisfies the following conditions: 

 (i) S(0) = I, S(t)S(s) = S(s)S(t) = S(t + s) , for all t, s ≥ 0;
 (ii) S(t)u → u when t → 0+ for all u ∈ X;
 (iii) t → S(t)u is a real analytic function on 0 < t < ∞ for each u ∈ X.

The associated infinitesimal generator A is defined as follows: 
Au = limt→0+

1

t
(S(t)u − u) and its domain D(A) ⊆ X consists of those elements 

u ∈ X for which the limit exists in the space X.
Definition 3.2 [18] Let Sa,� = {� ∈ ℂ ∶ � ≤ arg(� − a) ≤ 2� − �} be a sector of 
complex numbers. A closed densely defined linear operator A ∶ D(A) ⊂ X → X 
is called a sectorial operator if there exists a constant M ≥ 0 such that 
‖(A − �)−1‖ ≤ M∕�� − a� for all 𝜆 ∈ Sa,𝜙 ⊂ ℂ⧵𝜎(A).

In what follows, we shall investigate the partial-integral differential equation 
(10) in the framework of the so-called Bessel potential spaces. These spaces rep-
resent natural extension of the classical Sobolev spaces Wk,p(ℝ) where the order 
k may attain the discrete values only, i.e. the distributional derivatives up to the 
order k belong to the Lebesgue space Lp(ℝ) . Bessel potential spaces represent a 
continuous scale of fractional powers, and allow for a finer formulation of results 
in comparison to the classical Sobolev spaces Wk,p(ℝ), k ∈ ℕ.

It is well known that that if A is a sectorial operator then −A is an infinitesimal 
generator of an analytic semigroup S(t) =

{
e−At, t ≥ 0

}
 (cf. [18]). If X is a Banach 

space then we can define a scale of fractional power spaces {X�}�≥0 in the follow-
ing way:

where, for any 𝛾 > 0 , the operator A−� is defined by virtue of the Gamma function, 
i.e. A−� =

1

Γ(�)
∫ ∞

0
��−1e−A�d� . The norm is defined as ‖u‖X� = ‖A�u‖X = ‖�‖X . 

Note that X0 = X , X1 = D(A) , and X1 ≡ D(A) ↪ X�1 ↪ X�2 ↪ X0 ≡ X , for any 
0 ≤ �2 ≤ �1 ≤ 1.

In what follows, by G ∗ � we shall denote the convolution operator defined by 
(G ∗ �)(x) = ∫

ℝn G(x − y)�(y)dy.

X� = D(A� ) = Range(A−� ) = {u ∈ X ∶ ∃� ∈ X, u = A−��},
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Lemma 3.3 [18, Section 1.6], [37, Chapter 5]

The Laplace operator −Δ is sectorial in the Banach space X = Lp(ℝn) of Leb-
esgue p-integrable functions for any p ≥ 1 and n ≥ 1 . Its domain D(A) is embedded 
into the Sobolev space W2,p(ℝn) . The fractional power space X𝛾 , 𝛾 > 0, is the space 
of Bessel potentials: X� = L

p

2�
(ℝn) ∶= {G2� ∗ �, � ∈ Lp(ℝn)} where

is the Bessel potential function. The norm of u = G2� ∗ � is given by ‖u‖X� = ‖�‖Lp . 
The fractional power space X� is continuously embedded into the fractional 
Sobolev–Slobodeckii space W2� ,p(ℝn).

Remark 1 Lemma 3.3 was proven in [18, Section 1.6], [37, Chapter 5]. The idea of 
the proof of sectoriality of the Laplace operator −Δ in the Banach space X = Lp(ℝn) 
is based on estimation of the resolvent operator (� − Δ)−1 in the Lp norm. The 
rest of the proof of Lemma  3.3 is based on the analysis of the Fourier transform 
of the equation (� − Δ)u = f  . The Fourier transform û of its solution is given by 
û(𝜉) = (𝜆 + |𝜉|2)−1 f̂ (𝜉) . The function G� is then constructed by means of the inverse 
Fourier transform of Ĝ𝛼(𝜉) = (1 + |𝜉|2)−𝛼∕2 , and G� is given as in Lemma 3.3. For 
further details we refer the reader to Section 1.6 of [18] and [37, Chapter 5].

Lemma 3.4 Assume � is an admissible activity Lévy measure with shape parameters 
�,D± , and � where 𝛼 < 3 and either 𝜇 > 0,D± ∈ ℝ , or 𝜇 = 0,D− + 1 < 0 < D+ . 
Suppose that � ≥ 1∕2 and 𝛾 > (𝛼 − 1)∕2 . Then, for the mapping f defined by (12), 
there exists a constant C > 0 such that, for any u satisfying �xu ∈ X�−1∕2 , the follow-
ing estimate holds:

In particular, if u ∈ X� we have ‖f [u]‖Lp ≤ C‖u‖X� and the mapping f is a bounded 
linear operator from the fractional power space X� into X = Lp(ℝ).

Proof The mapping f can be split as follows: f [u] = f̃ [u] + �̃�𝜕xu where

and �̃� = ∫
ℝ
(z − ez + 1)𝜈(dz) . Since z − ez + 1 = O(z2) as z → 0 , and

we have �̃� ∈ ℝ provided that 0 ≤ 𝛼 < 3 , and, either 𝜇 > 0,D± ∈ ℝ , or � = 0 and 
D− + 1 < 0 < D+.

G2� (x) =
(4�)−n∕2

Γ(�) ∫
∞

0

�−1+(2�−n)∕2e−(�+‖x‖
2∕(4�))d�

‖f [u]‖Lp ≤ C‖�xu‖X�−1∕2 .

f̃ [u](x) =∫
ℝ

(
u(x + z) − u(x) − z

𝜕u

𝜕x
(x)

)
𝜈(dz),

0 ≤ 𝜈(dz) = h(z)dz ≤ |z|−𝛼 h̃(z)dz, where h̃(z) = C0e
−𝜇z2

(
eD

−z1z≥0 + eD
+z1z<0

)
,
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First, we consider the case when 𝛾 > 1∕2 . We shall prove boundedness of the sec-
ond linear operator f̃  . If u is such that �xu ∈ X�−1∕2 then there exists � ∈ X = Lp(ℝ) 
such that �xu = A−(2�−1)∕2� = G2�−1 ∗ � and

Hence, for any x, � , and z we have

Recall the following inequality for the convolution operator:

where p, q, r ≥ 1 and 1∕p + 1 = 1∕q + 1∕r (see [18, Section  1.6]). In the special 
case when q = 1 we have ‖G ∗ �‖Lp ≤ ‖G‖L1‖�‖Lp . According to [37, Chapter 5.4, 
Proposition 7] we know that the modulus of continuity of the Bessel kernel function 
G2�−1 satisfies the estimate:

for any h where C1 > 0 is a constant. Therefore, for any �, z ∈ ℝ we have

The latter inequality formally holds true also for the case � = 1∕2 because

The rest of the proof of boundedness of the mapping f holds for 𝛾 > 1∕2 as well as 
� = 1∕2 . As u(x + z) − u(x) − z

�u

�x
(x) = z ∫ 1

0

�u

�x
(x + �z) −

�u

�x
(x)d� , we obtain

Now, as 0 ≤ 𝜈(dz) = h(z)dz ≤ |z|−𝛼 h̃(z)dz = (|z|−𝛽 h̃(z)
1

2 ) ⋅ (|z|𝛽−𝛼 h̃(z)
1

2 )dz , using the 
Hölder inequality with exponents p, q such that 1∕p + 1∕q = 1 we obtain

‖�xu‖X�−1∕2 = ‖�‖X = ‖�‖Lp .

�u

�x
(x + �z) −

�u

�x
(x) =

(
G2�−1(x + �z − ⋅) − G2�−1(x − ⋅)

)
∗ �(⋅).

‖G ∗ �‖Lp ≤ ‖G‖Lq‖�‖Lr ,

‖G2�−1(⋅ + h) − G2�−1(⋅)‖L1 ≤ C1�h�2�−1,

�
ℝ

����
�u

�x
(x + �z) −

�u

�x
(x)

����

p

dx = ‖
�
G2�−1(⋅ + �z) − G2�−1(⋅)

�
∗ �‖p

Lp

≤ ‖G2�−1(⋅ + �z) − G2�−1(⋅)‖
p

L1
‖�‖p

Lp
≤ C

p

1
��z�(2�−1)p‖�xu‖

p

X�−1∕2
.

�
ℝ

����
�u

�x
(x + �z) −

�u

�x
(x)

����

p

dx ≤ 2p‖�xu‖
p

Lp
= 2p‖�xu‖

p

X0
.

�
ℝ

�u(x + z) − u(x) − z
�u

�x
(x)�pdx = �z�p �

ℝ

������
1

0

�u

�x
(x + �z) −

�u

�x
(x)d�

�����

p

dx

≤ �z�p �
1

0 �
ℝ

����
�u

�x
(x + �z) −

�u

�x
(x)

����

p

dxd� ≤ C
p

1
�z�2�p‖�xu‖

p

X�−1∕2
.
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The integrals C2 = ∫
ℝ
|z|(2𝛾−𝛽)ph̃(z)p∕2dz and C3 = ∫

ℝ
|z|(𝛽−𝛼)qh̃(z)q∕2dz are finite pro-

vided that

and 𝜇 > 0,D± ∈ ℝ , or � = 0 and D− < 0 < D+ . The later inequalities are satisfied if 
there exists a parameter � such that

Such a choice of � is possible because we assumed 𝛾 > (𝛼 − 1)∕2 . Hence there 
exists a constant C > 0 such that ‖f̃ [u]‖Lp ≤ C‖𝜕xu‖X𝛾−1∕2 for any u satisfying 
�xu ∈ X�−1∕2 , as claimed. Due to the continuity of the embedding X�−1∕2

↪ X we 
have ‖f [u]‖Lp = ‖f̃ [u] + �̃�𝜕xu‖Lp ≤ C‖𝜕xu‖X𝛾−1∕2 = C‖u‖X𝛾 for any u ∈ X� and f is a 
bounded linear operator from X� into X = Lp .   ◻

Let us denote by C([0, T],X� ) the Banach space of all continu-
ous functions from the interval [0,  T] to X� with the maximum norm 
‖U(⋅)‖C([0,T],X� ) = sup�∈[0,T] ‖U(�)‖X� . We recall the well known result on existence 
and uniqueness of a solution to abstract parabolic equations in Banach spaces due to 
Henry [18].

Proposition 3.5 [18, Section 1]

Suppose that a densely defined closed linear operator −A is a generator of an 
analytic semigroup 

{
e−At, t ≥ 0

}
 in a Banach space X, U0 ∈ X� where 0 ≤ 𝛾 < 1 . 

Assume F ∶ [0, T] × X�
→ X and h ∶ (0, T] → X are Hölder continuous mappings 

in the � variable, ∫ T

0
‖h(𝜏)‖Xdx < ∞ , and F is a Lipschitz continuous mapping in 

‖f̃ [u]‖p
Lp

=�
ℝ

�����ℝ

u(x + z) − u(x) − z
𝜕u

𝜕x
(x)𝜈(dz)

����

p

dx

≤�
ℝ

�����ℝ

����
u(x + z) − u(x) − z

𝜕u

𝜕x
(x)

����
h(z)dz

����

p

dx

≤�
ℝ
�
ℝ

����
u(x + z) − u(x) − z

𝜕u

𝜕x
(x)

����

p

�z�−𝛽ph̃(z)p∕2dz

×

�

�
ℝ

�z�(𝛽−𝛼)qh̃(z)q∕2dz
�p∕q

dx

=�
ℝ

�

�
ℝ

����
u(x + z) − u(x) − z

𝜕u

𝜕x
(x)

����

p

dx

�
�z�−𝛽ph̃(z)p∕2dz

×

�

�
ℝ

�z�(𝛽−𝛼)qh̃(z)q∕2dz
�p∕q

≤Cp

1
‖𝜕xu‖

p

X𝛾−1∕2 �
ℝ

�z�(2𝛾−𝛽)ph̃(z)p∕2dz
�

�
ℝ

�z�(𝛽−𝛼)qh̃(z)q∕2dz
�p∕q

.

(2𝛾 − 𝛽)p > −1, (𝛽 − 𝛼)q = (𝛽 − 𝛼)
p

p − 1
> −1,

𝛼 − 1 + 1∕p < 𝛽 < 2𝛾 + 1∕p.
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the U variable. Then, there exists the unique solution U ∈ C([0, T],X� ) of the follow-
ing abstract semilinear evolution equation:

Moreover, ��U(�) ∈ X,U(�) ∈ D(A) for any � ∈ (0, T).

Remark 2 By a solution to (13) we mean a function U ∈ C([0, T],X� ) satisfying (13) 
in the integral (mild) sense, i.e.

Recall that the key idea of the proof of Proposition 3.5 is based on the Banach fixed 
point argument combined with the decay estimate ‖e−At‖X� = ‖A�e−At‖X ≤ Mt−�e−at 
of the norm of the semigroup e−At for any t > 0.

As a direct consequence of Proposition 3.5 and Lemma 3.4 we deduce the fol-
lowing result:

Theorem 3.6 Assume � is an admissible activity Lévy measure with the shape param-
eters �,D± and � where 𝛼 < 3 and either 𝜇 > 0,D± ∈ ℝ , or 𝜇 = 0,D− + 1 < 0 < D+ . 
Assume � ≥ 1∕2 and 𝛾 > (𝛼 − 1)∕2 . Suppose that the function g(�, u) is Hölder con-
tinuous in the � variable and Lipschitz continuous in the u variable. Then for any 
u0 ∈ X� and T > 0 there exists the unique solution u ∈ C([0, T],X� ) to PIDE (1).

4  The Black–Scholes PIDE model

In this section, our purpose is to investigate properties of solutions to a PIDE 
generalizing the Black–Scholes model. An important definition concerning this 
generalization is definition of a Lévy measure of a given process Xt . The measure 
�(A) of a Borel set A ⊆ ℝ is defined by:

It gives the mean number, per unit of time, of jumps of Xt, t ≥ 0, whose amplitude 
belongs to the set A (see [12]).

For the underlying asset price dynamics we will suppose that St, t ≥ 0,follows 
the geometric Lévy proces, i.e. St = eXt where Xt, t ≥ 0, is a Lévy process. Then it 
is well known (cf. [12, 14]) that the price of a contingent claim in the presence 
of jumps is given by a solution V(t, S) of the following partial integro-differential 
equation:

(13)
�U

��
+ AU = F(�,U) + h(�), U(0) = U0.

U(�) = e−A�U0 + ∫
�

0

e−A(�−s)(F(s,U(s)) + h(s))ds for any � ∈ [0, T].

(14)�(A) = �
[
#
{
t ∈ [0, 1] ∶ ΔXt ∈ A

}]
=

1

T
�
[
#
{
t ∈ [0, T] ∶ ΔXt ∈ A

}]
.
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Here Φ is the pay-off diagram of a plain vanilla option. For example, Φ(S) = (S − K)+ 
for a call option, or Φ(S) = (K − S)+ for a put option where K > 0 is the strike price. 
Here and after we shall denote by a+ = max(a, 0) and a− = min(a, 0) the positive 
and negative parts of a real number a, respectively.

If we consider the following change of variables V(t, S) = e−r�u(�, x) where 
� = T − t , x = ln(

S

K
) then we obtain the following PIDE for the function u(�, x):

Unfortunately, the initial condition u(0, x) = Φ(Kex) does not belong to the Banach 
space X for both call and put option pay-off diagrams Φ , i.e. Φ(S) = (S − K)+ and 
Φ(S) = (K − S)+ . The idea how to formulate existence and uniqueness of a solution 
to the PIDE (16) is based on the idea of shifting the solution u by uBS where the 
function uBS(�, x) = er�VBS(T − �,Kex) corresponds to transformation of the classi-
cal solution VBS to the linear Black–Scholes equation without PIDE part, i.e.

Recall that the solution VBS for a call or put option can be expressed explicitly:

where

is the cumulative distribution function of the normal distribution (cf. [20]). Further-
more, the transformed function uBS is a solution to the linear parabolic PDE:

(15)

𝜕V

𝜕t
+

𝜎2

2
S2

𝜕2V

𝜕S2
+ rS

𝜕V

𝜕S
− rV

+ ∫
ℝ

[
V(t, Sez) − V(t, S) − (ez − 1)S

𝜕V

𝜕S
(t, S)

]
𝜈(dz) = 0,

V(T , S) = Φ(S), S > 0, t ∈ [0, T).

(16)

�u

��
=
�2

2

�2u

�x2
+
(
r −

1

2
�2
)
�u

�x

+ ∫
ℝ

[
u(�, x + z) − u(�, x) − (ez − 1)

�u

�x
(�, x)

]
�(dz),

u(0, x) =Φ(Kex), x ∈ ℝ, � ∈ (0, T).

�VBS

�t
+

�2

2
S2

�2VBS

�S2
+ rS

�VBS

�S
− rVBS = 0,

VBS(T , S) = Φ(S).

Vcall
BS

(t, S) =SN(d1) − Ke−r(T−t)N(d2),

V
put

BS
(t, S) =Ke−r(T−t)N(−d2) − SN(−d1),

d1,2 =
ln(S∕K) + (r ± �2∕2)(T − t)

�
√
T − t

, and N(d) = ∫
d

−∞

e−�
2∕2

√
2�

d�
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where Φ(Kex) = K(ex − 1)+ for the call option and Φ(Kex) = K(1 − ex)+ for the put 
option.

In what follows, we shall provide important estimates for the function f [uBS].

Lemma 4.1 Suppose that � is an admissible activity Lévy measure � with the shape 
parameters �,D± , and � where 𝛼 < 3 and either 𝜇 > 0,D± ∈ ℝ , or 
𝜇 = 0,D− + 1 < 0 < D+ . Suppose that 1

2
≤ 𝛾 < 1 and 𝛼−1

2
< 𝛾 <

p+1

2p
≤ 1 . Then there 

exists a constant C0 > 0 depending on the parameters p, �, r, T ,K only, and such 
that the function f [uBS(�, ⋅)] satisfies the following estimates:

Proof First, we consider the case of a call option, i.e. uBS = ucall
BS

 with 
uBS(0, x) = Φ(Kex) = K(ex − 1)+ . It is important to emphasize that f [ex] = 0 . Hence

In what follows, we shall denote by C0 any generic positive constant depending on 
the parameters p, �, r, T ,K only. With regard to Lemma 3.4 we shall estimate the 
X�−1∕2 norm of the function v:

where d1(�, x) =
�
x + (r + �2∕2)�

�
∕(�

√
�) . In the case of a put option we have

Hence the proof of the statement of lemma for the case of a put option is essentially 
the same as the following argument for a call option.

Using integration by parts and substitution � = d1(�, x) , we obtain

(17)
�uBS

��
=

�2

2

�2uBS

�x2
+
(
r −

1

2
�2
)�uBS

�x
,

uBS(0, x) = Φ(Kex), � ∈ (0, T), x ∈ ℝ,

‖f [uBS(𝜏, ⋅)]‖Lp ≤ C0𝜏
−(2𝛾−1)

�
1

2
−

1

2p

�

, 0 < 𝜏 ≤ T ,

‖f [𝜕𝜏uBS(𝜏, ⋅)]‖Lp ≤ C0𝜏
−𝛾−

1

2
+

1

2p , 0 < 𝜏 ≤ T ,

‖f [uBS(𝜏1, ⋅)] − f [uBS(𝜏2, ⋅)]‖Lp ≤ C0�𝜏1 − 𝜏2�
−𝛾+

p+1

2p , 0 < 𝜏1, 𝜏2 ≤ T .

f [uBS] = f [uBS − Ker�+x], and �� f [uBS] = f [��(uBS − Ker�+x)].

(18)v(�, x) = �x
(
uBS(�, x) − Ker�+x

)
= Ker�+x(N(d1(�, x)) − 1),

�xu
put

BS
(�, x) = −Ker�+xN(−d1(�, x)) = −Ker�+x(1 − N(d1(�, x))) = v(�, x).
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Thus ‖v(�, ⋅)‖Lp ≤ p−1∕pKe(p−1)T�
2∕2 ≡ C0 for any 0 < 𝜏 ≤ T .

As �xv = v + w where

we obtain

for k = 0, 1, 2 . Applying (19) with k = 0 we obtain ‖w(�, ⋅)‖Lp ≤ C0�
−

1

2
+

1

2p . As a 
consequence, ‖v(�, ⋅)‖W1,p ≤ C0�

−
1

2
+

1

2p . Since the Bessel potential space Lp

2�−1
 is an 

interpolation space between Lp

0
= Lp and Lp

1
= W1,p using the Gagliardo-Nirenberg 

interpolation inequality

(cf. [18, Section 1.6]) and applying Lemma 3.4 we obtain

as claimed.
In order to prove the remaining estimates, let us estimate the norm ‖��v(�, ⋅)‖X�−1∕2 . 

As ��d1 = −�−3∕2x∕(2�) + �−1∕2(r + �2∕2)∕(2�) = −�−1d1∕2 + �−1∕2(r + �2∕2)∕� 
we have

‖v(�, ⋅)‖p
Lp

=Kpepr� �
∞

−∞

epx(1 − N(d1))
pdx

≤Kpepr� �
∞

−∞

epx(1 − N(d1))dx

=Kpepr� �
∞

−∞

epx

p

e−d
2
1
∕2

√
2�

1

�
√
�
dx

=Kpepr� �
∞

−∞

ep�
√
��−p(r+�2∕2)�

p

e−�
2∕2

√
2�

d�

=
1

p
Kpep(p−1)��

2∕2.

w = Ker�+xN�(d1)
1

�
√
�
= Ker�+x

e−d
2
1
∕2

�
√
2��

.

(19)

‖w(�, ⋅)d1(�, ⋅)k‖
p

Lp
=

Kpepr�

(�
√
2��)p−1 �

∞

−∞

epx
e−pd

2
1
∕2�d1�pk

�
√
2��

dx

=
Kpepr�

(�
√
2��)p−1 �

∞

−∞

ep�
√
��−p(r+�2∕2)� e

−�2∕2���pk
√
2�

d�

≤Cp

0
�
−

p−1

2

‖v‖X�−1∕2 ≡ ‖v‖Lp

2�−1
≤ C0‖v‖�Lp‖v‖

1−�
W1,p , where 2� − 1 = 0 ⋅ � + 1 ⋅ (1 − �),

‖f [uBS(𝜏, ⋅)]‖Lp ≤ C‖v(𝜏, ⋅)‖X𝛾−1∕2 ≤ C0𝜏
−(2𝛾−1)

�
1

2
−

1

2p

�

, 0 < 𝜏 ≤ T ,

��v = rv + Ker�+xN�(d1)��d1 = rv + w(−�−1∕2�d1∕2 + r + �2∕2).
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Using estimate (19) with k = 0, 1 we obtain

To estimate the W1,p norm of ��v we recall that �xv = v + w . Thus

as N��(d1) = −d1N
�(d1) . Using estimate (19) with k = 0, 1, 2 , we obtain

Again, using the Gagliardo–Nirenberg interpolation inequality

and applying Lemma 3.4 we obtain

as claimed in the second statement of lemma.
Finally,

and the function f [uBS(�, ⋅)] is Hölder continuous with the Hölder exponent 
−𝛾 +

p+1

2p
> 0 . The proof of lemma follows.   ◻

Combining the previous Lemmas 3.4, 4.1, sectoriality of the operator A = −�2
x
 

in X = Lp(ℝ) (see Lemma 3.3), and Proposition 3.6 we obtain the following exist-
ence and uniqueness result for the linear PIDE (16), and, consequently, for the 
linear option pricing model (15):

Theorem  4.2 Assume � is an admissible activity Lévy measure with the shape 
parameters 𝛼 < 3 and either 𝜇 > 0,D± ∈ ℝ , or � = 0 and D− + 1 < 0 < D+ . Let 
X� = L

p

2�
(ℝ) be the space of Bessel potentials where 1

2
≤ 𝛾 < 1 and 𝛼−1

2
< 𝛾 <

p+1

2p
.

‖𝜕𝜏v(𝜏, ⋅)‖Lp ≤ C0𝜏
−1+

1

2p , 0 < 𝜏 ≤ T .

�x��v = ��v + ��w = ��v + rw + Ker�+x

�
N��(d1)

�
√
�

��d1 −
N�(d1)

2��3∕2

�

= ��v + rw + w
�
−d1��d1 − �−1∕2

�

= ��v + rw + w
�
d2
1
�−1∕2 − �−1∕2 − �−1∕2d1(r + �2∕2)∕�

�
,

‖𝜕𝜏v(𝜏, ⋅)‖W1,p ≤ C0𝜏
−

3

2
+

1

2p , 0 < 𝜏 ≤ T .

‖��v‖X�−1∕2 ≡ ‖��v‖Lp

2�−1
≤ C0‖��v‖�Lp‖��v‖

1−�
W1,p , where 2� − 1 = 0 ⋅ � + 1 ⋅ (1 − �)

‖𝜕𝜏 f [uBS(𝜏, ⋅)]‖Lp ≤ C‖𝜕𝜏v(𝜏, ⋅)‖X𝛾−1∕2 ≤ C0𝜏
−𝛾−

1

2
+

1

2p , 0 < 𝜏 ≤ T ,

‖f [uBS(𝜏1, ⋅)] − f [uBS(𝜏2, ⋅)]‖Lp = ‖�
𝜏2

𝜏1

𝜕𝜏 f [uBS(𝜏, ⋅)]d𝜏‖Lp

≤ ������
𝜏2

𝜏1

‖𝜕𝜏 f [uBS(𝜏, ⋅)]‖Lpd𝜏
�����
≤ C0�𝜏1 − 𝜏2�

−𝛾+
p+1

2p , 0 < 𝜏1, 𝜏2 ≤ T ,
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Then, for any T > 0 , the linear PIDE (16) has the unique solution u 
such that the difference U = u − uBS satisfies U ∈ C([0, T],X� ) . Moreover, 
U(𝜏, ⋅) ∈ X1 = L

p

2
(ℝ) ⊆ W2,p(ℝ) and ��U(�, ⋅) ∈ X = Lp(ℝ) for any � ∈ (0, T).

Proof Since the Black–Scholes solution uBS solves the linear PDE (17) the differ-
ence U = u − uBS of a solution u to (16) and uBS satisfies the PIDE:

This PIDE equation can be rewritten in the abstract form:

where the linear operators A and f were defined in (11) and (12). The functions 
F = F(U) and h = h(�) , F ∶ X�

→ X , h ∶ (0, T] → X are defined as follows:

With regard to Lemma 3.4, F is a bounded linear mapping, and, consequently Lip-
schitz continuous from the space X� into X provided that � ≥ 1∕2 and 𝛾 > (𝛼 − 1)∕2.

Taking into account Lemma 4.1 we obtain

for any 0 < 𝜏1, 𝜏2 ≤ T  . Since 𝛾 <
p+1

2p
 the mapping h ∶ [0, T] → X ≡ Lp(ℝ) is Hölder 

continuous. Moreover,

because (2𝛾 − 1)
(

1

2
−

1

2p

)
< 1 . The rest of the proof now follows from Theo-

rem 3.6.   ◻

The following corollary is a consequence of embedding of the Bessel potential 
space into the space of Hölder continuous functions.

Corollary 4.3 Suppose that an admissible activity Lévy measure � fulfills assump-
tions of Theorem  4.2. Then, for any T > 0 , the linear PIDE (16) has the unique 
solution u ∈ C([0, T],C�

loc
(ℝ)) , with the Hölder exponent 𝜅 > 0 satisfying 

𝛼 − 1 − 1∕p < 𝜅 < 1.

Proof Recall continuity of the embedding

�U

��
=
�2

2

�2U

�x2
+
(
r −

1

2
�2
)
�U

�x
+ f [U] + f [uBS],

U(0, x) =0, x ∈ ℝ, � ∈ (0, T).

(20)
�U

��
+ AU = F(U) + h(�), U(0) = 0,

F(U) = (r − �2∕2)
�U

�x
+ f [U], h(�) = f [uBS(�, ⋅)].

‖h(�1) − h(�2)‖Lp = ‖f [uBS(�1, ⋅)] − f [uBS(�2, ⋅)]‖Lp ≤ C0��1 − �2�
−�+

p+1

2p ,

�
T

0

‖h(𝜏)‖Lpd𝜏 = �
T

0

‖f [uBS(𝜏, ⋅)]‖Lpd𝜏 ≤ C0 �
T

0

𝜏
−(2𝛾−1)

�
1

2
−

1

2p

�

d𝜏 < ∞,
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where � = 2� − 1∕p (cf. [18, Section 1.6]), i.e. � = �∕2 + 1∕(2p) . Now, there exists 
1∕2 ≤ 𝛾 < 1 such that 𝛼−1

2
< 𝛾 <

p+1

2p
 if and only if 𝛼 − 1 − 1∕p < 𝜅 < 1 , as claimed. 

Therefore U = u − uBS belongs to C([0, T],C�
loc
(ℝ)).

The solution uBS = uBS(�, x) is a real analytic function in the � and x variables for 
any 𝜏 > 0 and x ∈ ℝ . As uBS(0, x) represents the transformed call or put payoff dia-
gram we have uBS = uBS(0, x) is locally Lipschitz continuous in the x variable. Hence 
uBS ∈ C([0, T],C�

loc
(ℝ)) . Therefore the solution u = U + uBS to the linear PIDE (16) 

belongs to C([0, T],C�
loc
(ℝ)) , as claimed.   ◻

Remark 3 Our method of the proof of existence and uniqueness of solutions to 
PIDEs can be extended to the multidimensional case in which the underlying frac-
tional power space is X𝛾 = L

p

2𝛾
(ℝn), n > 1 . Recently, SenGupta, Wilson and Nganje 

[34] studied a two factor Barndorff-Nielsen and Shephard model ( n = 2 ) with sto-
chastic volatility in which both the underlying asset price S and the variance �2 fol-
low two finite activity admissible activity Lévy processes with a shape parameter 
𝛼 < 3 . Their model can be applied for construction of an optimal hedging strategy 
for oil extraction that is benefiting from fracking technology.

Remark 4 The conditions 1
2
≤ 𝛾 < 1 and 𝛼−1

2
< 𝛾 <

p+1

2p
 are fulfilled for a power 

p ≥ 1 provided that either � ∈ [0, 2] and p ≥ 1 , or � ∈ (2, 3) and 1 ≤ p < 1∕(𝛼 − 2) . 
It means that if the Lévy measure � has a strong singularity of the order � ∈ (2, 3) at 
the origin then we can find a solution in the framework of fractional power spaces of 
the Banach space X = Lp(ℝ) where p is limited by the order �.

The advantage of the choice of the Bessel potential space 
X𝛾 = L

p

2𝛾
(ℝ), 1∕2 ≤ 𝛾 < 1 , consists in the fact that we can prove existence and 

uniqueness of solutions in the phase space X� for the case of stronger singularities 
with the order of singularity � up to 3. The usual choice of the Sobolev space 
X1∕2 = W1,p(ℝ) leads to the restriction of the order � of the singularity to 𝛼 < 2.

5  Existence results for nonlinear PIDE option pricing models

In this section we present an application of the general existence and uniqueness 
result for the penalized version of the PIDE for solving the linear complementarity 
problem arising in pricing American style of a put option on an underlying asset fol-
lowing Lévy stochastic process.

Bensoussan and Lions [9] characterized price of a put option in terms of a solu-
tion of a system of partial-integro differential inequalities (see also [21]). Wang 
et  al.  [38, 39] investigated a penalty method for solving a linear complementarity 
problem using a power penalty term for the case without jumps in the underlying 
asset dynamics. Lesman and Wang [23] proposed a power penalty method for solv-
ing the free boundary problem for pricing American options under transaction costs. 

X� = L
p

2�
(ℝ) ↪ C�

loc
(ℝ),



714 J. M. T. S. Cruz, D. Ševčovič

1 3

Penalty methods for American option pricing under stochastic volatility models 
are studied in the paper Zvan et al. [41]. d’Halluin et al. [15] investigated a penalty 
method for American options on jump diffusion underlying processes.

Recall that American style options can be exercised anytime before the maturity 
time T. In the case of an American put option the state space {(t, S), t ∈ [0, T], S > 0} 
can be divided into the so-called early exercise region E and continuation region C 
where the put option should be exercised and hold, respectively. These regions are 
separated by the early exercise boundary defined by a function t ↦ Sf (t) , such that 
0 < Sf (t) ≤ K , and

We refer the reader to papers [20, 22, 36, 40] for an overview of qualitative prop-
erties of the early exercise boundary for the case of pricing American style of put 
options for the Black–Scholes PDE with no integral part.

In the continuation region C the put option price is strictly greater than the pay-off 
diagram, i.e. V(t, S) > Φ(S) = (K − S)+ for Sf (t) < S . In the exercise region E the put 
option price is given by its pay-off diagram, i.e. V(t, S) = Φ(S) = (K − S)+ . Moreo-
ver, the put option price V(t, S) is a decreasing function in the S variable. Hence in 
the exercise region where 0 < S < Sf (t) ≤ K , for the price V(t, S) = K − S we obtain

because S ↦ V(t, S) is a decreasing function, and thus V(t, Sey) ≤ V(t, S) = K − S 
for y ≥ 0 , and V(t, Sey) = K − Sey for y ≤ 0.

Let us assume that the admissible activity Lévy measure � satisfies the inequality:

Then the price V(t,  S) of an American put option satisfies the inequality 
�tV(t, S) + LS[V](t, S) ≤ 0 for 0 < S ≤ Sf (t) ≤ K , i.e. for (t, S) ∈ E . On the other 
hand, for (t, S) ∈ C the price V(t, S) is obtained from the Black–Scholes PIDE equa-
tion �tV(t, S) + LS[V](t, S) = 0.

In summary, we have shown the following result.

E = {(t, S), t ∈ [0, T], 0 < S ≤ Sf (t)}, C = {(t, S), t ∈ [0, T], Sf (t) < S}.

�V

�t
+ LS[V] ≡�V

�t
+

�2

2
S2

�2V

�S2
+ rS

�V

�S
− rV

+ �
ℝ

[
V(t, Sey) − V(t, S) − S(ey − 1)

�V

�S
(t, S)

]
�(dy)

= − rK + �
0

−∞

[
V(t, Sey) − (K − S) − S(ey − 1)(−1)

]
�(dy)

+ �
∞

0

[
V(t, Sey) − (K − S) − S(ey − 1)(−1)

]
�(dy)

= − rK + �
∞

0

[
V(t, Sey) − (K − S) + S(ey − 1)

]
�(dy)

≤ − rK + S�
∞

0

(ey − 1)�(dy)

(21)�
∞

0

(ey − 1)�(dy) ≤ r.
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Theorem 5.1 Let V(t, S) be the price of an American style put option on underlying 
asset S following a geometric Lévy process with an admissible activity Lévy measure 
� satisfying the structural inequality (21). Then V is a solution to the linear comple-
mentarity problem:

for any t ∈ [0, T), S > 0 , and V(T , S) = Φ(S) = (K − S)+.

A standard method for solving the linear complementarity problem (22)–(23) 
is based on construction of an approximate solution by means of the penalty 
method. A nonnegative penalty function G�(t,V) penalizes negative values of the 
difference V(t, S) − Φ(S) . For example, one can consider the penalty function of 
the form:

where 0 < 𝜀 ≪ 1 is a small parameter. Clearly, G�(t,V)(S) = 0 if and only if 
V(t, S) ≥ Φ(S) . Then the penalized problem for the approximate solution V = V� to 
(22)–(23) reads as follows:

In terms of the transformed function u(�, x) = er�V(T − �,Kex) and the shifted func-
tion U = u − uBS the penalized PIDE problem (24) can be rewritten as follows:

Equation (25) can be understood as an abstract parabolic equation in the phase space 
X� = L

p

2�
(ℝ) , i.e. U(�) ∈ C([0, T],X� ) where F ∶ X�

→ X . Furthermore, 
h(�), g�(�,U) ∈ X for any � ∈ (0, T] and U ∈ X� , i.e. they are x-dependent functions 
for each �.

The penalty term g� can be deduced from G� , i.e.

Recall that the linear operators A and f were defined in (11) and (12) and

Before proving existence and uniqueness of a solution to the penalized PIDE 
Eq. (25) we need the following auxiliary lemma.

(22)�tV(t, S) + LS[V](t, S) ≤ 0, V(t, S) ≥ Φ(S),

(23)
(
�tV(t, S) + LS[V](t, S)

)
⋅ (V(t, S) − Φ(S)) = 0,

G�(t,V)(S) = �−1 min(S∕K, 1)(Φ(S) − V(t, S))+,

(24)
𝜕tV + LS[V] + G𝜀(t,V) = 0, S > 0, t ∈ [0, T),

V(T , S) = Φ(S).

(25)
�U

��
+ AU = F(U) + h(�) + g�(�,U), U(0) = 0.

g�(�,U(�, x))(x) = �−1ex
−

(w(�, x) − U(�, x))+, where

w(�, x) = er�Φ(Kex) − uBS(�, x).

F(U) = (r − �2∕2)
�U

�x
+ f [U], h(�) = f [uBS(�, ⋅)].
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Lemma 5.2 The penalty function g� ∶ [0, T] × X → X is Lipschitz continuous in 
the U variable and Hölder continuous in the � variable, i.e. there exists a constant 
C0 > 0 such that

for any U,U1,U2 ∈ X and �, �1, �2 ∈ [0, T].

Proof Note the inequality |a+ − b+| ≤ |a − b| for all a, b ∈ ℝ . As ex− ≤ 1 , we obtain

Moreover, it is easy to verify that the function ex−w(�, x) belongs to X = Lp and

Hence g�(�, 0) ∈ X = Lp and g�(�, ⋅) ∶ X → X is well defined and Lipschitz continu-
ous mapping for any � ∈ [0, T].

Recall that d1 − d2 = �
√
� , d1 + d2 = 2(x + r�)∕�

√
� , and, consequently, 

er�+xN�(−d1) − N�(−d2) = 0 . Since N(−d1) = 1 − N(d1) we obtain

where the auxiliary function v was defined as in (18). Therefore

where C0 > 0 is a constant independent of � ∈ (0, T] . Thus

‖g�(�,U1) − g�(�,U2)‖X ≤ �−1‖U1 − U2‖X ,

‖g�(�1,U) − g�(�2,U)‖X ≤ �−1C0��1 − �2�
p+1

2p

‖g�(�,U1) − g�(�,U2)‖
p

Lp
≤�−p �

∞

−∞

��(w(�, x) − U1(x))
+ − (w(�, x) − U2(x))

+��
p
dx

≤�−p �
∞

−∞

�U1(x) − U2(x)�pdx = �−p‖U1 − U2‖
p

Lp
.

w(�, x) = er�Φ(Kex) − KN(−d2(�, x)) + Ker�+xN(−d1(�, x)).

��w =rer�Φ(Kex) + rKer�+xN(−d1) − KN�(−d2)
�

2
√
�

=rer�Φ(Kex) − rv − K
e−d

2
2
∕2

√
2�

�

2
√
�

‖ex−��w‖Lp ≤rer�‖ex−Φ(Kex)‖Lp + r‖ex−v‖Lp

+
K�

2
√
�

�

�
∞

−∞

epx
− e−pd

2
2
∕2

(2�)p∕2
dx

�1∕p

≤rKer�‖ex−1x≤0‖Lp + r‖v‖Lp

+
K�

2
√
�

�

�
∞

−∞

e−p�
2∕2

(2�)p∕2
�
√
�d�

�1∕p

≤C0�
1

2p
−

1

2 ,
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Hence

as claimed. The proof of lemma follows.   ◻

Similarly as in the case of a linear PIDE, applying Lemmas  3.3,  3.4,  4.1 and 
Proposition 3.6 we obtain the following existence and uniqueness result for the non-
linear penalized PIDE (25).

Theorem  5.3 Assume � is an admissible activity Lévy measure with the shape 
parameters 𝛼 < 3 , and either 𝜇 > 0,D± ∈ ℝ , or � = 0 and D− + 1 < 0 < D+ . Let 
X� = L

p

2�
(ℝ) be the space of Bessel potentials where 1

2
≤ 𝛾 < 1 and 𝛼−1

2
< 𝛾 <

p+1

2p
 . 

Suppose that the structural condition (21) is fulfilled for the Lévy measure �.

Then, for any 𝜀 > 0 and T > 0 , the nonlinear penalized PIDE (25) has the unique 
solution U� ∈ C([0, T),X� ) . Moreover, U�(�, ⋅) ∈ X1 = L

p

2
(ℝ) ↪ W2,p(ℝ) , and 

��U�(�, ⋅) ∈ Lp(ℝ) for any � ∈ (0, T).

6  Numerical experiments

In this section we present comparison of solutions to the linear PIDE with 
various Lévy measures. We consider European style of put options only, i.e. 
Φ(S) = (K − S)+ . We compare a solution for the linear Black–Scholes equa-
tion with solutions to the Merton and Variance Gamma PIDE models. The 
common model parameters were chosen as follows � = 0.23,K = 100, T = 1 
and r ∈ {0, 0.1} . As for the underlying Lévy process we consider the Variance 
Gamma process with parameters � = − 0.43, � = 0.27 and the Merton processes 
with parameters � = 0.1,m = − 0.2, � = 0.15 . In order to compute numeri-
cal solution we chose the finite difference discretization scheme proposed and 
analyzed by Cruz and Ševčovič [14]. The scheme is based on a uniform spatial 
finite difference discretization with a spatial step Δx = 0.01 , and implicit time 
discretization with a step Δt = 0.005 . The total number of spatial discretization 
steps was chosen N = 400 and the number of time discretization steps M = 200 . 

‖g�(�1,U) − g�(�2,U)‖p
Lp

= �−p �
∞

−∞

epx
−

��(w(�1, x) − U(x))+ − (w(�2, x) − U(x))+��
p
dx

≤ �−p �
∞

−∞

epx
− �w(�1, x) − w(�2, x)�pdx

= �−p‖ex−(w(�1, ⋅) − w(�2, ⋅))‖
p

Lp
.

‖g�(�1,U) − g�(�2,U)‖Lp ≤ �−1 �
�2

�1

‖ex−��w(�, ⋅)‖Lpd� ≤ �−1C0��1 − �2�
p+1

2p ,
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We restricted the spatial computational domain to x ∈ [−L, L] where L = 4 . We 
refer the reader to [14] for details concerning discretization scheme.

In Fig. 1 we show comparison of European put option prices between PIDE 
models and the linear Black–Scholes model. In Fig. 1a we plot put option prices 
V(0, S) for S ∈ [80, 125] for the zero interest rate r = 0 , whereas Fig. 1b depicts 
put option prices for the interest rate r = 0.1 . Numerical values of option prices 
are summarized in Table 1 for two different values of the interest rate r = 0.1 and 
r = 0 . The option price for both Merton’s as well as the Variance Gamma mod-
els are higher when compared to the option prices computed by means of the 
classical Black–Scholes model. This is in accordance with an intuitive obser-
vation that prices of put or call options should be higher on underlyings assets 
following stochastic processes with jumps when compared to those following a 
continuous geometric Brownian motion.

Fig. 1  Graphical comparison of European put option prices for the Black–Scholes (BS) model and the 
PIDE Variance Gamma (VG) and Merton’s (Mer) models

Table 1  European put option prices V(0,  S) for the Black–Scholes and PIDE models under Variance 
Gamma and Merton’s processes for r = 0 and r = 0.1

S BS PIDE-VG PIDE-Merton Payoff

r = 0 r = 0.1 r = 0 r = 0.1 r = 0 r = 0.1

85.2144 15.2547 7.35166 19.2687 14.9855 17.1692 12.9056 14.7856
88.692 12.2484 5.24145 17.2948 13.3899 14.8335 10.9901 11.308
92.3116 9.42895 3.51944 15.428 11.8822 12.6423 9.21922 7.68837
96.0789 6.90902 2.21106 13.674 10.4691 10.6201 7.61307 3.92106
100 4.78444 1.29196 12.0372 9.15576 8.78655 6.18483 0
104.081 3.1099 0.69843 10.52 7.94499 7.155 4.94044 0
108.329 1.88555 0.34773 9.12343 6.83762 5.73137 3.87864 0
112.75 1.0604 0.15881 7.84623 4.51403 5.83246 2.99166 0
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7  Conclusions

In this paper, we analyzed existence and uniqueness of solutions to a partial inte-
gro-differential equation (PIDE) in the Bessel potential space. As a motivation we 
considered a model for pricing vanilla call and put options on underlying assets 
following a geometric Lévy stochastic process. Using the theory of abstract semi-
linear parabolic equations we proved existence and uniqueness of solutions in the 
Bessel potential space representing a fractional power space of the space of Leb-
esgue p-integrable functions with respect to the second order Laplace differential 
operator. We generalized known existence results for a wider class of Lévy meas-
ures including those having strong singular kernel. We also proved existence and 
uniqueness of solutions to the penalized PIDE representing approximation of the 
linear complementarity problem arising in pricing American style of options.
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