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a b s t r a c t

In this article we propose new linear and nonlinear partial differential equations (PDEs)
models for pricing American options and total value adjustment in the presence of
counterparty risk. An innovative aspect comes from the consideration of stochastic
spreads, which increases the dimension of the problem. In this setting, we pose new
complementarity problems associated to linear and nonlinear PDEs. Moreover, using
the mathematical tools of semilinear variational inequalities for parabolic equations, we
prove the existence and uniqueness of a solution for these models. For the numerical
solution, we mainly combine a semi-Lagrangian time discretization scheme, a fixed
point method to cope with nonlinear terms and a finite element method for the spatial
discretization, jointly with an augmented Lagrangian active set method to solve the
fully discretized complementarity problem. Finally, numerical examples illustrate the
expected behaviour of the option prices and the corresponding total value adjustment,
as well as the performance of the proposed numerical techniques. Moreover, we compare
the numerical results from the PDEs approach with those obtained by applying Monte
Carlo techniques.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Since the last financial crisis, suitable relevant adjustments are taken into account when pricing financial derivatives.
Their goal is to mitigate the counterparty risk associated to the derivatives contract. Among all financial derivatives usually
traded in the markets, European and American options are some of the most popular. The number of these adjustments
is continuously increasing, so that the term total value adjustment or XVA is currently used to refer to the set of all of
them. The formulation of suitable mathematical models in terms of partial differential equations (PDEs) allows the use
of efficient numerical methods to compute the price of the XVA. These methods become competitive with respect to
alternative Monte Carlo techniques applied to models which are formulated in terms of expectations. PDEs formulations
require the statement of well posed problems to guarantee the existence and uniqueness of a solution. However, the
mathematical analysis of these formulations turns out to be more difficult due to the presence of nonlinear PDEs and
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additional inequality constraints arising in the American options pricing problem. It is also important to consider the
appropriate stochastic factors that are involved in the modelling of counterparty risk.

As counterparty risk is related to the possible default of different parts in the contract, the intensity of default is
an important issue in the modelling. In the previous work [1] we have considered constant intensities of default (from
both counterparties, namely the hedger and the investor) to study PDEs models for European and American options, thus
involving only one stochastic factor. Also in the setting of constant spread for American options, the numerical solution
by means of Monte Carlo techniques has been addressed in [2].

However, default intensities from counterparties do not always exhibit constant behaviour. In particular, if stochastic
intensities of default are assumed for both risky counterparties, then a model with three stochastic factors is obtained
(see [3]). Following [3], we have analysed PDEs models for European options depending on two stochastic factors in [4].

In [1] we addressed the numerical solution of American options in the case of constant spreads. In the present paper, on
one hand we extend to the case of stochastic spreads the work [1], also adding the mathematical analysis of the two factors
model for American options. On the other hand, we extend to American options the work developed in [4] for European
ones with stochastic spreads. Note that the consideration of American options, instead of European ones, requires a
completely new setting and methodology to obtain the existence and uniqueness of a solution. This methodology is based
on the mathematical analysis of complementarity problems associated to semilinear parabolic variational inequalities.
Also, additional numerical methods are required to cope with the resulting fully discretized complementarity problem.
Finally, note that we also extend to the setting of stochastic spreads the use of Monte Carlo techniques proposed in [2]
for the case of constant spreads.

Throughout this article, we refer to the risk-free derivative when counterparty risk is not considered, so that classical
models for American options apply. Moreover, we use the term risky derivative when counterparty risk is taken into
account.

Our approach is based on complementarity problems associated to PDEs operators, that are obtained by means of
suitable hedging arguments and Itô’s lemma for jump–diffusion processes. This approach extends the classical Black–
Scholes inequality for American options without counterparty risk. Thus, different kinds (linear or nonlinear, depending
on the assumption of the mark-to-market value at default) of complementarity problems arise. More precisely, a mark-
to-market value which is equal to the risk-free derivative leads to a linear complementarity problem involving the value
of the risk-free derivative, while a mark-to-market value which is equal to the risky derivative leads to a nonlinear
complementarity problem.

In order to state the existence and uniqueness of a solution for the nonlinear complementarity problem we follow
the methodology introduced by Jeong and Park [5] for semilinear parabolic variational inequalities, which is based on
previous works by Brézis [6,7] for the linear case. We also refer to the works of Stampacchia [8,9] and Kinderlehrer and
Stampacchia [10] for details about the analysis of variational inequalities and complementarity problems.

In addition, we propose a set of numerical methods to solve the complementarity problems for both choices of
the mark-to-market value. For this purpose, we truncate the unbounded domain and propose suitable conditions at
the boundaries of the resulting bounded domain, following ideas from [11]. After this truncation, we propose a time
discretization based on the method of characteristics combined with a finite element discretization in the asset and spread
variables. For the nonlinear PDE, a fixed point iteration algorithm is proposed. Finally, the augmented Lagrangian active
set (ALAS) algorithm is used to solve the discretized complementarity problems.

The plan of the paper is the following. In Section 2, by using hedging arguments we state the complementarity
problems. In Section 3, we develop the mathematical analysis of these problems to obtain the existence and uniqueness
of a solution. Section 4 presents numerical methods and Section 5 shows some illustrative numerical results. In order to
validate these results, some tests have also been solved by the extension of the Monte Carlo techniques described in [2].
Finally, conclusions are presented in Section 6.

2. Mathematical model

In this section, we pose the PDEs models for American options when considering the counterparty risk with two
stochastic factors. The main difference with the one factor model introduced in [1] comes from the consideration of
stochastic intensities of default instead of constant ones. In order to establish these models, some assumptions and
techniques similar to those ones presented in [4] for European options with stochastic spreads will be used, namely
self-financing portfolio and non-arbitrage scenarios. Therefore, in forthcoming steps we will address the readers to [4]
when necessary.

First, we assume the investor as a risky counterparty and that the intensity of default of the issuer is zero. Therefore,
the underlying asset price St and the short term CDS spread of the investor ht satisfy the system of stochastic differential
equations:

dSt = (r(t) − q(t)) St dt + σ S(t) St dW S
t , (1)

dht = (µh(t) − Mh(t)σ h(t)) dt + σ h(t) dW h
t , (2)

where (r(t) − q(t)) and (µh(t) − Mh(t)σ h(t)) represent the drifts of St and ht , respectively. Moreover, r(t) is the given
risk-free interest rate, q(t) is the given asset dividend yield rate, Mh(t) denotes the market price of investor’s credit risk,
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σ S(t) and σ h(t) are the volatility functions, and W S
t and W h

t are two correlated Wiener processes (i.e., ρ dt = dW S
t dW h

t ),
such that ρ is the instantaneous correlation between St and ht . In the present work, we consider r , q, σ S , σ h, µh and
Mh as constant parameters. Note that considering deterministic functions for these parameters does not involve major
difficulties.

Next, we assume that the American option is traded between a hedger and an investor, where the latter has nonzero
probability of default. From the point of view of the investor, the price of the American option with counterparty risk at
time t is denoted by V̂t = V̂ (t, St , ht , J It ). Thus, it depends on the asset price (St ), on the spread of the investor (ht ) and on
the state of default of the investor at time t (J It ), where J It = 1 in case of default before or at time t , otherwise J It = 0. The
risk-free American option value is denoted by Vt = V (t, St ) and it is the solution of the analogous PDEs problem with a
null probability of default.

Note that the intensity of default of the investor can be expressed in terms of the spread as follows:

λt =
ht

1 − R
, (3)

where R is the recovery rate. Moreover, if the investor enters bankrupt then the American option price is given by

V̂ (t, St , ht , 1) = RM+(t, St , ht ) + M−(t, St , ht ) ,

where M(t, St , ht ) denotes the mark-to-market value close-out, Z+
= max(Z, 0) and Z−

= min(Z, 0). We also define ∆V̂
as the variation of the derivative value, V̂ , when the investor defaults. It is given by

∆V̂t = RM+

t + M−

t − V̂t , (4)

where Mt = M(t, St , ht ). The close-out is understood as the net present value of the residual deal when one party defaults.
A detailed discussion about close-out conventions is addressed in [12] and [13]. A risk-free close-out assumes that the
surviving counterparty is default-free. From the legal perspective, ISDA document [14] suggests that a replacement close-
out should be used, so that the default risk of the survived party is taken into account. This is specially relevant in DVA.
For simplicity and following the assumption in the seminal article [15] concerning PDEs modelling, we consider two
possibilities for the mark-to-market value of close-out: either equal to the risk-free value or equal to the derivative value
including counterparty risk.

With the purpose of pricing the American option with counterparty risk, the option is hedged by a self-financing
portfolio Πt , which is designed to hedge all underlying risk factors. In this case, we can use the same portfolio as in [4]
for European options with two factors and consider the following hedging inequality associated to American options
(unlike the equality used for European ones):

dV̂t ≤ dΠt . (5)

Next, by applying Itô’s Lemma for jump diffusion processes and the same methodology as in [4], with the difference
coming from the consideration of the inequality (5), we can obtain the PDEs model for pricing American options with
counterparty risk and two stochastic factors.

More precisely, assuming that V̂t = V̂ (t, St , ht ), then the function V̂ satisfies the following complementarity problem
in the domain [0, T ) × (0,∞) × (0,∞):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L(V̂ ) =
∂V̂
∂t

+ L̃ShV̂ +
∆V̂
1 − R

h − f V̂ ≤ 0

V̂ (t, S, h) ≥ G(S)
L(V̂ )(V̂ − G) = 0
V̂ (T , S, h) = G(S) ,

(6)

where G(S) represents the option payoff, and the differential operator L̃Sh is given by

L̃ShV ≡
1
2
(σ S)2S2

∂2V
∂S2

+
1
2
(σ h)2

∂2V
∂h2 + ρσ Sσ hS

∂2V
∂h∂S

+ (r − q)S
∂V
∂S

+
(
µh

− Mhσ h) ∂V
∂h

. (7)

Moreover, the term ∆V̂ is given in terms of the mark-to-market value (see (4)). As for the case of European options in [4],
the differential operator L̃Sh can be rewritten in terms of the spread h, due to the following relationship between the drift
of the spread

(
µh

− Mhσ h
)
and the investor’s intensity of default λ:

µh
− Mhσ h

= −κλ . (8)

Therefore, the differential operator (7) can be rewritten as follows:

LShV ≡
1
2
(σ S)2S2

∂2V
∂S2

+
1
2
(σ h)2

∂2V
∂h2 + ρσ Sσ hS

∂2V
∂h∂S

+ (r − q)S
∂V
∂S

−
κ

1 − R
h
∂V
∂h

.
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According to (4) and the possible choices of the mark-to-market value at default, two alternative complementarity
problems are obtained:

• If M = V̂ , we deduce the following nonlinear complementarity problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L1(V̂ ) =

∂V̂
∂t

+ LShV̂ − f V̂ − hV̂+
≤ 0, in [0, T ) × (0,∞) × (0,∞)

V̂ (t, S, h) ≥ G(S)
L1(V̂ )(V̂ − G) = 0
V̂ (T , S, h) = G(S) .

(9)

• If M = V , the following linear complementarity problem is derived:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2(V̂ ) =
∂V̂
∂t

+ LShV̂ −

(
h

1 − R
+ f

)
V̂

−((1 − R)V+
− V )

h
1 − R

≤ 0, in [0, T ) × (0,∞) × (0,∞)

V̂ (t, S, h) ≥ G(S)
L2(V̂ )(V̂ − G) = 0
V̂ (T , S, h) = G(S) .

(10)

Unlike the case of European options, for the case of American ones the calculus of the XVA value, U = V̂ − V , requires
the previous computation of the risk-free American option value, V . Thus, the following linear complementarity problem
satisfied by V has to be solved:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L3(V ) =
∂V
∂t

+ LSV − fV ≤ 0 , in [0, T ) × (0,∞)

V (t, S) ≥ G(S)
L3(V )(V − G) = 0
V (T , S) = G(S) ,

(11)

where the linear operator LS is given by

LSV ≡
(σ S)2

2
S2
∂2V
∂S2

+ (r − q)S
∂V
∂S

.

For the numerical solution of (9) and (10) we propose a finite element method, which requires the use of a bounded
computational domain. Thus, we choose S∞ and h∞ to be large enough real numbers. We define the computational domain
Ω = (0, S∞)× (0, h∞), so that the numerical solution is not affected by the choice of S∞ and h∞ in the range of values of
S and h with financial relevance. Next, we need to impose appropriate boundary conditions on the risky derivative value
for the bounded domain Ω . For this purpose, we consider the same boundary conditions for V and V̂ as in the case of
European options [4]. More precisely, at S = 0 and S = S∞, the American option value is given by:{

V̂ (t, 0, h) = V (t, 0) = V0(t) ,
V̂ (t, S∞, h) = V (t, S∞) = V∞(t) ,

(12)

where the functions V0(t) and V∞(t) are given by:

V0(t) =

{
0 , for a call option,
K exp(−f (T − t)) , for a put option,

(13)

V∞(t) =

{
S∞ − K , for a call option,
0 , for a put option.

(14)

If h = 0 (which is equivalent to a null intensity of default λ), then the derivative contract has no counterparty risk.
Thus, an appropriate choice of the boundary condition is to consider V̂ (t, S, 0) = V (t, S).

Finally, in order to impose the boundary condition at h = h∞, we introduce the matrix

A =
1
2

⎛⎝(σ S)2S2 ρσ Sσ hS

ρσ Sσ hS (σ h)2

⎞⎠ (15)

and assume the nonhomogeneous Neumann boundary condition for h = h∞: (A∇V̂ · n⃗) = (A∇V · n⃗), where n⃗ denotes the
unit outer normal vector to ∂Ω .

In the next section, the existence and uniqueness of a solution of problem (9) are studied. First, in order to obtain
a system of PDEs with homogeneous boundary conditions, we introduce the problem which models the XVA. For this
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purpose, we split up the risky derivative value, V̂ , as the sum of the XVA, U , plus the risk-free derivative price, V ,
i.e. V̂ = V + U . By introducing this splitting in (9), the following nonlinear complementarity problem is deduced:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lt (U) =
∂U
∂t

+ LShU − fU − h(U + V )+ ≤ −
∂V
∂t

− LSV + fV , in [0, T ) ×Ω

U(t, S, h) ≥ G(S) − V (t, S)[
Lt (U) −

(
−
∂V
∂t

− LSV + fV
)] [

U − (G(S) − V (t, S))
]

= 0

U(T , S, h) = 0

U(t, 0, h) = 0

U(t, S∞, h) = 0

U(t, S, 0) = 0

(A∇U · n⃗)(t, S, h∞) = 0 .

(16)

The same boundary conditions are considered for the linear problem (10).

3. Mathematical analysis of the nonlinear PDEs problem

In this section, for a given function V , we prove the existence and uniqueness of solution for problem (16). Then, taking
into account the existence and uniqueness of a solution V for the classical problem (11) (see [16], for example), we can
state the existence and uniqueness of a solution for (9). The mathematical analysis of the linear complementarity problem
(10) is much simpler.

As the PDEs problem (16) includes a terminal condition, it is a terminal–boundary value problem. Moreover, the matrix
A defined in (15) contains variable coefficients and it becomes degenerate at some boundaries. Next, in order to rewrite
problem (16) as an equivalent initial–boundary value problem with a constant matrix, we introduce the time to maturity
variable, τ = T − t , as well as the new variables and functions:

x = ln
S
K
, u(τ , x, h) = U(t, S, h), v(τ , x) = V (t, S) .

Note that x ∈ (−∞, x∞), with x∞ = ln(S∞/K ). In order to get a bounded domain, we introduce the new truncated domain
Ω̂ = (x0, x∞) × (0, h∞).

For the problem formulation, we also introduce:

• The operator A:

Au = −div (̂A∇u), (17)

where the matrix Â is given by

Â =
1
2

⎛⎝ (σ S)2 ρσ Sσ h

ρσ Sσ h (σ h)2

⎞⎠ , (18)

which is positive definite if and only if |ρ| < 1.
• The boundary Γ = {(x, h) ∈ ∂Ω̂/h ̸= h∞} and the Hilbert space

W = H1
Γ (Ω̂) = {z ∈ H1(Ω̂) / z = 0 on Γ } ,

which is equipped with the norm:

∥z∥2
H1
Γ

=

∫
Ω̂

|∇z|2 dx dh .

Moreover, we denote by W ∗ the dual space of W .
• The operator Φ : (0, T ] × H1

Γ (Ω̂) → L2(Ω̂), which is given by:

Φ(τ , ϕ)(x, h) = c0 ϕ(x, h) + c1
∂ϕ

∂x
(x, h) + c2(h)

∂ϕ

∂h
(x, h) + h(v(τ , x) + ϕ(x, h))+ , (19)

for all τ ∈ (0, T ] and ϕ ∈ H1
Γ (Ω̂), where:

c0 = −f , c1 = −
(σ S)2

2
+ (r − q) , c2(h) = −

κ

1 − R
h.
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• Functions ψ and ℓ, which are given by:

ψ(τ , x) = G(Kex) − v(τ , x) ,

ℓ(τ , x) = −
∂v

∂τ
(τ , x) +

1
2
(σ S)2

∂2v

∂x2
(τ , x) + (r − q −

1
2
(σ S)2)

∂v

∂x
(τ , x) − f v(τ , x) , (20)

and are independent on h.

Then, we end up with the nonlinear complementarity problem in (0, T ) × Ω̂:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lτ (u) =
∂u
∂τ

+ Au −Φ(τ , u) ≥ ℓ , in (0, T ) × Ω̂

u ≥ ψ

[Lτ (u) − ℓ] [u − ψ] = 0
u(0, x, h) = 0
u(τ , x0, h) = 0
u(τ , x∞, h) = 0
u(τ , x, 0) = 0
(̂A∇u · n⃗)(τ , x, h∞) = 0 .

(21)

3.1. Variational formulation

In this section, we first use subdifferential calculus tools to formulate the nonlinear complementarity problem (21) in
the framework of semilinear parabolic variational inequalities. In this way, we can apply the results from [5] to obtain
the existence and uniqueness of a solution of problem (21).

For this purpose, following [5] we introduce the functional space

Y = L2(0, T ;W ) ∩ C([0, T ]; L2(Ω̂)) ∩ W 1,2(0, T ;W ∗)

and the operator H : Y → L2(0, T ;W ∗), defined for each τ ∈ (0, T ] as follows:

H(u)(τ , ·) = −
∂u
∂τ

(τ , ·) − Au(τ , ·) +Φ(τ , u(τ , ·)) + ℓ(τ , ·) . (22)

Therefore, problem (21) can be equivalently written in the form:
Find u ∈ Y , such that

H(u) ≤ 0 , u ≥ ψ , H(u)(u − ψ) = 0 , (23)

jointly with the initial condition and the homogeneous boundary condition on h = h∞.
As the function ψ depends on τ (i.e. the obstacle function is time dependent in this problem), for each τ ∈ [0, T ] we

introduce the closed convex set

K (τ ) = {z ∈ W / z ≥ ψ(τ , ·) in Ω̂} .

We also introduce the indicatrix function φ : W → (−∞,+∞] associated to the convex set K (τ ) as follows:

φ(z) =

{
0 , if z ∈ K (τ ) ,
+∞ , if z /∈ K (τ ) ,

which is a lower semicontinuous, proper convex function. The subdifferential of φ is a maximal monotone multivalued
operator denoted by ∂φ, which is defined by:

w ∈ ∂φ(u) ⇐⇒ φ(u) ≤ φ(z) + (w, u − z), ∀z ∈ W ,

where (·, ·) denotes the duality pairing between W ∗ and W .
In the next proposition, we reformulate the nonlinear complementarity problem (23) in terms of the subdifferential

∂φ(u).

Proposition 1. For u(τ , ·) ∈ K (τ ) and τ a.e. in (0, T ), the following conditions are equivalent:

(P1) H(u) ≤ 0 , u ≥ ψ , H(u)(u − ψ) = 0
(P2) H(u) ∈ ∂φ(u) .

Proof.

(a) Let us assume that u ∈ K (τ ) satisfies (P2) .
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• Let be ϵ ∈ H1(Ω̂) such that ϵ = 0 on Γ and ϵ > 0 in Ω̂ , so that z = u + ϵ ∈ K (τ ). As H(u) ∈ ∂φ(u), then we
have

φ(u) − φ(z) ≤ (H(u), u − z) = (H(u),−ϵ) .

Moreover, as u, z ∈ K (τ ) then φ(u) = φ(z) = 0, so that

(H(u), ϵ) ≤ 0

for any ϵ > 0. Therefore, H(u) ≤ 0 and the first condition in (P1) is satisfied.
• As u(τ , ·) ∈ K (τ ) then u ≥ ψ .
• Next, for a given τ ∈ (0, T ) we consider the set

Ω̂+(τ ) = {(x, h) ∈ Ω̂ / u(τ , x, h) > ψ(τ , x)},

which is an open set in Ω̂ . Next, we take ω ∈ H1
Γ (Ω̂) ∩ L∞(Ω̂), such that ω ̸= 0 and ∥ω∥H1

Γ (Ω̂) = 1.
For r > 0, we consider the functions

v±

r (x, h) =

{
u(τ , x, h), if (x, h) /∈ Ω̂+(τ )
u(τ , x, h) ± rω(x, h), if (x, h) ∈ Ω̂+(τ ) .

Let (x0, h0) ∈ Ω̂+(τ ), so that u(τ , x0, h0) > ψ(τ , x0) and

v±

r (x0, h0) = u(τ , x0, h0) ± rω(x0, h0) .

Then, v±
r (x0, h0) > ψ(τ , x0) for r sufficiently small.

Finally, using the definition of the subdifferential operator and the fact that v±
r and u(τ , ·) belong to K (τ ), we

obtain

(H(u),±rω)(x0, h0) ≥ 0 .

Since w ̸= 0 and r > 0, we get H(u) = 0 in Ω̂+(τ ). Therefore, the third condition in (P1) is proved.

(b) Assuming that condition (P1) is satisfied, then we need to prove that

(H(u), u − z) − φ(u) + φ(z) ≥ 0 , ∀z ∈ H1
Γ (Ω̂) .

We distinguish two cases:

• If z /∈ K (τ ) then φ(z) = +∞ and φ(u) = 0. Moreover, we have⏐⏐⏐⏐∫
Ω̂

H(u)(ψ − z)dΩ̂
⏐⏐⏐⏐ ≤ ∥H(u)∥H−1(Ω̂) ∥ψ − z∥H1(Ω̂) .

Then, the left hand side is finite and

(H(u), u − z) = (H(u), u − ψ) + (H(u), ψ − z) ,

so that

(H(u), u − z) − φ(u) + φ(z) = +∞ ≥ 0 .

• If z ∈ K (τ ) then φ(z) = φ(u) = 0, so that

φ(z) − φ(u) + (H(u), u − z) = (H(u), u − z)
= (H(u), u − ψ) + (H(u), ψ − z) = (H(u), ψ − z) ≥ 0 ,

where the last inequality follows from H(u) ≤ 0 and ψ − z ≤ 0.

Therefore, we have proved that (P2) holds. □

From Proposition 1, we obtain that problem (23) is equivalent to finding u ∈ K (τ ) a.e. τ ∈ (0, T ], such that
∂u
∂τ

+ Au + ∂φ(u) ∋ Φ(·, u) + ℓ (24)

is satisfied jointly with the initial condition and the homogeneous Neumann boundary condition at h = h∞.

3.2. Existence and uniqueness of a solution

In the previous section, the nonlinear complementarity problem (21) has been equivalently formulated in the form
(24), which fits into the framework of the article [5]. From it, we recall the following result to obtain the existence and
uniqueness of a solution for semilinear parabolic variational inequalities.
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Theorem 1 (Jeong–Park [5]). Let A be a continuous operator satisfying Garding’s inequality and f (t, x(t)) be a Lipschitz
continuous function in x(t). Assume that k ∈ L2(0, T ; V ∗) and x0 ∈ D(φ). Then, the problem⎧⎨⎩

dx(t)
dt

+ Ax(t) + ∂φ(x(t)) ∋ f (t, x(t)) + k(t), 0 < t ≤ T

x(0) = x0 ,
(25)

has a unique solution x ∈ L2(0, T ; V ) ∩ C([0, T ];H) and there exists a constant C1 depending on T such that

∥x∥L2∩C ≤ C1

(
1 + ∥x0∥H + ∥k∥L2(0,T ;V∗)

)
.

Furthermore, if k ∈ L2(0, T ;H) then the solution x belongs to W 1,2(0, T ;H) and satisfies

∥x∥W1,2(0,T ;H) ≤ C1

(
1 + ∥x0∥H + ∥k∥L2(0,T ;H)

)
.

In order to apply Theorem 1, we will consider H = L2(Ω), V = H1
Γ (Ω), and the functions f = Φ , k = ℓ. Next, we prove

the following proposition.

Theorem 2. The following statements are satisfied:

(a) The continuous operator A defined in (17) satisfies Garding’s inequality, i.e.:

(Az, z) ≥ ω1 ∥z∥2
H1
Γ (Ω̂)

− ω2 ∥z∥2
L2(Ω̂) ∀z ∈ H1

Γ (Ω̂) , (26)

for ω1 > 0 and ω2 ∈ R.
(b) ℓ ∈ L2(0, T ; L2(Ω̂)) ⊂ L2(0, T ;W ∗).
(c) Let D(φ) =

{
z ∈ H1

Γ (Ω̂) / φ(z) < ∞
}
and u0 = u(0, x, h). Then, u0 ∈ D(φ).

(d) Φ(τ , ϕ) is Lipschitz continuous in the variable ϕ, i.e.

∥Φ(τ , ϕ1) −Φ(τ , ϕ2)∥L2(Ω̂) ≤ LG ∥ϕ1 − ϕ2∥H1
Γ (Ω̂) .

Therefore, the nonlinear variational inequality (24) has a unique solution u ∈ L2(0, T ;H1
Γ (Ω̂))∩ C([0, T ]; L2(Ω̂)). In particular

u ∈ W 1,2(0, T ; L2(Ω̂)) and it satisfies

∥u∥W1,2(0,T ;L2(Ω̂)) ≤ C1

(
1 + ∥u0∥L2(Ω̂) + ∥ℓ∥L2(0,T ;H1

Γ (Ω̂))

)
. (27)

Proof.

(a) From the definition of A in (17), the operator is linear. Moreover, we have

(Au, v) =

∫
Ω̂

(−div (̂A∇u))v dΩ̂ =

∫
Ω̂

Â∇u∇v dΩ̂

≤ M ∥∇u∥L2(Ω̂) ∥∇v∥L2(Ω̂) = M ∥u∥H1
Γ (Ω̂) ∥v∥H1

Γ (Ω̂) .

Therefore, A is continuous. In order to prove Garding’s inequality, we consider that

(Au, u) =

∫
Ω̂

(−div (̂A∇u))u dΩ̂ =

∫
Ω̂

Â∇u∇u dΩ̂ ≥ λmin ∥u∥2
H1
Γ (Ω̂)

,

where λmin > 0 is the minimum of the eigenvalues of Â. Thus, by taking ω1 = λmin and ω2 = 0, we obtain (26).
(b) From the definition of ℓ in (20):

ℓ(τ , x) = −
∂v

∂τ
(τ , x) +

1
2
(σ S)2

∂2v

∂x2
(τ , x) + (r − q −

1
2
(σ S)2)

∂v

∂x
(τ , x) − f v(τ , x) ,

where v is the solution of the following complementarity problem

ℓ ≤ 0 , v ≥ G̃ , ℓ(v − G̃) = 0 ,

with G̃(x) = G(Kex).
If we consider a put option, then G̃(x) = K (1 − ex)+. As in the region v > G̃ we have ℓ = 0, we just consider the
region v = G̃, so that

ℓ(τ , x) = −
1
2
(σ S)2Kex − (r − q −

1
2
(σ S)2)Kex − fK + fKex = (q − r + f )Kex − fK .

Therefore, in this region we have

|ℓ(τ , S)| ≤ |q − r + f | Kex∞ + fK ,
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so that ℓ is bounded. In particular, we have

||ℓ||2L2(0,T ;L2(Ω̂)) =

∫ T

0

∫
Ω̂

|ℓ(τ , x)|2 dΩ̂ dτ < ∞ .

Analogously, we can proceed in the case of call options. Then, we have shown that ℓ ∈ L2(0, T ; L2(Ω̂)). Moreover,
since L2(Ω̂) ⊂ W ∗ we conclude that ℓ ∈ L2(0, T ;W ∗).

(c) It is easy to check that u(0, x, h) = u0(x, h) = 0 ≥ ψ(τ , x). Thus, u0 ∈ D(φ).
(d) For the operator Φ : [0, T ] × H1

Γ (Ω̂) → L2(Ω̂) defined in (19), we deduce that⏐⏐Φ(τ , ϕ1)(x, h) −Φ(τ , ϕ2)(x, h)
⏐⏐

=

⏐⏐⏐⏐h(v(τ , x) + ϕ1(x, h))+ − h(v(τ , x) + ϕ2(x, h))+

+ c0 ϕ1(x, h) − c0ϕ2(x, h) + c1
∂ϕ1

∂x
(x, h) − c1

∂ϕ2

∂x
(x, h)

+ c2(h)
∂ϕ1

∂h
(x, h) − c2(h)

∂ϕ2

∂h
(x, h)

⏐⏐⏐⏐
≤ |c0 + h| |ϕ1 − ϕ2| + |c1|

⏐⏐⏐⏐∂ϕ1∂x (x, h) −
∂ϕ2

∂x
(x, h)

⏐⏐⏐⏐
+ |c2(h)|

⏐⏐⏐⏐∂ϕ1∂h (x, h) −
∂ϕ2

∂h
(x, h)

⏐⏐⏐⏐ .
Then, by integration over Ω̂ , we obtain:∫

Ω̂

|Φ(τ , ϕ1)(x, h) −Φ(τ , ϕ2)(x, h)|2 dx dh

≤ |c0 + h|2
∫
Ω̂

|ϕ1(x, h) − ϕ2(x, h)|2 dx dh

+ |c1|2
∫
Ω̂

⏐⏐⏐⏐∂ϕ1∂x (x, h) −
∂ϕ2

∂x
(x, h)

⏐⏐⏐⏐2 dx dh

+
⏐⏐c̃2⏐⏐2 ∫

Ω̂

⏐⏐⏐⏐∂ϕ1∂h (x, h) −
∂ϕ2

∂h
(x, h)

⏐⏐⏐⏐2 dx dh .

In terms of the corresponding norms, we can equivalently write:

∥Φ(τ , ϕ1) −Φ(τ , ϕ2)∥L2(Ω̂) ≤ L1 ∥∇ϕ1 − ∇ϕ2∥L2(Ω̂) + c̃0 ∥ϕ1 − ϕ2∥L2(Ω̂)

≤ LG ∥ϕ1 − ϕ2∥H1
Γ (Ω̂)

where c̃0 = max {|c0 + h| : h ∈ [0, h∞]}, c̃2 = max {c2(h) : h ∈ [0, h∞]}, L1 = max {|c1| , c̄2}, LG = max
{
C0c̃0, L1

}
and C0 > 0 is the constant associated to the Poincaré–Friedrichs inequality. Then, Φ is Lipschitz continuous in the
second variable ϕ.

Thus, by using Theorem 1 we prove that the nonlinear differential problem (24) has a unique solution u ∈ W 1,2(0, T ;

L2(Ω̂)), which satisfies (27). □

Corollary 1. There exists a unique solution u ∈ Y of problem (21).

Proof. The proof follows from Proposition 1. □

4. Numerical methods

In this section, we describe the different proposed numerical techniques to compute the value of an American option
with counterparty risk. In particular, first we need to compute the American option price without counterparty risk,
which satisfies the one dimensional model (11). For this purpose, we consider the techniques introduced in [1] for one
dimensional problems. Assuming that this model has been previously solved, we will describe the numerical techniques
to approximate the solution of the nonlinear problem (9). Note that the linear case (10) can be solved by similar methods.

The numerical discretization is mainly based on the finite element method combined with the method of character-
istics. As usual in vanilla options, we consider the maximum value for the asset price S∞ as four times the strike price.
Similarly, we consider the interval [0, h∞] for the admissible spread values, where h∞ is eight times the reference value
for the spread.
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In order to compute the American option price with counterparty risk (risky derivative) by means of the finite element
method, we rewrite problem (9) in the equivalent divergence form and using the time to maturity variable τ as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1(V̂ ) =
∂V̂
∂τ

− div (A∇V̂ ) + b · ∇V̂ + f V̂ + hV̂+
≥ 0 in (0, T ] ×Ω ,

V̂ (τ , S, h) ≥ G(S) ,

L1(V̂ )(V̂ − G) = 0 ,

V̂ (0, S, h) = G(S) ,

(28)

where the matrix A is defined in (15) and the vector b is given by:

b =

⎛⎝
(
(σ S)2 − (r − q)

)
S

ρσ Sσ h

2
+

κ

1 − R
h

⎞⎠ . (29)

4.1. Method of characteristics

As for European options in [4], for the time discretization a semi-Lagrangian method – also known as the method of
characteristics – is applied (see [17]).

If we rewrite the first order derivatives with respect to the time and spatial variables in terms of the material derivative
of V̂ as follows:

DV̂
Dτ

=
∂V̂
∂τ

+
(
(σ S)2 − (r − q)

)
S
∂V̂
∂S

+

(
ρσ Sσ h

2
+

κ

1 − R
h
)
∂V̂
∂h
. (30)

Then, the first inequality in (28) becomes:

DV̂
Dτ

− div(A∇V̂ ) + f V̂ + h(V̂ )+ ≥ 0 . (31)

Let us introduce a time discretization mesh given by τ n (n = 0, 1, . . . ,NT ), with time steps ∆τ n = τ n+1
− τ n that

are not necessarily constant. By using the method of characteristics to approximate the material derivative (30), problem
(28) is approximated at each time τ n+1 by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ln
1(V̂

n+1) =
V̂ n+1

− V̂ n
◦ χn

∆τ n
− div(A∇V̂ n+1) + f V̂ n+1

+ h(V̂ n+1)+ ≥ 0 ,

V̂ 0(S, h) = 0 ,

V̂ n+1(S, h) ≥ G(S) ,

Ln
1(V̂

n+1)(V̂ n+1
− G) = 0 ,

(32)

for n = 0, 1, 2 . . . ,NT − 1, where the notation V̂ n(·) ≈ V̂ (τ n, ·) has been considered and χn(S, h) = χ ((S, h), τ n+1
; τ n).

Then, the components of the characteristics function χ are the solution of the terminal value ODE problems⎧⎨⎩
dχ1

dτ
=

((
σ S

)2
− (r − q)

)
χ1,

χ1(τ n+1) = S,

⎧⎨⎩
dχ2

dτ
=
ρσ Sσ h

2
+

κ

1 − R
χ2,

χ2(τ n+1) = h ,
(33)

which can be analytically obtained [4].
As in the finite element method we apply quadrature formulae to compute integrals, we approximate the value of

V̂ n
◦ χn in (32) at the quadrature nodes by means of a bilinear interpolation method.

4.2. Fixed point scheme

Due to the presence of the nonlinear function h, after the previous time discretization we obtain the nonlinear problem
(32). In order to solve this nonlinearity, a fixed point algorithm is proposed at each time step n. Thus, the function V̂ n+1,k+1

is obtained at each iteration k of the fixed point algorithm. More precisely, the global scheme is shown in Algorithm 1.

4.3. Boundary conditions

In Section 2 we have introduced appropriate boundary conditions for problem (9) in order to prove the existence of
a solution of (16). Next, we adapt such conditions for the numerical solution. For this purpose, as in [4], we can follow
the general theory for second order PDEs developed in [18], which includes Fichera theory [19], to obtain the required
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Algorithm 1
Let NT > 1, n = 0, ε > 0 and V̂ 0 be given
For n = 1, 2, . . . ,NT − 1:

(a) Let V̂ n+1,0
= V̂ n, k = 0, e = ε + 1

(b) For k = 0, 1, . . .

• Search V̂ n+1,k+1 solution of:(
1 +∆τ nf

)
V̂ n+1,k+1

−∆τ n div(A∇V̂ n+1,k+1)

≥ V̂ n
◦ χn

−∆τ n h (V̂ n+1,k)+ (34)

V̂ n+1,k+1(S, h) ≥ G(S)

Ln
1(V̂

n+1,k+1)(V̂ n+1,k+1
− G) = 0

• Compute the relative error e =
∥V̂ n+1,k+1

− V̂ n+1,k
∥

∥V̂ n+1,k+1∥

until e < ε.

boundary conditions for problem (34). By using this methodology, we obtain the nonhomogeneous Dirichlet boundary
condition for European options on the boundary S = S∞:

V̂ n+1,k+1
E (S∞, h) =

−∆τ n(V̂ n+1,k
E )+h + V̂ n

E ◦ χn

1 +∆τ nf
. (35)

However, as the American option value is bounded below by its exercise value, we incorporate this condition by
imposing

V̂ n+1,k+1(S∞, h) = max
(
V̂ n+1,k+1
E (S∞, h),G(S∞)

)
= max

(
−∆τ nh(V̂ n+1,k)+ + V̂ n

◦ χn

1 +∆τ nf
,G(S∞)

)
.

Also, by using [18] we can prove that boundary conditions are not required at the boundary S = 0.
Next, for the boundaries h = 0 and h = h∞ we apply the same boundary conditions we used for the continuous

problem in the mathematical analysis (Section 3). On the boundary h = 0 the spread is null, which corresponds to an
investor’s default probability equal to zero, so that the American option is free of counterparty risk. Thus, we impose

V̂ n+1,k+1(S, 0) = V n+1,k+1(S), for n = 0, 1, . . . ,NT , k = 0, 1, . . . .

On the boundary h = h∞, the following non homogeneous Neumann boundary condition is assumed:

(A∇V̂ n+1,k+1) · n⃗ = (A∇V n+1,k+1) · n⃗ ,

where the matrix A is given by (15).

4.4. Finite element discretization

In order to derive the full discretization of (34) we next apply the finite element method, so that we first state the
variational formulation of the problem. For this purpose, we introduce the convex closed subset of H1(Ω):

K̃ =
{
ϕ ∈ H1(Ω) / ϕ = V̂ n+1,k+1

D on ∂DΩ, and ϕ ≥ G(S)
}
,

where ∂DΩ denotes the part of the boundary of Ω where Dirichlet boundary conditions are posed (i.e. the boundaries
S = S∞ and h = 0). Moreover, V̂ n+1,k+1

D denotes the value of V̂ n+1,k+1 at these boundaries.
Thus, at each time step n = 0, 1, 2, . . . ,NT and each fixed point iteration k = 0, 1, . . ., the variational formulation is

given by:
Obtain V̂ n+1,k+1

∈ K̃ such that:∫
Ω

(1 +∆τ nf )V̂ n+1,k+1(ϕ − V̂ n+1,k+1) dS dh

+∆τ n
∫
Ω

A∇V̂ n+1,k+1
∇(ϕ − V̂ n+1,k+1) dS dh
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Table 1
Financial data for numerical tests.
σ S

= 0.3 σ h
= 0.2 ρ = 0.2 K = 15 T = 0.5

r = 0.3 q = 0.24 R = 0.3 κ = 0.01 f = 0.04

−

∫
Γ

∗,+
2

(A∇V n+1,k+1, n)(ϕ − V̂ n+1,k+1)∂γ ≥∫
Ω

(V̂ n
◦ χn)(ϕ − V̂ n+1,k+1) dS dh

−∆τ n
∫
Ω

h(V̂ n+1,k)+(ϕ − V̂ n+1,k+1) dS dh , ∀ϕ ∈ K̃ .

In order to describe the finite element discretization, we consider a uniform mesh in the domain Ω by first choosing
natural numbers NS > 0 and Nh > 0. Next, we define the mesh nodes (Si = i∆S, hj = j∆h), for i = 0, . . . ,NS + 1, and
j = 0, . . . ,Nh+1. The constant parameters∆S = S∞/(NS+1) and∆h = h∞/(Nh+1) denote the mesh steps in coordinates
S and h, respectively. In terms of the uniform mesh, the following piecewise linear Lagrange finite element space Wh and
its convex subset Kh are considered

Wh = {ϕh ∈ C(Ω) / ϕh|Tj∈ P1 , ∀Tj ∈ T } ,

Kh = {ϕh ∈ Wh / ϕh = V̂ n+1,k+1
D on ∂DΩ andϕh ≥ G(S)} .

The fully discretized problem consists of finding V̂ n+1,k+1
h ∈ Kh, which satisfies the Dirichlet boundary conditions and

such that:∫
Ω

(1 +∆τ nf )V̂ n+1,k+1
h

(
ϕh − V̂ n+1,k+1

h

)
dS dh

+∆τ n
∫
Ω

A∇V̂ n+1,k+1
h ∇

(
ϕh − V̂ n+1,k+1

h

)
dS dh ≥∫

Ω

(
V̂ n
h ◦ χn)(ϕh − V̂ n+1,k+1

h

)
dS dh

−∆τ n
∫
Ω

h
(
V̂ n+1,k
h

)+(
ϕh − V̂ n+1,k+1

h

)
dS dh , ∀ϕh ∈ Kh.

After the time discretization with the method of characteristics and the finite element spatial discretization, the fully
discretized problem can be written as a discrete complementarity problem in the form:⎧⎨⎩

AhV̂
n+1,k+1
h ≥ bn+1,k+1

h ,

V̂ n+1,k+1
h ≥ Ψh ,

(AhV̂
n+1,k+1
h − bn+1,k+1

h )(V̂ n+1,k+1
h − Ψh) = 0 ,

(36)

where Ψh denotes the discretization of the exercise value function, G(S), which also coincides with the value at maturity.
The fully discretized problem involves the computation of the matrix Ah and the vector bn+1,k+1

h , the coefficients of which
have been obtained by using a quadrature formula based on the midpoints of the edges of the triangles.

In order to solve problem (36), we use the augmented Lagrangian active set (ALAS) algorithm proposed by Kärkkäinen
et al. [20]. The ALAS algorithm has been previously applied in the case of American options with one stochastic factor. A
description of the algorithm when applied to other financial problems can be found in [1,21].

5. Numerical examples

In this section, we mainly show some examples about the behaviour of American options value V̂ when counterparty
risk is taken into account and the associated XVA value U . We also show the risk-free value V , when counterparty
risk is not considered. More precisely, we represent the risky value and the XVA in terms of the asset and the spread
values at the initial time. As in previous articles concerning one dimensional models for American options [1] and two
dimensional models for European ones [4], we also compare the solution obtained with the proposed numerical techniques
for PDEs models with the results computed with a proposed Monte Carlo technique for an alternative formulation based
on expectations. More precisely, as the Monte Carlo based technique we use the classical Longstaff–Schwartz method [22].

In all following tests, the financial data are taken from Table 1. For the first three of them, which are solved by the
Lagrange–Galerkin method, the uniform spatial mesh consists of 160000 nodes (NS = Nh = 400). On the other hand, we
use a nonuniform time discretization mesh with nodes τ n = (n/NT )2T (n = 0, 1, . . . ,NT ).

All the codes have been developed from scratch in Matlab and all the tests have been carried out on a computer with
Intel(R) Xeon(R) CPU E3-1241 3.50 GHz.
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Fig. 1. The American put option value (Test 1).

Fig. 2. The total value adjustment (Test 1).

5.1. Test 1: The American put option case with M = V̂

In this first example, we study an American put option sold by an investor when assuming that the mark-to-market
value is equal to the value of the risky option. The maturity time is T = 0.5 years and we consider NT = 700 time
steps. Fig. 1 shows the American option value with the counterparty risk (left side) and the risk-free option value (right
side). The difference between them is the XVA, which is represented in Fig. 2. We can observe that the XVA increases, in
absolute terms, when the intensity of default from the investor (spread) increases. We also notice how the XVA decreases
in the in-the-money area and the value becomes null in the exercise region.

Next, Fig. 3 shows the exercise region associated with the American option, either when considering counterparty risk
(left) or without considering it (right). In the first case, the spread value is 0.25. Note that the exercise region is slightly
larger when the intensity of default (spread) increases.

The presence of a nonlinear PDE and a complementarity formulation implies that the theoretical proof of the global
convergence of the proposed numerical methods seems a very difficult open problem. Therefore, in order to illustrate
the practical convergence of the methods we include Table 2. For this purpose, we used uniform time meshes and the
empirical convergence ratio is given by:

CR =

V̂h − V̂h/2


∞V̂h/2 − V̂h/4


∞

,

from which we compute the experimental order of convergence p = log2(CR).
First, we mention that we have not observed any stability problems. Moreover, as illustrated in Table 2 we obtain a first

order convergence, which is the expected one as we use piecewise linear finite element and a first order semi-Lagrangian
scheme for the time discretization.

Next, in Table 3 we compare American option prices when using constant and stochastic spreads for a given asset
value S = 18. In the case of constant spreads, we have taken the different constant values of h indicated in Table 3 and
we have applied the model and the methods in [1] for American options with constant spreads. As illustrated by the table,
in the case of constant spreads the variation of option prices with respect to the spread h is significantly smaller than
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Fig. 3. Exercise regions (white) of Test 1.

Table 2
The experimental order of convergence for American put option (Test 1).
∆S = ∆h ∆τ CR p

2−2 1/12
2−3 1/24
2−4 1/48 1.4599 0.5458
2−5 1/96 1.5003 0.5853
2−6 1/192 1.5609 0.6424
2−7 1/384 1.6430 0.7163
2−8 1/768 2.0240 1.0172

Table 3
Comparison between American option values with constant and stochastic spreads, with
M = V̂ (Test 1). The parameter values of the problem are: S = 18, K = 15, T = 0.5,
σ S

= 0.3, σ h
= 0.2, ρ = 0.2, r = 0.3, q = 0.24, κ = 0.01, R = 0.3, f = 0.04.

h MEF MEF
constant spread stochastic spread

0.00 0.382645129 0.388721923
0.05 0.375203220 0.322444826
0.10 0.367972539 0.284762774
0.15 0.360960560 0.266327122
0.20 0.354145830 0.254925921

in the case of stochastic spreads. Therefore, the assumption of stochastic spreads shows more sensitivity of the option
price with respect to the spread. For the one dimensional problem, a finite element mesh with 401 nodes and 700 time
steps has been used, while for the two dimensional model a mesh with 401 × 401 nodes and 700 time steps has been
considered.
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Fig. 4. The total value adjustment (Test 2).

5.2. Test 2: The American put option case with long maturity and M = V̂

In this section, an American put option sold by an investor is also considered. However, in this second test we choose a
longer maturity given by T = 2 years, and we take NT = 1500 time steps. As expected, in comparison with the American
option with a shorter maturity of Test 1, the XVA (Fig. 4) becomes more negative due to a longer exposure to the risk.
However, the behaviour of the total value adjustment is similar in both cases.

By comparing the exercise regions (Fig. 5) with those obtained in Test 1, we observe that for a longer maturity the
exercise regions become smaller. Nevertheless, we obtain a similar behaviour in both cases, in the sense that the exercise
region for a risky option is larger than for a risk-free one.

5.3. Test 3: The American put option case with M = V

We show the behaviour of the American option value when the mark-to-market value is the risk-free derivative value.
As in Test 1, the maturity time is T = 0.5 years and NT = 700, analogously to Test 1, and we can observe a similar
behaviour to the one found in that case. Moreover, the value of the option (Fig. 6) and the adjustment value (Fig. 7) are
also similar, being slightly more negative for M = V̂ .

5.4. Test 4: comparison with Monte Carlo simulations

For the case of American options with constant spread (therefore, with just one stochastic factor), in [2] we have
also used a formulation based on expectations and its numerical simulation by the Longstaff–Schwartz algorithm. In the
present work, we have extended this Monte Carlo like technique to the case of two stochastic factors in order to compare
the obtained results with those from the corresponding complementarity problems formulation here proposed.

Note that in [2] we have solved the linear problem (for which the mark-to-market value is M = V ) by two different
simulation algorithms, with an inner Monte Carlo algorithm or using interpolation techniques. Both methods led to
similar results, although we have observed that the elapsed CPU time is higher when using the inner iteration algorithm.
Therefore, in the present case with two stochastic factors we only compute the XVA when M = V by extending the
method that uses interpolation techniques. When the mark-to-market value is M = V̂ we also extend the technique
developed for the case of one stochastic factor.

By extending these Monte Carlo techniques to stochastic spreads, in the present work we have also computed two
estimators (lower and upper) of the XVA. From these computations, we can observe in Tables 4 and 5 that the XVA values
obtained by solving the nonlinear and linear complementarity problems, respectively, belong to the corresponding 99%
confidence interval generated with Monte Carlo techniques.

Numerical solutions of complementarity problems have been computed with a mesh of 201 × 201 nodes and 500 time
steps. The elapsed time for such simulation is 55822 seconds. For the Longstaff–Schwartz method, we have implemented
NP = 1000 paths and NT = 1000 time instants in the nonlinear case, and only NP = 500 paths in the linear case. In both
problems, we have employed three bases [2].

Monte Carlo computing of the risk-free option, which is previous to interpolation, requires 137160 s on a one-
dimensional mesh of 100 initial prices, which states the advantage of pricing this kind of options by solving the
complementarity problems.
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Fig. 5. Exercise regions for T = 2 (Test 2).

Fig. 6. The American put option value, M = V (Test 3).

6. Conclusions

In this article we propose PDEs models for pricing American options including counterparty risk and two stochastic
factors corresponding to the asset price and one stochastic spread. The presence of an early exercise in American options
leads to formulations in terms of linear and nonlinear complementarity problems, depending on the chosen value for
the mark-to-market. Unlike European options, for which the XVA can be directly obtained as the solution of a PDEs
problem, the inequality constraints arising for American options require that the XVA has to be obtained as the difference
between the risky and the risk-free American option values, i.e. U = V̂ − V , which in turn are solutions of respective
complementarity problems.
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Fig. 7. The total value adjustment (Test 3).

Table 4
The American option value with counterparty risk and M = V̂ . The parameter values of the problem
are: K = 15, T = 0.5, σ S

= 0.3, σ h
= 0.2, ρ = 0.2, r = 0.3, q = 0.24, κ = 0.01, R = 0.3, f = 0.04.

S h Finite elements Lower estimator Upper estimator 99% confidence interval

0.0 0.00 15.00000000 14.70298010 15.26299737 (14.70298010 , 15.28840736)
27.0 0.014580440 0.00137214 0.02527334 (−0.00022466 , 0.02730209)

3.0

0.05

12.00000000 11.99924144 12.14867741 (11.99700274 , 12.16485122)
9.0 5.999999999 5.99442104 6.33579807 (5.98367098 , 6.36138141)

15.0 1.308562527 1.00503811 1.42993109 (0.88792215 , 1.46313845)
24.0 0.039359070 0.01276533 0.14500936 (0.00370968 , 0.15321851)

9.0

0.10

5.999999999 6.00132959 6.31694827 (5.99355616 , 6.34254985)
12.0 3.064549102 2.92497307 3.49060126 (2.78070521 , 3.52303705)
15.0 1.190349256 1.09738339 1.42209030 (0.97520402 , 1.45608435)
18.0 0.381342801 0.26845411 0.68720345 (0.20919729 , 0.71412533)
27.0 0.007162736 0.00244516 0.03743066 (−0.00000067 , 0.04178265)

18.0
0.15

0.330425270 0.26696364 0.63732297 (0.20669270 , 0.66098768)
21.0 0.085487636 0.07440162 0.43350934 (0.04256772 , 0.45153917)
24.0 0.020619582 0.01324925 0.25670856 (0.00186524 , 0.26792935)

21.0
0.20

0.071796388 0.06151416 0.45182906 (0.03261546 , 0.47117011)
27.0 0.003421215 0.00099960 0.11406895 (−0.00049202 , 0.11881908)
30.0 0.000742742 0.00009576 0.00089707 (−0.00014309 , 0.00258554)

Existence and uniqueness of a solution for the complementarity problem associated to the nonlinear PDE are studied
through the theory of nonlinear functional differential problems, which can be applied to parabolic variational inequalities.

In order to compute the risky derivative value, a characteristics-finite element method is combined with an augmented
Lagrangian active set technique to handle the additional inequality constraints involved in the formulation. Numerical
examples are presented to illustrate and discuss the behaviour of the models and the proposed numerical methods.

Additionally, we can express the American option price in terms of expectations involving optimal stopping times and
nonlinear integral relations. In the case of constant intensities of default, this approach has been previously addressed
in [2]. In the present article we have extended this methodology in order to compute the American option value when
stochastic intensities of default are considered. The proposed techniques involve the computation of lower and upper
estimators to build up a confidence interval for the American option price. These estimators are obtained by extending
some previous results from [22] and [23].

In this way, we can compare solutions obtained from complementarity problems and from formulations in terms
of expectations. The agreement between both solutions is illustrated by numerical results. Comparing the elapsed time
consumed by the different methods used to obtain the XVA, we appreciate that Monte Carlo methods require a larger
computational time than the finite element techniques.

Finally, we would like to emphasize that this last comparison also illustrates the interest in the statement of well posed
PDEs models for the pricing of American options with counterparty risk and two factors, as well as the advantage of the
numerical solution of the PDEs with respect to other alternative approaches.
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Table 5
The American option value with counterparty risk and M = V . The parameter values of the problem
are: K = 15, T = 0.5, σ S

= 0.3, σ h
= 0.2, ρ = 0.2, r = 0.3, q = 0.24, κ = 0.01, R = 0.3, f = 0.04.

S h Finite elements Lower estimator Upper estimator 99% confidence interval

0.0 0.00 15.00000000 14.76015652 15.31754947 (14.60199696 , 15.37917273)
27.0 0.014580440 0.00157526 0.03789128 (−0.00047226 , 0.04096308)

3.0

0.05

12.00000000 11.92717148 14.30577857 (11.80632068 , 14.60534869)
9.0 5.999999999 5.77587526 9.03605748 ( 5.60018068 , 9.24791036)

15.0 1.310644569 1.07192257 3.11079144 ( 0.94555737 , 3.23919041)
24.0 0.039554986 0.01108702 0.43742176 ( 0.00046278 , 0.45329951)

9.0

0.10

5.999999999 5.63823578 8.49773982 ( 5.47119356 , 8.68419050)
12.0 3.066098200 2.78677451 8.07659200 ( 2.61439440 , 8.32628955)
15.0 1.194868136 1.12406653 2.77078546 ( 0.99821874 , 2.89558922)
18.0 0.384468906 0.25563850 1.92442123 ( 0.19352922 , 2.00047634)
27.0 0.007288464 0.00040263 0.02285157 (−0.00033044 , 0.02383561)

18.0
0.15

0.335480535 0.26140404 1.70487679 ( 0.20130499 , 1.77073497)
21.0 0.087669807 0.06821849 1.09391591 ( 0.03798815 , 1.13640329)
24.0 0.021348419 0.00759706 0.52814862 ( 0.00026779 , 0.54853994)

21.0
0.20

0.074863949 0.04667367 0.55078911 ( 0.02193558 , 0.57228007)
27.0 0.003719381 0.00128050 0.01824716 (−0.00005382 , 0.02095550)
30.0 0.000821669 0.00002521 0.00040568 (−0.00003973 , 0.00089052)
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