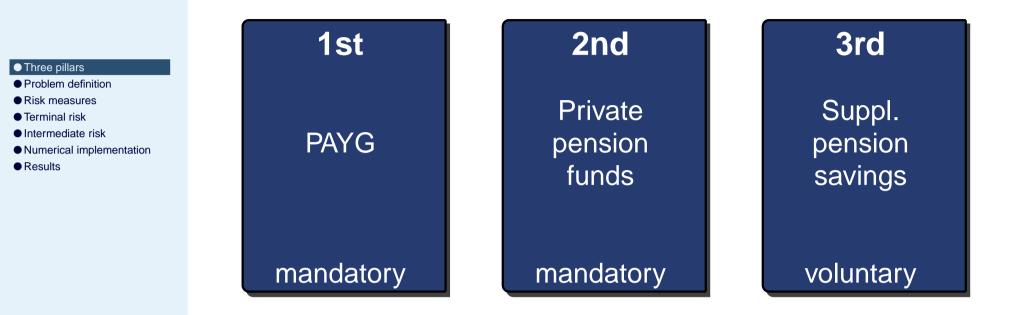
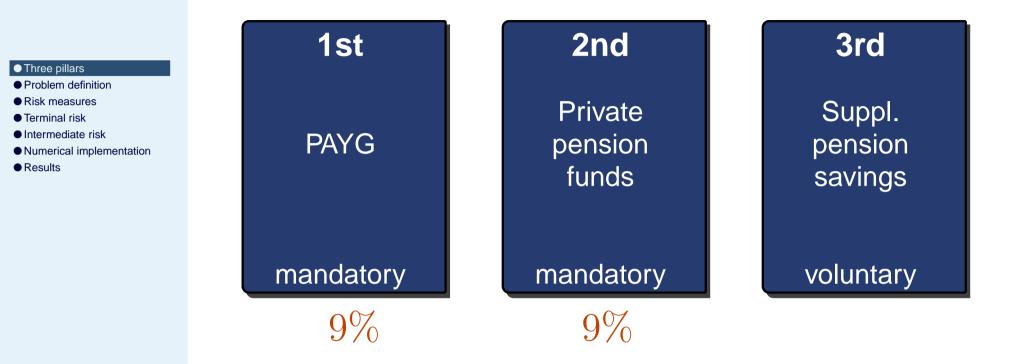
Risk approach in pension planning CEF seminár 28. februára 2007

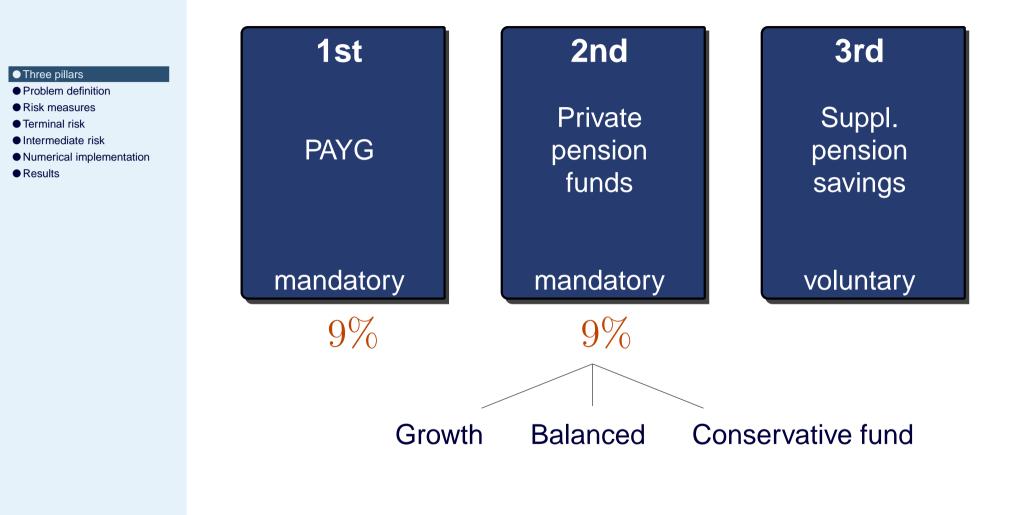
Soňa Kilianová (joint work with Georg Pflug)

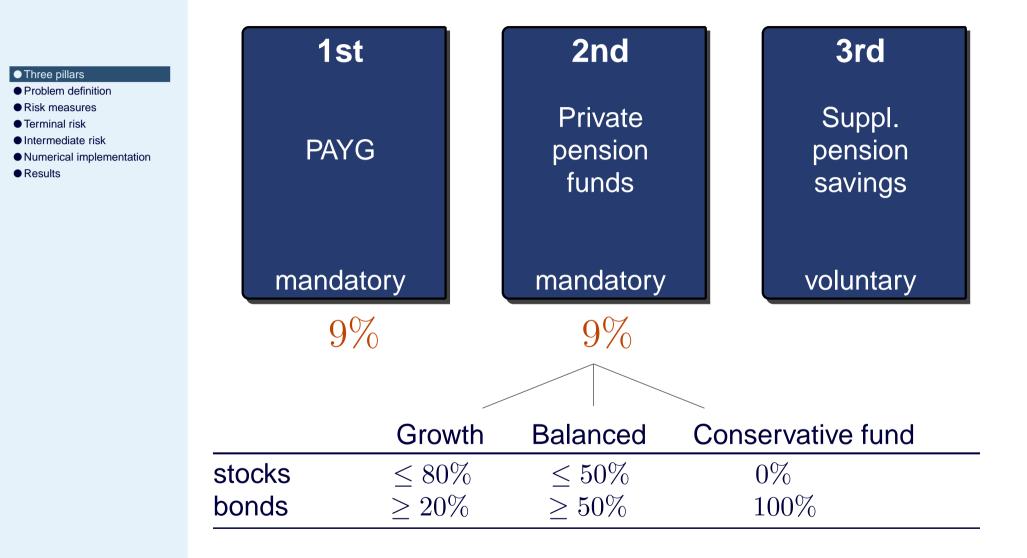
Katedra aplikovanej matematiky a štatistiky FMFI, Univerzita Komenského Bratislava

www.iam.fmph.uniba.sk/institute/kilianova - p. 1/30









Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

Want to achieve a particular sum? How to reach this?

Minimalize risk, insecureness, associated with decisions, aiming the target terminal wealth...

Future pensioner with the expected retirement time T

Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

deposits once a year $\tau > 0$ of his yearly salary w_t (with growth rate ϱ_t) to pension funds $j \in \{1, 2, ..., J\}$ with returns r_t^j .

Accumulated sum at time $t : A_t$

Future pensioner with the expected retirement time T

• Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

deposits once a year $\tau > 0$ of his yearly salary w_t (with growth rate ϱ_t) to pension funds $j \in \{1, 2, ..., J\}$ with returns r_t^j .

Accumulated sum at time t: A_t More important: $y_t = A_t/w_t$

Future pensioner with the expected retirement time T

Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

deposits once a year $\tau > 0$ of his yearly salary w_t (with growth rate ϱ_t) to pension funds $j \in \{1, 2, ..., J\}$ with returns r_t^j .

Accumulated sum at time t: A_t More important: $y_t = A_t/w_t$

Denote $s_t^j = \frac{1+r_t^j}{1+\rho_t}$, $\mathbf{s}_t = [s_t^1, s_t^2, s_t^3]^{\top}$, $\mathbf{y}_t = [y_t^1, y_t^2, y_t^3]^{\top}$

$$\begin{split} \mathbf{y}_0^{\top} \mathbf{1} &= \tau \\ \mathbf{y}_t^{\top} \mathbf{1} &= \mathbf{y}_{t-1}^{\top} \mathbf{s}_t + \tau, \qquad t \in \{1, ..., T-1\}, \\ \mathbf{y}_T^{\top} \mathbf{1} &= \mathbf{y}_{T-1}^{\top} \mathbf{s}_T \\ \mathbf{y}_t &\geq 0 \qquad t \in \{1, ..., T\}. \end{split}$$

Tree representation

Three pillars

Problem definition

- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

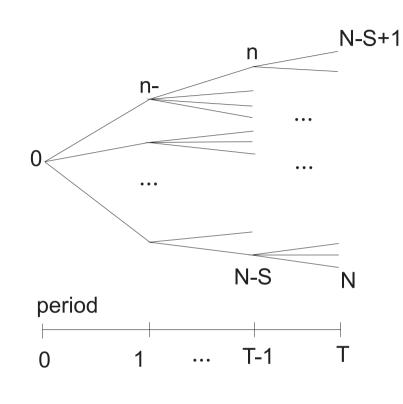


Figure 1: Tree representation

set of all nodes $\mathcal{N} = \{0, ..., N\}$

set of nonterminal nodes without root $\mathcal{N}_0 = \{1, ..., N - S\}$

set of terminal nodes $\mathcal{T} = \{N - S + 1,, N\}$

stages $\xi(n) \in \{0, ..., T\}$

predecessor $n_$ set of succ. $\{n\}^+$

values in node *n*: s_n^1, s_n^2, s_n^3

• Three pillars

Problem definition

Risk measures

- Terminal risk
- Intermediate risk
- Numerical implementation

Results

How to measure the insecureness of the value of savings?

Three pillars

Problem definition

Risk measures

- Terminal risk
- Intermediate risk
- Numerical implementation

Results

How to measure the insecureness of the value of savings?

Static risk measures

insecureness of the terminal wealth

 y_T

• Three pillars

Problem definition

Risk measures

- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

How to measure the insecureness of the value of savings?

Static risk measures

insecureness of the terminal wealth

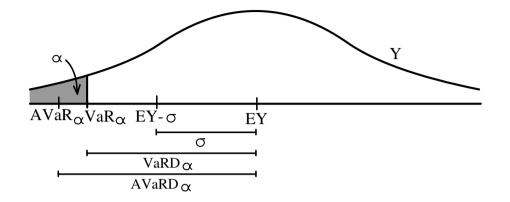
 y_T

Dynamic risk measures

insecureness of all intermediate wealths

 y_1, \ldots, y_T

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results



value-at-risk VaR_{α} : $\operatorname{Prob}(Y \ge VaR_{\alpha}) \ge 1 - \alpha$ average VaR: $AVaR_{\alpha}(Y) = \mathbb{E}(Y|Y \le VaR_{\alpha}).$

EXAMPLES of **RISK MEASURES**:

- variance σ^2 , standard deviation Stdev(Y)
- value-at-risk dev. $VaRD_{\alpha}(Y) = \mathbb{E}(Y) VaR_{\alpha}(Y)$
- average VaR dev. $AVaRD_{\alpha}(Y) = \mathbb{E}(Y) AVaR_{\alpha}(Y)$
- mean absolute dev., lower semi-variance, ...

Goal: max VaR_{α} , max $AVaR_{\alpha}$, min $AVaRD_{\alpha}$, ...

Terminal risk

Terminal risk

Th	ree	pill	ar	s	
_				-	

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

 $\min AVaRD_{\alpha}(\mathbf{y}_{T}^{\top}\mathbf{1}) \qquad \min AVaRD_{\alpha}(\mathbf{y}_{T}^{\top}\mathbf{1}) \\ \mathbf{y}_{0}^{\top}\mathbf{1} = \tau \\ \mathbf{y}_{t}^{\top}\mathbf{1} = \mathbf{y}_{t-1}^{\top}\mathbf{s}_{t} + \tau, t \in \{1, ..., T-1\}, \\ \mathbf{y}_{T}^{\top}\mathbf{1} = \mathbf{y}_{T-1}^{\top}\mathbf{s}_{T} \\ \mathbf{y}_{t} \ge 0 \in \{1, ..., T\} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \mathbf{x}_{t} = \mathbf{y}_{t-1}^{\top}\mathbf{x}_{t} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \max = \mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \max = \mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \max = \mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \max = \mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu. \\ \sum \mathbf{y}_{t-1}^{\top}\mathbf{y}_{t-1} \\ \mathbb{E}(\mathbf{y}_{T}^{\top}\mathbf{1}) \ge \mu.$

Rockafellar & Uryasev: $AVaR_{\alpha}(X) = \max_{a \in \mathbb{R}} \{a - \frac{1}{\alpha} \mathbb{E}[X - a]^{-}\}, [g]^{-} = \max\{-g, 0\}$

Terminal risk

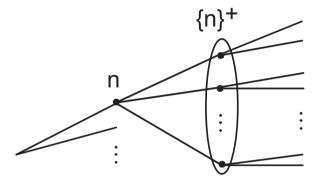
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

min $AVaRD_{\alpha}(\mathbf{y}_{T}^{\top}\mathbf{1})$ $\min AVaRD_{\alpha}(\mathbf{y}_T^{\top}\mathbf{1})$ $\mathbf{y}_0^{\top} \mathbf{1} = \tau$ $\mathbf{y}_0^{\top} \mathbf{1} = \tau$ $\mathbf{v}^{\top}\mathbf{1} - \mathbf{v}^{\top}\mathbf{c} \perp \mathbf{\tau} \quad \mathbf{n} \in \mathcal{N}_0,$ _ 1\ $\mathbf{y}_t^{ op} \mathbf{1}$ $\mathbf{y}_T^{ op}$ $\min_{y,a,z} \left(\sum_{m \in \mathcal{T}} p_m(\mathbf{y}^\top \mathbf{1}) - a + \frac{1}{\alpha} \sum_{m \in \mathcal{T}} p_m z_{m-N+S} \right)$ $\mathbf{y}_t \ge$ $-a + \mathbf{y}^{\top} \mathbf{1} + z_{m-N+S} \geq 0, m \in \mathcal{T}$ $\mathbb{E}(\mathbf{y})$ $z_{m-N+S} > 0, m \in \mathcal{T}$ $\mathbf{y}_0^{\top} \mathbf{1} = \tau$ Rock $\mathbf{y}_n^{\top} \mathbf{1} = \mathbf{y}_{n-}^{\top} \mathbf{s}_n + \tau, \qquad n \in \mathcal{N}_0,$ AVa $\mathbf{y}_n^{\top} \mathbf{1} = \mathbf{y}_{n-}^{\top} \mathbf{s}_n \qquad n \in \mathcal{T},$ $\mathbf{y}_n \ge 0 \qquad n \in \mathcal{N}$ $\sum_{m \in \mathcal{T}} p_m(\mathbf{y}_m^{\top} \mathbf{1}) > \mu$.

Terminal risk

Intermediate risk

Intermediate risk



 $\min \sum_{n \in \mathcal{N} \setminus \mathcal{T}} AVaRD_{\alpha}(\mathbf{y}_{\{n^+\}})$

$$\begin{aligned} \mathbf{y}_{0}^{\top} \mathbf{1} &= \tau \\ \mathbf{y}_{n}^{\top} \mathbf{1} &= \mathbf{y}_{n-}^{\top} \mathbf{s}_{n} + \tau , & n \in \mathcal{N}_{0}, \\ \mathbf{y}_{n}^{\top} \mathbf{1} &= \mathbf{y}_{n-}^{\top} \mathbf{s}_{n} & n \in \mathcal{T}, \\ \mathbf{y}_{n} &\geq 0 & n \in \mathcal{N} \end{aligned}$$
$$\begin{aligned} \sum_{m \in \mathcal{T}} p_{m}(\mathbf{y}_{m}^{\top} \mathbf{1}) \geq \mu . \end{aligned}$$

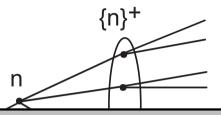
- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

Three pillars
Problem definition
Risk measures
Terminal risk
Intermediate risk

Results

Numerical implementation

Intermediate risk



$$\min_{a,z,y} \sum_{n \in \mathcal{N} \setminus \mathcal{T}} \left(\sum_{k \in \{n\}^+} (pc(k)\mathbf{y}_k^\top \mathbf{1}) - a_n + \frac{1}{\alpha} \sum_{k \in \{n\}^+} pc(k) z_{kn} \right)$$

$$-a_n + \mathbf{y}_k^\top \mathbf{1} + z_{kn} \ge 0, \qquad k \in \{n\}^+, n \in \mathcal{N} \setminus \mathcal{I}$$
$$z_{kn} \ge 0, \qquad k \in \{n\}^+, n \in \mathcal{N} \setminus \mathcal{T}$$

$$\begin{split} \mathbf{y}_0^{\top} \mathbf{1} &= \tau \\ \mathbf{y}_n^{\top} \mathbf{1} &= \mathbf{y}_{n-}^{\top} \mathbf{s}_n + \tau , \qquad n \in \mathcal{N}_0, \\ \mathbf{y}_n^{\top} \mathbf{1} &= \mathbf{y}_{n-}^{\top} \mathbf{s}_n \qquad n \in \mathcal{T}, \\ \mathbf{y}_n &\geq 0 \qquad n \in \mathcal{N} \end{split}$$

$$\sum_{m\in\mathcal{T}} p_m(\mathbf{y}_m^{\top}\mathbf{1}) \geq \mu$$
.

conditional prob.

$$pc(k) = \frac{p(k)}{\sum_{l \in \{n\}^+} p(l)}$$
for all $k \in \{n\}^+, n \in \mathcal{N} \setminus \mathcal{T}$

Three pillarsProblem definition

Risk measures
Terminal risk
Intermediate risk

Results

Numerical implementation

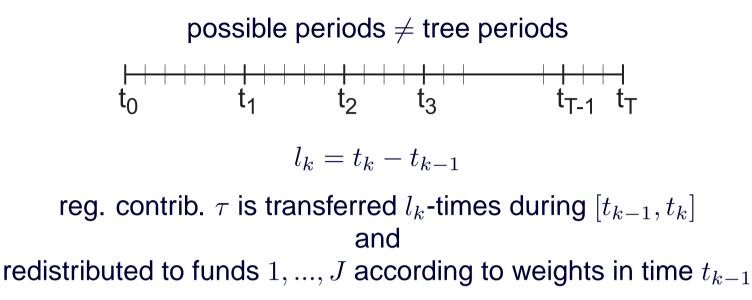
Numerical implementation

 $\min_{\mathbf{x}=(a,z,y)} \mathbf{c}^{\top} \mathbf{x} \\ \mathbf{A}_{ineq} \mathbf{x} \leq \mathbf{b}_{ineq} \\ \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\ \mathbf{y} \geq 0, z \geq 0.$

	Terminal risk	Intermed. risk
vars	1 + S + J(1+N)	1 + N - S + N + J(1 + N)
\mathbf{A}_{ineq}	$(1+S) \times vars$	$(1+N) \times vars$
#nonzero	(2J+2)S	JS + (J+2)N
\mathbf{A}_{eq}	$(1+N) \times vars$	$(1+N) \times vars$
#nonzero	(1+2N)J	(1+2N)J

binary tree, 40 time stages $\longrightarrow N \sim 10^{12}, S \sim 5 * 10^{11}$ 20 time stages $\longrightarrow N \sim 10^6, S \sim 5 * 10^5$ ternary tree, 20 time stages $\longrightarrow N \sim 10^9, S \sim 10^9$

Numerical implementation



- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

Problem definition

Numerical implementation

Risk measures
 Terminal risk
 Intermediate risk

Results

Numerical implementation

possible periods \neq tree periods r t∩ t_2 t_3 . t₁ t_{T-1} t_T $l_k = t_k - t_{k-1}$ reg. contrib. τ is transferred l_k -times during $[t_{k-1}, t_k]$ and redistributed to funds 1, ..., J according to weights in time t_{k-1} $\tau_n := [\tau_n^1, ..., \tau_n^J]^\top$ for $n \to \{n\}^+$, period $[t_{\xi(n)}, t_{\xi(n)+1}]$ $(\tau_n^\top \mathbf{1} = \tau)$ $\frac{\tau_n^j}{\tau} = \frac{y_n^j}{\mathbf{v}_n^\top \mathbf{1}}$

Numerical implementation

Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation

Results

$$\tau_n := [\tau_n^1, \dots, \tau_n^J]^\top \text{ for } n \to \{n\}^+, \text{ period } [t_{\xi(n)}, t_{\xi(n)+1}]$$
$$(\tau_n^\top \mathbf{1} = \tau)$$

$$rac{ au_n^{\jmath}}{ au} = rac{y_n^{\jmath}}{\mathbf{y}_n^{ op} \mathbf{1}}$$

+ nonlinear constraint:

$$\mathbf{y}_n^{\top} \mathbf{1} = \mathbf{y}_{n-}^{\top} \mathbf{s}_n + \tau_{n-}^{\top} \sum_{i=0}^{l_{\xi(n)}-1} (\mathbf{s}_n)^{i/l_{\xi(n)}} \qquad \text{for all } n \in \mathcal{N}_0$$

www.iam.fmph.uniba.sk/institute/kilianova - p. 22/30

Numerical implementation

- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

linear program \rightarrow Matlab built-in function *linprog* + the *sparse* function

Avoid the nonlinear constraint: an iterative algorithm

- 1. fix the starting point $\tau_n^j = \tau/J$ for all n, j.
- 2. solve linprog with fixed τ_n^j
- 3. obtain optimal y_n^j for all n, j.
- 4. calculate new τ_n^j (see previous slide)
- 5. repeat until accuracy is met Stopping criterion: $\epsilon = |\mathbf{c}^{\top}\mathbf{x} - \mathbf{c}^{\top}\mathbf{\tilde{x}}| \le 0.001$

Numerical implementation - data

- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

Fund	Stocks	Bonds and money
type		market instruments
Growth Fund (1)	up to 80%	at least 20%
Balanced Fund (2)	up to 50%	at least 50%
Conservative Fund (3)	no stocks	100%

Table 1: Limits for investment for the pension funds in Slovak Republic.

	Return	StDev
S&P	0.1028	0.1690
bonds	0.0516	0.0082

Table 2: Historical return and its standard deviation for the S&P index and 10-years government bonds (Jan 1996 - June 2002).

Numerical implementation - data

 Three pillars 	
-----------------------------------	--

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

Period2006-082009-142015-212022-242025-50wage growth $(1 + \rho_t)$ 1.0751.0701.0651.0601.050

Table 3: The expected wage growth in Slovak Republic. Source: Slovak Savings Bank (SLSP).

• reg. contrib. $\tau = 9\%$

- 6 decision (tree) periods with lengths
 [l₁,..., l₆] = [10, 8, 7, 4, 4, 7], regarding the law restrictions on fund choice
- additional constraint $y_n^1 = 0$ for all n in stages 4, 5
- the last period is ommitted from the optimization (here $y_n^1 = y_n^2 = 0$) $\Rightarrow T = 5$
- $\mu = 4, 4.5, 5$ (goal after 33 years)

 $\bullet \ \alpha = 0.05$

Numerical implementation - scenarios

Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation

Results

Scenario tree generation:

node n : $[s_n^1, s_n^2, s_n^3]$ appreciators for $[t_{\xi(n)-1}, t_{\xi(n)}]$ from n_- to n

How to simulate s_n^j ? $s_n^j = \frac{1+r_n^j}{(1+\rho_n^{avg})^{l_n}}$ where ρ_n^{avg} = average in the period, known r_n^j = for the overall period

Calculate r_n^j from stock and bond returns: $r_n^1 = 0.8r_n^{(s)} + 0.2r_n^{(b)}$ $r_n^2 = 0.5r_n^{(s)} + 0.5r_n^{(b)}$ $r_n^3 = r_n^{(b)}$ Need to simulate $r_n^{(s)}, r_n^{(b)}$.

Numerical implementation - scenarios

- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation
- Results

 $r_n(s), r_n(b)$ independent $\forall n: 3$ scenarios for both $r_n(s), r_n(b)$, i.e. +,-,0

 $dS_t = \nu S_t dt + \sigma S_t dW_t$

 $S_{t+l} = S_t \exp((\nu - 0.5\sigma^2)l + \sigma(W_{t+l} - W_t))$ for interval of length l

 $\Rightarrow 1 + r_{\{n\}^+}^{(s)} = \exp((\nu - 0.5\sigma^2)l_{\xi(n)+1} + \sigma\sqrt{l_{\xi(n)+1}}Z_{\xi(n)+1})$ where $Z_{\xi(n)+1} \sim N(0,1)$, independent, for $(t_{\xi(n)}, t_{\xi(n)+1})$

3-point discretization of N(0, 1): point masses = $(-\sqrt{2}, 0, \sqrt{2})$, probabilities = (1/4, 1/2, 1/4)

 $\longrightarrow K_s = 3 \text{ scenarios for stocks, } K_b = 3 \text{ for bonds,} \\ \Rightarrow K_s * K_b = 9 \text{ scenarios for } r^j_{\{n\}^+}, \text{ resp. } s^j_{\{n\}^+}, \text{ i.e. } 9 \\ \text{successors for each } n \in \mathcal{N} \setminus \mathcal{T}. \qquad (N \sim 6 * 10^5) \\ \end{array}$

Results

Three pillars

- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation

Results

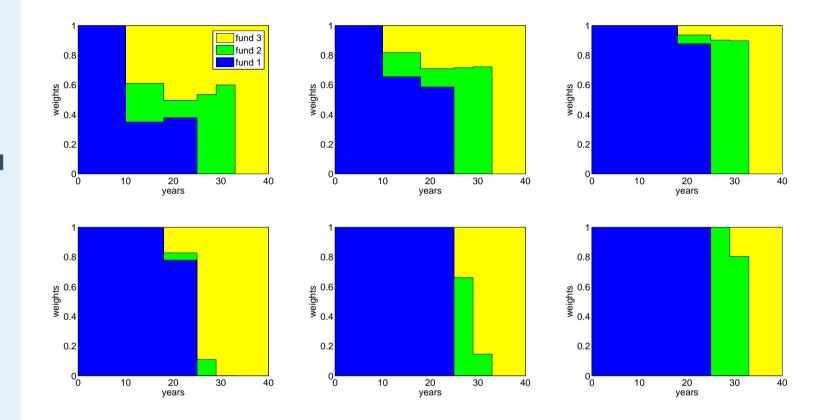


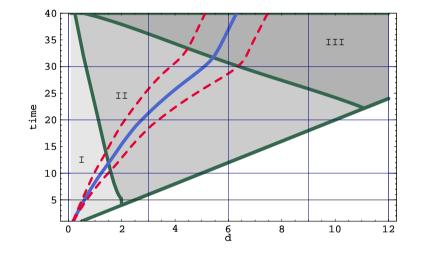
Figure 2: Averaged optimal weights of funds 1, 2, 3 for the oneperiod AVaRD (top) and the multi-period AVaRD (bottom), and for the target wealth (after 33 years) $\mu = 4$ (left), $\mu = 4.5$ (middle) and $\mu = 5$ (right).

Comparison

- Three pillars
- Problem definition
- Risk measures
- Terminal risk
- Intermediate risk
- Numerical implementation

Results

utility approach



 $I \longrightarrow II \longrightarrow III$

