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Abstract
In this paper, we investigate a fully nonlinear evolutionary Hamilton–Jacobi–Bell-
man (HJB) parabolic equation utilizing the monotone operator technique. We con-
sider the HJB equation arising from portfolio optimization selection, where the goal 
is to maximize the conditional expected value of the terminal utility of the port-
folio. The fully nonlinear HJB equation is transformed into a quasilinear parabolic 
equation using the so-called Riccati transformation method. The transformed para-
bolic equation can be viewed as the porous media type of equation with source term. 
Under some assumptions, we obtain that the diffusion function to the quasilinear 
parabolic equation is globally Lipschitz continuous, which is a crucial requirement 
for solving the Cauchy problem. We employ Banach’s fixed point theorem to obtain 
the existence and uniqueness of a solution to the general form of the transformed 
parabolic equation in a suitable Sobolev space in an abstract setting. Some financial 
applications of the proposed result are presented in one-dimensional space.
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1 Introduction

We investigate the existence and uniqueness of a solution � = �(x, �) to the Cauchy 
problem for the nonlinear parabolic PDE

 * Daniel Ševčovič 
 sevcovic@fmph.uniba.sk

1 Comenius University in Bratislava, Mlynská dolina, 84248 Bratislava, Slovakia

http://orcid.org/0000-0002-1488-7736
http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-021-00468-w&domain=pdf


694 C. I. Udeani, D. Ševčovič

1 3

where � ∈ (0, T), x ∈ ℝ
d, d ≥ 1 . The diffusion function � = �(x, �,�) is assumed to 

be a globally Lipschitz continuous and strictly increasing function in the �-variable. 
An example of such a Lipschitz continuous function �(x, �,�) is the value function 
of the following parametric optimization problem:

where �, �2 are given C1 functions and △ ⊂ ℝ
n is a compact decision set. Depend-

ing on the structure of the decision set △ , the function � is C1,1 smooth if △ is a 
convex set. But it can be only C0,1 smooth if △ is not connected.

Problems related to nonlinear parabolic equation arise in several mathemati-
cal models of applied sciences, such as chemical reactions, population dynamic, 
economics, and finance, have attracted great attentions. Recently, there are many 
results about existence, uniqueness, blowing-up, global existence, and other prop-
erties of parabolic equations, see for example Wu et al. [20]. Some of the authors 
who studied parabolic equations used the method of upper and lower solution, see 
Pao and Ruan [21]. Following a different approach, we utilize fixed point theo-
rem, Fourier transform, and monotone operator technique with some shift/pertur-
bation, to study the existence and uniqueness of solution to the Cauchy problem 
for the nonlinear parabolic equation in an abstract settings.

The motivation for studying nonlinear parabolic equation of the form (1) in 
one dimensional space (i.e., d = 1 ) arises from dynamic stochastic programming. 
The fully nonlinear Hamilton–Jacobi–Bellman (HJB) equation describing optimal 
portfolio selection strategy is represented by the following fully nonlinear para-
bolic equation:

where x ∈ ℝ, t ∈ [0, T) . A solution V = V(x, t) to the parabolic Eq. (4) is subject 
to the terminal condition V(x, T) = u(x) . Following the papers by Kilianová and 
Ševčovič [6–8], the Hamilton–Jacobi–Bellman equation of the form (4) arises from 
dynamic stochastic programming, where a goal is to maximize the conditional 
expected value of the terminal utility of the portfolio:

on a finite time horizon [0, T]. Here, u ∶ ℝ → ℝ is a given increasing terminal util-
ity function and x0 is a given initial state condition of the process {x�

t
} at t = 0 . The 

(1)��� − Δ�(�,�) = g0(�,�) + ∇ ⋅ g1(�,�),

(2)�(⋅, 0) = �0,

(3)

𝛼(x, 𝜏,𝜑) = min
�∈△

(
−𝜇(x, t,�) +

𝜑

2
𝜎(x, t,�)2

)
, 𝜏 ∈ (0, T), x ∈ ℝ

d,𝜑 > 𝜑min ,

(4)�tV +max
�∈△

(
�(x, t,�) �xV +

1

2
�(x, t,�)2 �2

x
V
)
= 0 ,

(5)V(x, T) = u(x),

(6)max
�|[0,T)

�
[
u(x�

T
) || x�0 = x0

]
,
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underlying stochastic process {x�
t
} with a drift �(x, t,�) and volatility �(x, t,�) is 

assumed to satisfy the following Itô’s stochastic differential equation (SDE):

where the control process {�t} is adapted to the process {xt} . Here, {Wt} is the stand-
ard one-dimensional Wiener process. We assume the control parameter � belongs to 
a given compact subset △ in ℝn . As an example, one can consider a compact convex 
simplex △ ≡ S

n = {� ∈ ℝ
n | � ≥ �, �T� = 1} ⊂ ℝ

n , where � = (1,… , 1)T ∈ ℝ
n.

If we introduce the value function

Then, following Bertsekas [2], the value function V = V(x, t) satisfies the fully non-
linear Hamilton–Jacobi–Bellman (HJB) parabolic Eq. (4) and V(x, T) ∶= u(x).

Several attempts have been made for solving the HJB Eq. (4). In this paper, we 
concentrate on the case when the utility function u is increasing, as a consequence, 
𝜕xV(x, 𝜏) > 0 . The analysis of solutions to a fully nonlinear parabolic equation mod-
eling the problem of optimal portfolio construction was investigated by Macová and 
Ševčovič [12]. They showed how the problem of optimal stock to bond proportion 
in the management of a pension fund portfolio could be formulated in terms of the 
solutions to the HJB equation. Utility maximization problem for an investment-con-
sumption portfolio when the current utility depends on the wealth process - regular-
ity of solutions to the HJB equation was investigated by Federicol et al. [4]. They 
defined a dual problem and treated it by means of dynamic programming, indicat-
ing that the viscosity solutions of the associated HJB equation belong to a class of 
smooth function. Ishimura and Ševčovič [5] constructed and analyzed solutions to 
the class of Hamilton–Jacobi–Bellman Eq. (4) with range bounds on the optimal 
response variable. They constructed monotone traveling wave solutions and identi-
fied parametric regions for which the traveling wave solutions have positive or nega-
tive wave speed. Abe and Ishimura [1] employed the Riccati transformation method 
for solving the full nonlinear HJB equations. The so-called Riccati transformation 
was later studied and generalized by Kilianová and Ševčovič [6]. They investigated 
solutions of a fully nonlinear HJB equation for a constrained dynamic stochastic 
optimal allocation problem. However, no attempt has been made in solving the fully 
nonlinear Hamilton–Jacobi–Bellman parabolic equation arising in portfolio opti-
mization in a suitable Sobolev space using the monotone operator technique. The 
monotone operator method is essential because it does not only give constructive 
proof for existence theorems, but it also leads to various comparison results, which 
are effective tools for studying qualitative properties of solutions.

In this paper, inspired by the above studies, we investigate the existence and unique-
ness of a solution to the Cauchy problem for the nonlinear parabolic PDE (1) in suit-
able Sobolev spaces using the monotone operator approach. Employing the so-called 
Riccati transformation with some shift in the underlying operator, the HJB Eq. (4) can 
be transformed to the Cauchy problem for the nonlinear PDE (1). We first show that 
the underlying abstract operator to the proposed Cauchy problem is strongly monotone 

(7)dx�
t
= �(x�

t
, t,�t)dt + �(x�

t
, t,�t)dWt ,

(8)V(x, t) ∶= sup
�|[t,T)

�
[
u(x�

T
)|x�

t
= x

]
.
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in a suitable Sobolev space. Employing the monotonicity of the operator, Banach fixed 
point theorem, and Fourier transform approach, we obtain the existence and uniqueness 
of a solution to the Cauchy problem (1) in an abstract setting.

The remainder of the paper is organized as follows. In order to motivate our study 
of Eq. (1), we consider the fully nonlinear HJB partial differential Eq. (4). In Sect. 2, 
we present the existence and uniqueness result, in an abstract setting, of a solution 
to the Cauchy problem (1) in Theorem 2. The proof of the proposed theorem in a 
suitable Sobolev space is based on the monotone operator argument with the com-
bination of Banach’s fixed point and Fourier transforms techniques. Furthermore, 
we deduce smoothness properties of solutions. In Sect. 3, we introduce the so-called 
Riccati transformation of the HJB parabolic equation and illustrate its application 
to optimal portfolio selection problem. We investigate the relationship between the 
fully nonlinear HJB equation and transformed quasilinear Cauchy equation. The 
transformed function can be interpreted as the coefficient of the relative risk aver-
sion of an investor. We also present the properties of the value function as a diffusion 
function. The aim is to show that the value function is globally Lipschitz continuous 
and strictly increasing, which are crucial requirements for obtaining the existence 
and uniqueness of a solution to the transformed Cauchy equation. The point-wise 
a-priori estimates of solutions, their existence and uniqueness are investigated. In 
Sect. 4, we present some numerical examples to illustrate the proposed result in the 
one-dimensional space. Finally, Sect. 5 contains the conclusion.

2  Existence and uniqueness of a solution to the Cauchy problem

We begin with the definition of the function spaces we will work with. Let 
V ↪ H ↪ V ′ be a Gelfand triple, where

is a Hilbert space endowed with the inner product (f , g) = ∫
ℝd f (x)g(x)dx . The 

Banach spaces V ,V ′ are defined as follows:

where the Sobolev spaces Hs(ℝd) are defined by means of the Fourier transform

endowed with the norm ‖f‖2
Hs = ∫

ℝd (1 + �𝜉�2)s�f̂ (𝜉)�2d𝜉 , where |�| = (�2
1
+⋯ + �2

d
)1∕2

Let us introduce the linear operator A ∶ V → V � as follows:

H = L2(ℝd) = {f ∶ ℝ
d
→ ℝ, ‖f‖2

L2
= ∫

ℝd

�f (x)�2dx < ∞}

V = H1(ℝd), V � = H−1(ℝd),

f̂ (𝜉) =
1

(2𝜋)d∕2 ∫ℝd

e−ix⋅𝜉 f (x)dx, 𝜉 = (𝜉1, 𝜉2,… , 𝜉d)
T ∈ ℝ

d,

Hs(ℝd) = {f ∶ ℝ
d
→ ℝ, (1 + |𝜉|2)s∕2 f̂ (𝜉) ∈ L2(ℝd)}, s ∈ ℝ

A� = � − Δ� ,
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Note that A is a self-adjoint operator in the Hilbert space H = L2(ℝd) having the 
Fourier transform representation:

Furthermore, the fractional powers of A can be defined as follows: 
�As𝜓(𝜉) = (1 + |𝜉|2)s�̂�(𝜉), s ∈ ℝ . In particular,

and A−1∕2 is a self-adjoint operator in the Hilbert space H = L2(ℝd) . Moreover, 
A−1 = A−1∕2A−1∕2.

In the sequel, we shall denote the duality pairing between the spaces V and V ′ 
by ⟨., .⟩ , i.e., the value of a functional F ∈ V � at u ∈ V  is denoted by ⟨F, u⟩ . We 
have the following definitions.

Definition 1 [19] An operator (in general nonlinear) B ∶ V → V � is said to be 

 (i) monotone if 

 (ii) strongly monotone if there exists a constant C > 0 such that 

 (iii) hemicontinuous if for each u, v ∈ V  , the real-valued function t ↦ B(u + tv)(v) 
is continuous.

Theorem 1 [18, 19] Let V be a separable reflexive Banach space, dense and continu-
ous in a Hilbert space H which is identified with its dual, so V ↪ H ↪ V ′ . Let p ≥ 2 
and set V = Lp((0, T);V). Assume a family of operators A(𝜏, .) ∶ V → V �, 0 ≤ 𝜏 < T  , 
is given such that

 (i) for each � ∈ V  , the function A(.,�) ∶ [0, T] → V � is measurable,
 (ii) for a.e � ∈ [0, T] , the operator A(�, .) ∶ V → V � is monotone, hemicontinu-

ous and bounded by ‖A(𝜏,𝜑)‖ ≤ C(‖𝜑‖p−1 + k(𝜏)),𝜑 ∈ V , 0 ≤ 𝜏 < T , where 
k ∈ Lp

�

(0, T),
 (iii) and there exists 𝜆 > 0 such that ⟨A(𝜏,𝜑),𝜑⟩ ≥ 𝜆‖𝜑‖p − k(𝜏),𝜑 ∈ V , 0 ≤ 𝜏 < T .

Then for each f̂ ∈ V
� and �0 ∈ H , there exists a unique solution � ∈ V of the 

Cauchy problem

In what follows, we consider the spaces V = L2((0, T);V) , H = L2((0, T);H) and 
V
� = L2((0, T);V �) , i.e., p = 2 . So we have the Gelfand triple V ↪ H ↪ V

′ , where H 
is a Hilbert space endowed with the norm

�A𝜓(𝜉) = (1 + |𝜉|2)�̂�(𝜉).

�A±1∕2𝜓(𝜉) = (1 + |𝜉|2)±1∕2�̂�(𝜉),

⟨B(u) − B(v), u − v⟩ ≥ 0, ∀ u, v ∈ V ,

⟨B(u) − B(v), u − v⟩ ≥ C‖u − v‖2
V
, ∀ u, v ∈ V ,

𝜕𝜏𝜑(𝜏) +A(𝜏,𝜑(𝜏)) = f̂ (𝜏) inV�, 𝜑(0) = 𝜑0.
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For a given value �min , we denote D = ℝ
d × (0, T) × (�min,∞).

Theorem  2 Assume that the above settings on H and V hold. Let 
g0, g1j ∶ [0, T] × H → H, j = 1,… , n, be globally Lipschitz continuous func-
tions. Suppose � ∈ C0,1(D) is such that there exist constants 𝜔, L, L0 > 0 such that 
0 < 𝜔 ≤ 𝛼�

𝜑(x, 𝜏,𝜑) ≤ L , |∇x�(x, �,�)| ≤ p(x, �) + L0|�| , �(x, �, 0) = h(x, �) for a.e. 
(x, �,�) ∈ D and p, h ∈ L∞((0, T);H) . Then for any T > 0 and 𝜑0 ∈ H, there exists 
a unique solution � ∈ V of the Cauchy problem

P r o o f: Recall that H = L2(ℝd) and V = H1(ℝd) , its dual space being 
V � = H−1(ℝd) . Let the scalar products in V and V ′ be defined as follows:

respectively. Let us define the operator A(�, ⋅) ∶ V → V � by

Under the assumption made on the function � we can conclude that the map-
ping � ↦ �(⋅, �,�) maps V into V. Indeed, if � ∈ V  and � = �(⋅, �,�) then 
�(x) = �(x, �,�(x)) − �(x, �, 0) + �(x, �, 0) and so

Thus, ∫
ℝd ��(x)�2dx ≤ 2 ∫

ℝd L
2��(x)�2 + �h(x, �)�2dx ≤ 2L2‖�‖2

H
+ 2‖h(⋅, �)‖2

H
 . 

Since ∇�(x) = ∇x�(x, �,�(x)) + ��
�(x, �,�(x))∇�(x) , we have

because p, h ∈ L∞((0, T);H) . Consequently, � ∈ V  , as claimed.
Next, we show that the operator A is monotone in the space V ′ . Accord-

ing to (22) we have (�(x, �,�1) − �(x, �,�2))(�1 − �2) ≥ �(�1 − �2)
2 , for any 

�1,�2 ≥ �min, x ∈ ℝ, � ∈ [0, T].

‖�‖2
H
= ∫

T

0

‖�(�)‖2
H
d�, ∀� ∈ H.

(9)��� + A�(⋅, �,�) = g0(�,�) + ∇ ⋅ g1(�,�), �(0) = �0.

(f , g)V = (A1∕2f ,A1∕2g)H = (Af , g)H , (f , g)V � = (A−1∕2f ,A−1∕2g)H = (A−1f , g)H ,

⟨A(�,�),�⟩ = (A−1A�(⋅, �,�),�)H = (�(⋅, �,�),�)H .

|�(x)| ≤ (max
�

��
�(x, �,�))|�(x)| + |h(x, �)| ≤ L|�(x)| + |h(x, �)|.

‖𝜂‖2
V
=�

ℝd

�𝜂(x)�2 + �∇𝜂(x)�2dx

≤2�
ℝd

L2�𝜑(x)�2 + �h(x, 𝜏)�2dx + 2�
ℝd

�p(x, 𝜏)�2 + L2
0
�𝜑(x)�2dx + 2�

ℝd

L2�∇𝜑(x)�2dx
≤2(L2‖𝜑‖2

V
+ ‖h(⋅, 𝜏)‖2

H
+ ‖p(⋅, 𝜏)‖2

H
+ L2

0
‖𝜑‖2

H
) < ∞,



699

1 3

Application of maximal monotone operator method for solving...

This implies that the operator A(�, ⋅) is strongly monotone.
For a given �̃� ∈ H , we have f̂ ∈ V

� , where f̂ (𝜏) = g0(𝜏, �̃�(⋅, 𝜏)) + ∇ ⋅ g1(𝜏, �̃�(⋅, 𝜏)) , 
because g0, g1j ∶ [0, T] × H → H are globally Lipschitz continuous, H ↪ V ′ , and 
the operator ∇ maps H into V ′ . The hemicontinuity, boundedness, and coercivity of 
the operator A follows from the assumption that � is globally Lipschitz continuous 
and strictly increasing.

Applying Theorem 1 we deduce the existence of a unique solution � ∈ V such 
that

where A(�,�) = A�(⋅, �,�) . Next, we multiply (10) by A−1 to obtain

where f = f (𝜏, �̃�) = A−1 f̂ (𝜏). For � ∈ [0, T] , we denote 
f̃ (�̃�) = A−1∕2 f̂ (𝜏) = A−1∕2g0(𝜏, �̃�) + A−1∕2

∑d

j=1
𝜕xjg1j(𝜏, �̃�) . For the Fourier trans-

form of f̃  , we have

Let 𝛽 > 0 be the Lipschitz constant of the mappings g0, g1j, j = 1,… , d . Using Par-
seval’s identity and Lipschitz continuity of g0, g1j in H, we obtain, for �̃�1, �̃�2 ∈ H,

where 𝛽2 = 2(1 + d)𝛽2 . Hence, we obtain

⟨A(�,�1) −A(�,�2),�1 − �2⟩ = (�(⋅, �,�1) − �(⋅, �,�2),�1 − �2)

= �
ℝd

(�(x, �,�1(x)) − �(x, �,�2(x)))(�1(x) − �2(x))dx

≥ �
ℝd

���1(x) − �2(x)�2dx = �‖�1 − �2‖2H .

(10)𝜕𝜏𝜑 +A(𝜏,𝜑) = f̂ (𝜏), 𝜑0 ∈ H,

(11)��A
−1� + �(⋅, �,�) = f ,

�̃f (�̃�)(𝜉) =
1

(1 + |𝜉|2)1∕2
�g0(𝜏, �̃�)(𝜉) +

d∑
j=1

(−i𝜉j)

(1 + |𝜉|2)1∕2
�g1j(𝜏, �̃�)(𝜉).

‖f̃ (�̃�1) − f̃ (�̃�2)‖2H = ‖�f̃ (�̃�1) −
�f̃ (�̃�2)‖2H = �

ℝd

��f̃ (�̃�1)(𝜉) −
�f̃ (�̃�2)(𝜉)�2d𝜉

≤ 2�
ℝd

1

1 + �𝜉�2 �
�g0(𝜏, �̃�1)(𝜉) − �g0(𝜏, �̃�2)(𝜉)�2

+

d�
j=1

�𝜉�2
1 + �𝜉�2 �

�g1j(𝜏, �̃�1)(𝜉) − �g1j(𝜏, �̃�2)(𝜉)�2d𝜉

≤ 2‖ �g0(𝜏, �̃�1) −
�g0(𝜏,𝜑2)‖2H + 2

d�
j=1

‖ �g1j(𝜏, �̃�1) −
�g1j(𝜏,𝜑2)‖2H

= 2‖g0(𝜏, �̃�1) − g0(𝜏, �̃�2)‖2H + 2

d�
j=1

‖g1j(𝜏, �̃�1) − g1j(𝜏, �̃�2)‖2H
≤ 𝛽2‖�̃�1 − �̃�2‖2H ,
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Suppose �1,�2 ∈ H are such that 𝜑1 = F(𝜑1) and 𝜑2 = F(𝜑2). Here, the map 
F ∶ H → H is defined by 𝜑 = F(�̃�), where � is a solution to the Cauchy problem

Letting 𝜑 = 𝜑1 − 𝜑2 = F(𝜑1) − F(𝜑2), we obtain

Next, we multiply (13) by �1 − �2 and take the scalar product in the space H to 
obtain

Using (12) and the fact that A−1∕2 is self-adjoint in H, then (14) gives

This implies

Then, integrating on a small time interval [0,  T] from 0 to t and noting that 
�1(0) = �2(0) = �0 , we obtain

Taking the maximum over � ∈ [0, T]  and using the fact that for any 
a, b ∈ ℝ, ab ≤ 1

2
a2 +

1

2
b2 , we obtain

(12)‖f̃ (�̃�1) − f̃ (�̃�2)‖H ≤ 𝛽‖�̃�1 − �̃�2‖H .

𝜕𝜏A
−1𝜑 + 𝛼(⋅, 𝜏,𝜑) = f (𝜏, �̃�), 𝜑(0) = 𝜑0.

(13)𝜕𝜏A
−1(𝜑1 − 𝜑2) + 𝛼(⋅, 𝜏,𝜑1) − 𝛼(⋅, 𝜏,𝜑2) = f (�̃�1) − f (�̃�2).

(14)
(𝜕𝜏A

−1(𝜑1 − 𝜑2),𝜑1 − 𝜑2) + (𝛼(⋅, 𝜏,𝜑1) − 𝛼(⋅, 𝜏,𝜑2),𝜑1 − 𝜑2)

= (f (𝜏, �̃�1) − f (𝜏, �̃�2),𝜑1 − 𝜑2).

1

2

d

d𝜏
‖A−1∕2(𝜑1 − 𝜑2)‖2H + 𝜔‖𝜑1 − 𝜑2‖2H
≤ ⟨f (𝜏, �̃�1) − f (𝜏, �̃�2),𝜑1 − 𝜑2⟩ = ⟨A1∕2(f (𝜏, �̃�1) − f (𝜏, �̃�2)),A

−1∕2(𝜑1 − 𝜑2)⟩
≤ ‖A1∕2(f (𝜏, �̃�1) − f (𝜏, �̃�2))‖H‖𝜑1 − 𝜑2‖V � = ‖f̃ (�̃�1) − f̃ (�̃�2)‖H‖𝜑1 − 𝜑2‖V �

≤ 𝛽‖𝜑1 − 𝜑2‖H‖𝜑1 − 𝜑2‖V � .

1

2

d

d𝜏
‖𝜑1 − 𝜑2‖2V � + 𝜔‖𝜑1 − 𝜑2‖2H ≤ 𝛽‖𝜑1 − 𝜑2‖H‖𝜑1 − 𝜑2‖V � .

1

2
‖𝜑1(𝜏) − 𝜑2(𝜏)‖2V � + 𝜔�

𝜏

0

‖𝜑1(s) − 𝜑2(s)‖2Hds

≤ 𝛽 �
𝜏

0

‖𝜑1(s) − 𝜑2(s)‖H‖𝜑1(s) − 𝜑2(s)‖V �ds

≤ 𝛽 max
𝜏∈[0,T]

‖𝜑1(𝜏) − 𝜑2(𝜏)‖V � �
T

0

‖𝜑1(𝜏) − 𝜑2(𝜏)‖Hd𝜏.
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Using the Cauchy-Schwartz inequality, we obtain 𝜔 ∫ T

0
‖𝜑

1
(𝜏) − 𝜑

2
(𝜏)‖2

H
d𝜏 ≤ 𝛽2

2

∫ T

0
d𝜏 ∫ T

0
‖𝜑

1
(𝜏) − 𝜑

2
(𝜏)‖2

H
d𝜏 =

𝛽2T

2
∫ T

0
‖𝜑

1
(𝜏) − 𝜑

2
(𝜏)‖2

H
d𝜏. This implies that

Thus, for T sufficiently small such that 𝛽
2T

2𝜔
< 1 , the operator F is a contraction on 

the space H ; therefore by the Banach fixed point theorem, F has a unique fixed point 
in H . It is worth noting that 𝛽  and � are given such that they are independent of T. 
If T > 0 is arbitrary, then we can apply a simple continuation argument. Indeed, if 
the solution exists in (0, T0) interval with 𝛽

2T0

2𝜔
< 1 , then starting from the initial con-

dition �0 = �(T0∕2) we can continue the solution � from the interval (0, T0) over 
the interval (0, T0) ∪ (T0∕2, T0∕2 + T0) ≡ (0, 3T0∕2) . Continuing in this manner, we 
obtain the existence and uniqueness of a solution � ∈ H defined on the time interval 
(0, T).

Finally, the solution belongs to the space V because the right-hand side, i.e., the 
function f̂ (𝜏) = g0(𝜏,𝜑(⋅, 𝜏)) + ∇ ⋅ g1(𝜏,𝜑(⋅, 𝜏)) belongs to V′ . Applying Theorem 1 
we conclude � ∈ V , as claimed. ♢

The following result shows that the unique solution is absolutely continuous and 
satisfies the a-priori energy estimates. Under assumption of the previous theorem 
we have �(⋅, 0), g0(⋅, 0), g1j(⋅, 0) ∈ H . Here, the space X = L∞((0, T);V �) is endowed 
with the norm

Theorem  3 Suppose that the functions �, g0, g1j fulfills the assumptions of Theo-
rem  2. Then the unique solution � ∈ V to the Cauchy problem (10) is absolutely 
continuous, i.e., � ∈ C([0, T];H) . Moreover, there exist a constant C̃ > 0 , such that 
the unique solution satisfies the following inequality:

Proof Since f̂ ∈ V
� , where f̂ = g0 + ∇ ⋅ g1 and A(�,�) ∈ V

� , then ��� ∈ V
� . 

Therefore, for each �0 ∈ H , we have � ∈ W where W is the Banach space 
W = {�,� ∈ V, ��� ∈ V

�} . According to [19,  Proposition  1.2], we have 

1

2
( max
𝜏∈[0,T]

‖𝜑1(𝜏) − 𝜑2(𝜏)‖V � )2 + 𝜔�
T

0

‖𝜑1(𝜏) − 𝜑2(𝜏)‖2Hd𝜏

≤ 𝛽 max
𝜏∈[0,T]

‖𝜑1(𝜏) − 𝜑2(𝜏)‖V � �
T

0

‖𝜑1(𝜏) − 𝜑2(𝜏)‖Hd𝜏

≤ 1

2
( max
𝜏∈[0,T]

‖𝜑1(𝜏) − 𝜑2(𝜏)‖V � )2 +
𝛽2

2
(�

T

0

‖𝜑1(𝜏) − 𝜑2(𝜏)‖Hd𝜏)2.

‖F(𝜑1) − F(𝜑2)‖2H ≤ 𝛽2T

2𝜔
‖𝜑1 − 𝜑2‖2H.

‖�‖2
X
= sup

�∈[0,T]
‖�(�)‖2

V � , ∀� ∈ X.

(15)

‖𝜑‖2
X
+ ‖𝜑‖2

H
≤ C̃

�
‖𝜑0‖2V � + ‖𝛼(⋅, 0)‖2

H
+ ‖g0(⋅, 0)‖2H +

d�
j=1

‖g1j(⋅, 0)‖2H
�
.
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W ↪ C([0, T];H) . Hence, the unique solution � to the Cauchy problem belongs to the 
space C([0, T]; H), as claimed.

Next, we show that the unique solution satisfies a-priori energy estimate (15). Let 
� be a unique solution to the Cauchy problem (9). Multiply (11) by � and take the 
scalar product in H to obtain

Using the Lipschitz continuity of g0, g1 and strong monotonicity of � , we obtain

Hence, there exist constants C0,C1 > 0 such that

Solving the differential inequality y�(�) ≤ C1y(�) + r(�) , where y(�) = ‖�(⋅, �)‖2
V � 

and r(�) = C0

�
‖g0(⋅, �, 0)‖2H +

∑d

j=1
‖g1j(⋅, �, 0)‖2H + ‖�(⋅, �, 0)‖2

H

�
 , yields

and the proof of the Theorem follows.   ◻

(16)(��A
−1�,�)H + (�(⋅, �,�),�)H = (A−1g0(�,�) + A−1∇ ⋅ g1(�,�),�).

1

2

d

d�
‖�‖2

V � + �‖�‖2
H
=(��A

−1�,�) + �‖�‖2
H

≤(��A−1�,�) + (�(⋅,�) − �(⋅, 0),�)

=(A−1(g0(⋅,�) + ∇ ⋅ g1(�,�)) − �(⋅, 0),�)

=(A−1(g0(⋅,�) − g0(⋅, 0) + ∇ ⋅ g1(⋅,�) − ∇ ⋅ g1(⋅, 0)),�)

+ (A−1(g0(⋅, 0) + ∇ ⋅ g1(⋅, 0)),�) − (�(⋅, 0),�)

=(A−1∕2(g0(⋅,�) − g0(⋅, 0) + ∇ ⋅ g1(⋅,�) − ∇ ⋅ g1(⋅, 0)),A
−1∕2�)

+ (A−1∕2(g0(⋅, 0) + ∇ ⋅ g1(⋅, 0)),A
−1∕2�) − (�(⋅, 0),�)

≤�(1 + d)‖�‖H‖�‖V � + ‖A−1∕2(g0(⋅, 0) + ∇ ⋅ g1(⋅, 0))‖H‖�‖V �

+ ‖�(⋅, 0)‖H‖�‖H
≤�

4
‖�‖2

H
+

�2(1 + d)2

�
‖�‖2

V � +
1

2
‖A−1∕2(g0(⋅, 0) + ∇ ⋅ g1(⋅, 0))‖2H

+
1

2
‖�‖2

V � +
1

�
‖�(⋅, 0)‖2

H
+

�

4
‖�‖2

H
.

d

d�
‖�‖2

V � + �‖�‖2
H
≤C1‖�‖2V � + C0

�
‖g0(⋅, 0)‖2H +

d�
j=1

‖g1j(⋅, 0)‖2H + ‖�(⋅, 0)‖2
H

�
.

y(�) ≤ eC1T

(
y(0) + �

T

0

r(s)ds

)
,
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3  The Riccati transformation of the HJB equation and application 
to optimal portfolio selection problem

3.1  The Riccati transformation

In this section, we present how the HJB Eq. (4) can be transformed into a quasi-
linear PDE, which is equivalent to the Cauchy problem for the nonlinear para-
bolic Eq. (1).

Following the methodology introduced by Abe and Ishimura [1], Ishimura and 
Ševčovič [5], Ševčovič and Macová [12], and Kilianová and Ševčovič [6], the 
Riccati transformation � of the value function V can be introduced as follows:

Suppose for a moment that the value function V(x, t) is increasing in the x-variable. 
This is a natural assumption in the case when the terminal utility function u(x) is 
increasing itself. Then the HJB Eq. (4) can be rewritten as follows:

where �(x, �,�) is the value function of the following parametric optimization 
problem:

Remark 1 The optimization problem (19) is related to the classical Markowitz 
model on optimal portfolio selection problem formulated as maximization of the 
mean return �(�) ≡ �T� under the volatility constraint 1

2
�(�)2 ≡ 1

2
�T

�� ≤ 1

2
�2
0
 , i.e.:

where the decision set is the simplex △ = {� ∈ ℝ
n | � ≥ �, �T� = 1} . Indeed, the 

Lagrange multiplier for the volatility constraint can be identified as the parameter � 
entering the parametric optimization problem (19).

In what follows, we shall denote by �x� the total differential of the function 
�(x, �,�) where � = �(x, �) , that is

where �′
x
 and �′

� are partial derivatives of � with respect to variables x and � , 
respectively.

The relationship between the transformed function � and the value function V is given by 
the result due to Kilianová and Ševčovič [7]. With regard to [7, Theorem 4.2], an increasing 

(17)�(x, �) = −
�2
x
V(x, t)

�xV(x, t)
, where � = T − t.

(18)�tV − �(⋅,�)�xV = 0, V(⋅, T) = u(⋅),

(19)�(x, �,�) = min
�∈△

(
−�(x, t,�) +

�

2
�(x, t,�)2

)
, � = T − t .

max
�∈△

�T�, s.t.
1

2
�T

�� ≤ 1

2
�2
0
,

�x�(x, �,�) = ��
x
(x, �,�) + ��

�(x, �,�) �x�,
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value function V(x, t) in the x-variable is a solution to the Hamilton–Jacobi–Bellman Eq. 
(4) if and only if the transformed function �(x, �) = −�2

x
V(x, t)∕�xV(x, t), t = T − � , is a 

solution to the Cauchy problem for quasi-linear parabolic PDE:

It is worth noting that the Cauchy problem for the quasi-linear parabolic PDE (20) 
is equivalent to the nonlinear parabolic Eq. (1) in one-dimensional space. This is 
obtainable after some shift/perturbation in the main operator of the transformed Eq. 
(20).

3.2  Properties of the value function as a diffusion function

This section investigates qualitative properties of the value function and suffi-
cient conditions imposed on the decision set △ and functions � and � that guar-
antee higher smoothness of the value function � . Let us denote by Ck,1(D) the 
space consisting of all k-differentiable functions defined on the domain D ⊂ ℝ

d+2 , 
whose k-th derivative is globally Lipschitz continuous. The next proposition shows 
(under certain assumptions) that the value function � belongs to C0,1(D) , where 
D = ℝ

d × (0, T) × (�min,∞).

Proposition 1 Let △ ⊂ ℝ
n be a given compact decision set. Assume that the func-

tions �(x, t,�) and �(x, t,�)2 are globally Lipschitz continuous in x ∈ ℝ
d, t ∈ [0, T] 

and � ∈ △ variables, and there exist positive constants 𝜔, L > 0 such that 
� ≤ 1

2
�(x, t,�)2 ≤ L for any x ∈ ℝ

d, t ∈ [0, T] , and � ∈ △.

Then � ∈ C0,1(D) . Moreover, the function � is strictly increasing, and

i.e., � ≤ ��
�(x, �,�) ≤ L , and

for a.e. (x, �,�) ∈ D , where p(x, �) ∶= max�∈△ |∇x�(x, t,�)| and 
L0 ∶= max�∈△,t∈[0,T],x∈ℝd |∇x�

2(x, t, �)| where t = T − �.

Proof Let us define ��(x, �,�) ∶= −�(x, t,�) + �

2
�(x, t,�)2 , where t = T − � . Then

(20)��� − �2
x
�(⋅,�) = −�x(�(⋅,�)�),

(21)�(x, 0) = �0(x) ≡ −u��(x)∕u�(x), (x, �) ∈ ℝ × (0,T).

(22)0 < 𝜔 ≤ 𝛼(x, 𝜏,𝜑2) − 𝛼(x, 𝜏,𝜑1)

𝜑2 − 𝜑1

≤ L, for any (x, 𝜏,𝜑i) ∈ D,

(23)|∇x�(x, �,�)| ≤ p(x, �) + L0|�|,

�(x, �,�) = min
�∈△

��(x, �,�) .
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For any given � ∈ △ , the function ��(x, �,�) is globally Lipschitz continuous in all 
variables. The minimal function � is therefore globally Lipschitz continuous as well. 
Moreover, the function ��(x, �,�) satisfies the inequality (22) for any � ∈ △ , and so 
does the minimal function �.

Next, we prove inequality (23). Let x1, x2 ∈ ℝ
d such that x2 = x1 + hei , where 

ei, i = 1,… , d, is the standard normal vector, i.e., ei = (0, 0,… , 0, 1, 0,… , 0)T . We 
have that

Hence,

We note that x2 − x1 = hei so that |x2 − x1| = h . Taking minimum over � ∈ △ , we 
obtain

Exchanging the role of x1 and x2 and taking the limit as x2 → x1 , i.e., h → 0 , we 
obtain inequality (23), as stated.   ◻

According to Proposition  1, the value function � given in (19) fulfils the 
assumptions of Theorem 2 provided that the functions

belong to the Banach space L∞((0, T);H).
The next result was proved in [8]. It gives sufficient conditions imposed on 

the decision set △ and functions � and � guaranteeing higher smoothness of 
the value function � . Its proof is based on the classical envelope theorem due to 
Milgrom and Segal [14] and the result on Lipschitz continuity of the minimizer 
�̂ = �̂(x, 𝜏,𝜑) belonging to a convex compact set △ due to Klatte [11].

Theorem 4 [8, Theorem 1] Suppose that △ ⊂ ℝ
n is a convex compact set, and the 

functions �(x, t,�) and �(x, t,�)2 are C1,1 smooth such that the objective function 
f (x, t,�,�) ∶= −�(x, t,�) + �

2
�(x, t,�)2 is strictly convex in the variable � ∈ △ for 

any � ∈ (�min,∞) , then the function � belongs to the space C1,1(D).

��(x1, �,�) − ��(x2, �,�) = −(�(x1, �,�) − �(x2, �,�)) +
�

2
(�(x1, �,�)

2 − �(x2, �,�)
2)

= �
h

0

(−�xi�(x1 + �ei, �,�))d� + �
h

0

�

2
�xi�

2(x1 + �ei, �,�)d�

≤ �
h

0

|�xi�(x1 + �ei, �,�))|d� + �
h

0

|�|
2

|�xi�2(x1 + �ei, �,�)|d�

≤ max
�∈△,0≤�≤h |�xi�(x1 + �ei, �,�)| h + max

�∈△,x∈ℝd
|�xi�2(x, �, �)| |�|

2
h.

��(x1, �,�) ≤ ��(x2, �,�) + max
�∈△,0≤�≤h |�xi�(x1 + �ei, �,�)| h + max

�∈△,x∈ℝd
|�xi�2(x, �, �)||�|h.

�(x1, �,�) ≤ �(x2, �,�) + max
�∈△,0≤�≤h |�xi�(x1 + �ei, �,�)| h + max

�∈△,x∈ℝd
|�xi�2(x, �, �)||�|h.

p(x, �) = max
�∈△

|∇x�(x, �,�)|, and h(x, �) = �(x, �, 0) = −max
�∈△

�(x, �,�)
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3.3  Point‑wise a‑priori estimates of solutions, their existence and uniqueness

In this section we present a-priori estimates on a solution � to the Cauchy problem 
(20). Throughout this section we will assume that the function � is independent of time 
t ∈ [0, T] , and � is independent of x ∈ ℝ and t ∈ [0, T] , i.e.,

Then the value function � = �(x,�) is independent of the � = T − t variable, as well.
In what follows we will prove a-priori estimates for the transformed function 

� = �(x, �) defined as �(x, �) = �(x,�(x, �)) . Since � is strictly increasing function 
in the � variable, there exists an inverse function �(x,�) such that �(x, �(x,�)) = � . 
Straightforward calculations show that the function �(x, �) is a solution to (20) if and 
only if the function �(x, �) is a solution to the following linear parabolic PDE:

where

Notice that 0 < 𝜔 ≤ a(x, 𝜏) ≤ L . Suppose that the function c(x, �) is bounded from 
above by a constant � ≥ 0 . Then the function ��(x, �) = �(x, �)e−�� is a solution to 
the linear PDE:

where c�(x, �) = c(x, �) − � is nonpositive, i.e., c�(x, �) ≤ 0 for all x, � . Let � ≤ 0 
be a constant. Then L[�� − �] = c�(x, �)� ≥ 0 . Applying the maximum principle 
for parabolic equations on unbounded domains [13, Theorem 3.4] due to Meyer and 
Needham (see also Protter and Weinberger [16]), we obtain ��(x, �) − � ≥ 0 for all 
x, � provided that ��(x, 0) − � = �(x, 0) − � ≥ 0 for all x. That is, �  is a subsolu-
tion. Similarly, if � ≥ 0 is a given constant, then L[�� − �] = c�(x, �)� ≤ 0 and 
��(x, �) − � ≤ 0 for all x, � provided that �(x, 0) − � ≤ 0 for all x, i.e., �  is a super-
solution. In summary, we have the following implication:

In terms of the solution � to the Cauchy problem (20)–(21), we have the following 
a-priori estimate:

where

� = �(x,�), � = �(�).

−��� + a(x, �)�2
x
� + b(x, �)�x� + c(x, �)� = 0,

a(x, �) =��
�(x,�(x, �)), b(x, �) = −��

�(x,�(x, �))�(x, �) − �(x,�(x, �)),

c(x, �) =��
x
(x,�(x, �)).

L[��] = 0, where L[��] ≡ ���� − a(x, �)�2
x
�� − b(x, �)�x�� − c�(x, �)��,

� ≤ �(x, 0) ≤ � ⟹ �e�� ≤ �(x, �) ≤ �e�� for all x ∈ ℝ, � ∈ [0, T].

(24)�e�� ≤ �(x,�(x, �)) ≤ �e�� for all x ∈ ℝ, � ∈ [0, T],

(25)� = min{0, inf
x∈ℝ

�(x,�(x, 0))}, � = max{0, sup
x∈ℝ

�(x,�(x, 0))}.
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Now, we are in a position to apply the general Theorem 2 on existence and unique-
ness of a solution.

Theorem 5 Let the decision set △ ⊂ ℝ
n be compact and the function u ∶ ℝ → ℝ be 

an increasing utility function such that �0(x) = −u��(x)∕u�(x) belongs to the space 
L2(ℝ) ∩ L∞(ℝ) . Suppose that the drift �(x,�) and volatility function 𝜎2(�) > 0 are 
C1 continuous in the x and � variables, and the value function �(x,�) given in (19) 
satisfies p ∈ L2(ℝ) ∩ L∞(ℝ), h ∈ L∞(ℝ), and �2

x
h ∈ L2(ℝ) , where

Then for any T > 0 there exists a unique solution � of the Cauchy problem

satisfying � ∈ C([0, T];H) ∩ L2((0, T);V) ∩ L∞((0, T) ×ℝ).

Proof Since 𝜎2(�) > 0 and △ is a compact set, there exist constants 0 < 𝜔 ≤ L such 
that 0 < 𝜔 ≤ 𝜎2(�) ≤ L for all � ∈ △ . It follows from Proposition 1 that

Since �0, h ∈ L∞(ℝ) and h(x) = �(x, 0) , we obtain M ∶= supx∈ℝ |𝛼(x,𝜑0(x))| < ∞.
Let us define the shifted diffusion function by �̃�(x,𝜑) = 𝛼(x,𝜑) − 𝛼(x, 0) . Notice 

that �(x, 0) = min�∈△ −�(x,�) = h(x) . Then Eq. (26) is equivalent to

where A = I − �2
x
.

Next, let g0(𝜑) = �̃�(⋅,𝜑) + 𝜕2
x
h and g1(�) = −w(�(⋅,�))� . Here, w ∶ ℝ → ℝ is a 

suitable cut-off function

where � = M,� = −M . Then the functions g0, g1 ∶ H → H are globally Lipschitz 
continuous.

Notice that the diffusion function �̃� fulfills assumptions of Theorem  2 with 
h̃(x) = �̃�(x, 0) ≡ 0 . Now applying Theorems  2 and  3 we obtain the existence 
and uniqueness of a solution � ∈ C([0, T];H) ∩ L2((0, T);V) to the Cauchy 
problem (9). The solution � satisfies the point-wise estimate (24). Hence, 
w(�(x,�(x, �))) = �(x,�(x, �)) and � is a solution to the Cauchy problem (26), as 
well.

Finally, from (27) we deduce the L∞((0, T) ×ℝ) estimate for the solution 
� since supx∈ℝ |�(x,�(x, �))| ≤ Me�� , where � = supx∈ℝ p(x) . Furthermore, 
� ∈ L∞((0, T) ×ℝ) , and

p(x) = max
�∈△

|�x�(x,�)|, h(x) = −max
�∈△

�(x,�).

(26)��� − �2
x
�(⋅,�) = −�x(�(⋅,�)�), �(x, 0) = �0(x), (x, �) ∈ ℝ × (0, T),

(27)�|�| ≤ |�(x,�) − �(x, 0)| ≤ L|�|.

𝜕𝜏𝜑 + A�̃�(⋅,𝜑) = �̃�(⋅,𝜑) + 𝜕2
x
h − 𝜕x(𝛼(⋅,𝜑)𝜑),

w(𝛼) =

⎧⎪⎨⎪⎩

𝜓e𝜆T , if 𝛼 ≤ 𝜓e𝜆T ,

𝛼, if 𝜓e𝜆T < 𝛼 < 𝜓e𝜆T ,

𝜓e𝜆T , if 𝛼 ≥ 𝜓e𝜆T ,
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  ◻

3.4  Application to stochastic dynamic optimal portfolio selection problem

As an example of the stochastic process (7), one can consider a portfolio optimi-
zation problem with regular cash inflow is an inflow ( 𝜀 > 0)/outflow ( 𝜀 < 0 ) to 
a portfolio representing e.g., pension funds savings (c.f. Kilianová and Ševčovič 
[6]). In a stylized financial market the stochastic process {yt}t≥0 driven by the sto-
chastic differential equation

represents a stochastic evolution of the value of a synthetized portfolio yt consisting 
of n-assets with weights � = (�1,… , �n)

T , mean returns � = (�1,… ,�n)
T , and an 

n × n positive definite covariance matrix � , i.e., �(�)2 = �T
��.

We assume that the value � = �(y) of the inflow/outflow rate also depends on 
the value y in such a way that �(y) = 0 for very small values of 0 < y ≤ y− and 
� is a given constant inflow/outflow rate when the amount of saved money y is 
sufficiently large, i.e., y ≥ y+ , where 0 < y− < y+ and the function � is C1 smooth 
for all y > 0 . It represents a realistic pension saving model in which there is no 
inflow/outflow provided that the value y of the portfolio is very small. Based on 
the logarithmic transformation x = ln y and Itô’s lemma the stochastic process 
{xt} satisfies (7) where �(x,�) = �T� −

1

2
�(�)2 + �(ex)e−x.

Further generalization of the drift and volatility functions arises from the so-
called worst-case portfolio optimization problem investigated by Kilianová and 
Trnovská [10]. The volatility function is given by

where K is a bounded uncertainty convex set of positive definite covariance matri-
ces. In general, only a part of the covariance matrix can be calculated precisely 
whereas entries are not precisely determined. For instance, if only the diagonal d is 
known, we have K = {� ≻ 0, diag(�) = d} . The drift function is given by

where E is a given bounded uncertainty convex set of mean returns.

Remark 2 Let us consider a class of utility function characterized by a pair of expo-
nential functions:

sup
x∈ℝ,�∈[0,T]

|�(x, �)| ≤ �−1(Me�T +max
x∈ℝ

|h(x)|).

(28)dyt = (�(yt) + �T�yt)dt + �(�)ytdWt,

�(�)2 = max
�∈K

�T
��,

�(x,�) = min
�∈E

�T� −
1

2
�(�)2 + �(ex)e−x,
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where c∗ = e−a0x
∗

(a0 − a1)∕a1 and a0, a1 ∈ ℝ > 0 are given constants. Here, x∗ ∈ ℝ 
is a point at which the risk aversion changes. Note that u is an increasing C1 function 
having a jump in the second derivative at the point x∗.

If a0 > a1 > 0 , then the utility function u is called DARA (decreasing absolute 
risk aversion) function. It represents an investor with a non-constant, decreasing risk 
aversion: the higher the wealth, the lower their risk aversion and hence the higher 
exposition of the portfolio to more risky assets. With regard to the paper [15] by 
Post, Fang and Kopa, the piece-wise exponential DARA utility functions play an 
important role in the analysis of decreasing absolute risk aversion stochastic domi-
nance introduced by Vickson [17] (see also [7]). Note that the coefficients of abso-
lute risk aversion of the above utility functions −u��(x)∕u�(x) is equal to a0 if x ≤ x∗ 
or to a1 if x > x∗.

The piece-wise constant function �0(x) = −u��(x)∕u�(x) should be truncated out-
side of some interval (−� , �) , where � is large enough. Then �0 ∈ L2(ℝ) ∩ L∞(ℝ) . 
The underlying utility function is therefore modified by linear functions for x < −𝛾 
and x > 𝛾.

Another simple example of a convex-concave utility function is the func-
tion u(x) = arctan(x) . Then �0(x) = −u��(x)∕u�(x) = 2x∕(1 + x2) . Clearly, 
�0 ∈ H = L2(ℝ) . It is worth noting that the individual’s reduction in marginal utility 
arising from a loss is absolutely greater than the marginal utility from a financial 
gain. The utility function is concave (in the domain x > x∗ ), indicating that investors 
show risk aversion in the domain of gain. However, investors become risk-seeker 
when dealing with losses, i.e., the utility function is convex for x ≤ x∗.

4  Numerical examples

First, let us consider a simple example of the decision set △ = {� ∈ ℝ
2
, � ≥ 0, 1

T� = 1}, 
n = 2,�(�) = �T�, �2(�) = �T

�� , where � is a positive definite covariance matrix 
and � is a positive vector of mean return. The value function � = �(�) can be explicitly 
expressed as follows:

where (�−
∗
,�+

∗
) is the maximal interval in which the optimal value �̂(𝜑) ∈ △ of 

the function � ↦ −�T� +
�

2
�T

�� is strictly positive ( ̂�(𝜑) > 0 ) for � ∈ (�−
∗
,�+

∗
) , 

and C,E± > 0 , B ≥ 0 , A,D± are constants explicitly depending on the covariance 
matrix � and the vector of mean return � such that the function � is C1 continuous 
at �±

∗
 , i.e., E± = B∕(�±

∗
)2 + C and D± = A − B∕�±

∗
+ C�± − E±�±

∗
 . It is clear that � 

(29)u(x) =

{
−e−a0x − c∗, x ≤ x∗,

−(a0∕a1)e
−a1x+(a1−a0)x

∗

, x > x∗,

𝛼(𝜑) =

⎧⎪⎨⎪⎩

E−𝜑 + D−, if 0 < 𝜑 ≤ 𝜑−
∗
,

A −
B

𝜑
+ C𝜑, if 𝜑−

∗
< 𝜑 < 𝜑+

∗
,

E+𝜑 + D+, if 𝜑+
∗
≤ 𝜑,
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is only C1,1 continuous function having two points �±
∗
 of discontinuity of the second 

derivative �′′.
If we restrict the decision set to a set consisting of finite number of 

points, then the value function �(�) is only piece-wise linear. Indeed, if 
△̂ = {�1,… ,�k} ⊂ {� ∈ ℝ

2, � ≥ 0, 1T� = 1} then �(�) = mini=1,…,k �
i(�) , where 

�i(�) = Ei� + Di is a linear function with the slope Ei = (1∕2)(�i)T��i > 0 and 
intercept Di = −�T�i.

Figure 1a shows a graph of the value function � corresponding to the Slovak pen-
sion fund system. Following the data set from [9], the portfolio comprises of the 
stocks index with a high mean return �s = 0.1028 and high volatility �s = 0.169 and 
bonds with mean return �b = 0.0516 and very low volatility �s = 0.0082 . Returns on 
stocks index and bonds have negative correlation � = −0.1151 . Hence, � = (�s,�b)

T 
and �11 = �2

2
,�22 = �2

b
,�12 = �21 = ��s�b . In Figure  1a, the solid blue line cor-

responds to the convex compact decision set △ = {� ∈ ℝ
2, � ≥ 0, 1T� = 1} . The 

piece-wise linear value function � (dotted red line) corresponds to the discrete deci-
sion set △̂ = {�1,�2,�3} ⊂ △ . It represents the Slovak pension fund system con-
sisting of three funds - the growth fund with �1 = (0.8, 0.2)T (80% of stocks and 20% 
of bonds), the balanced fund with �2 = (0.5, 0.5)T (equal proportion of stocks and 
bonds), and the conservative fund with �3 = (0, 1)T (only bonds) (c.f. [9]). Figure 1b 
shows the graph of the second derivative ���

� (�) of the value function �(�) corre-
sponding to the convex compact decision set △ . The first point of discontinuity �−

∗
 

is close to the value 2. For n > 2 , the number of discontinuities of �′′
� increases (c.f. 

[6]). In Fig.  2, we show another example of the value function and its second deriv-
ative for the portfolio consisting of five stocks (BASF, Bayer, Degussa-Huls, FMC, 
Schering) entering DAX30 German stocks index. The covariance matrix � and the 
vector of yields � is taken from [3].

The advantage of the Riccati transformation of the original Hamilton–Jac-
obi–Bellman is twofold. First, the diffusion function � can be computed in advance 

(a) (b)

Fig. 1  (a) A graph of the value function � , (b) its second derivative ���(�) for the portfolio consisting of 
the stocks index and bonds (c.f. [9]) for the convex compact decision set △ . The dotted line in (a) cor-
responds to the discrete decision set △̂ = {�1

,�2
,�3} ⊂ △
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as result of quadratic optimization problem when the vector � and the covariance 
matrix � are given or semidefinite programming problem when they belong to a 
uncertainity set of returns and covariance matrices (c.f. [10]). Figure 3 shows the 
vector of optimal weights � , as a function of the parameter � , obtained as the opti-
mal solution to the quadratic optimization problem with the covariance matrix cor-
responding to the entire DAX30 index from the year 2017. When the parameter � 
increases there are more nontrivial weights �i . The data set is the same as in the 
source: Kilianová and Ševčovič [7].

Second, in contrast to the fully nonlinear character of the original Hamilton–Jac-
obi–Bellman Eq. (4), the transformed governing Eq. (20) represents a quasi-linear 
parabolic equation in the divergence form. Hence efficient numerical schemes can 
be constructed for this class of equation. In our computational experiments, we fol-
low the finite volume discretization scheme proposed and investigated by Kilianová 
and Ševčovič [6–8]). In Fig. 4a, we present results of time dependent sequence of 
profiles �(x, �) for a constant initial condition �0 ≡ 9 . In Fig. 4b we show profiles of 
solutions for the initial condition �0 attaining four decreasing values {9, 8, 7, 6} . It 

(a) (b)

Fig. 2  (a) A graph of the value function �(�) , and (b) the second derivative ���
� (�) corresponding to five 

stocks from DAX30 index

Fig. 3  The optimal vector 
� = (�

1
,… , �n)

T as a function of 
� for the German DAX30 index
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represents DARA (decreasing absolute risk aversion) utility function. Clearly, these 
profiles are lower than those with constant �0 ≡ 9 . Therefore, the optimal vector 
�(x, �) contains more risky assets at any x and time � (see Fig. 3).

Figure  3 also shows that there are only a few relevant assets out of the set of 
30 assets entering the DAX30 index. The figure also reveals the highest portion of 
Merck stocks (the first decreasing line in the plot) starting from 100% representation 
in the optimal portfolio for very small values of � = �(x, �) . It corresponds to the 
early period of saving � ≈ 0 and low account values of x. Although with the high-
est volatility, it is indeed reasonable to invest in an asset with the highest expected 
return when the account value x is low, in early times of saving. We can also observe 
a fast decrement of the Merck weight for increasing risk averesion value � . On the 
other hand, the Fresenius Medical (see Fig. 3, the yellow line) has the lowest volatil-
ity out of the considered five assets displayed in , and third-best mean return, which 
is reflected in its major representation in the portfolio for higher values � = �(x, �).

5  Conclusions

In this paper, we investigated and analyzed the existence and uniqueness of a solution 
to the Cauchy problem for the parabolic PDE (1) in a suitable Sobolev space using 
monotone operator approach. We utilized the Banach’s fixed point theorem and Fourier 
transform technique to prove the existence result in an abstract setting. As a financial 
application in one-dimensional space, we considered a fully nonlinear evolutionary 
Hamilton–Jacobi–Bellman (HJB) parabolic equation arising from portfolio optimiza-
tion selection, where the goal is to maximize the conditional expected value of the ter-
minal utility of the portfolio. Using the so-called Riccati method for transformation, 
the fully nonlinear HJB equation is transformed into a quasilinear parabolic equation, 
which is equivalent to the proposed result after some shift in the operator. Under some 
assumptions, we obtained that the diffusion function to the quasilinear parabolic equa-
tion is globally Lipschitz continuous, which is a crucial requirement for solving the 
Cauchy problem. Some numerical examples of the proposed results were presented.

Fig. 4  Solutions �(x, �) for the utility function u with constant a
0
= a

1
= 9 (left) and for the DARA util-

ity function with a
0
= 9 , a

1
= 6 , x∗ = 2 (right)
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