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†Department of Applied Mathematics and Statistics, Facultyof Mathematics, Physics and Infor-
matics, Comenius University, Mlynska dolina, Bratislava,Slovakia
Email: stehlikova@fmph.uniba.sk

Abstract

In short rate interest rate models, the behaviour of the short rate is given by a stochastic dif-
ferential equation (in one-factor models) or a system of stochastic differential equations (in
multi-factor models). Interest rates with different maturities are determined by bond prices,
which are solutions of the parabolic partial differential equation. We consider the generalized
Cox-Ingersoll-Ross model, where the short rate is a sum of two Bessel square root processes,
which evolve independently. The bond price is a function of maturity and the level of each of
the components of the short rate. We do not observe all valuesnecessary to obtain a bond price.
Therefore, we propose the averaging of the bond prices. We consider the limiting distribution
of the short rate components, conditioned to have the sum equal to the observable short rate
level. In this way, we obtain the averaged bond prices, whichdepend only on maturity and
short rate. We prove that there is no one-factor model yielding the same bond prices as are the
averaged values described above.

1. GENERALIZED COX-INGERSOLL-ROSS MODEL OF INTEREST RATES

Term structure models describe the dependance between the time to maturity of a discount bond
and its present price which implies the interest rate. Continuous short rate models are formulated
in terms of a stochastic differential equation, or a sysstemof them, for the instanteneous interest
rater (short rate). The bond prices, and hence the term structuresof the itnerest rates, are then
obtain by solving the partial differential equation.

In one-factor models, the process describing the short rate, is given by

dr = α(t, r)dt + β(t, r)dw, (1)

whereα(t, r) andβ(t, r) are non-stochastic functions. Ifα(t, r) = κ(θ − r), κ > 0, the process
has the property of mean-reversion to the levelθ. A popular class of models is obtained by taking
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σ(t, r) = σrγ . It includes Vasicek model withγ = 0 (Vasicek (1977)), Cox-Ingersoll-Ross (CIR
hereafter) model withγ = 1

2
(Cox et al. (1985)); an important article on comparison of the models

with differentγ is Chan et al. (1992).
If the short rate evolves according to 1, then the discount bond with maturity T has the price

P (t, r) which depends on the timet and the current level of the short rater. It is given by the
following partial differential equation:

−∂P

∂t
+ (α − λβ)

∂P

∂r
+

1

2
β2∂2P

∂r2
− rP = 0, t ∈ (0, T ) (2)

P (T, r) = 1, (3)

(4)

whereλ = λ(t, r) is the market price of risk. The interest rates are then obtained from the bond
prices byR(t, r) = − log P (t,r)

T−t
. (See Kwok (1998).)

For the specific choices of the market price of risk in Vasicekand CIR models, it is known that
the bond price can be written in the closed form. Ifλ(t, r) = λ

√
r in CIR model then the price of

bond with time to maturityτ = T − t has the form

P (τ, r) = A(τ)e−B(τ)r .

The functionsA(τ) andB(τ) satisfy the following system of ordinary differential equations

Ȧ(τ) = κθA(τ)B(τ)

Ḃ(τ) = −(κ + λσ)B − 1

2
σ2B(τ)2 + 1 (5)

with initial conditionsA(0) = 1, B(0) = 0. It can be solved analytically.
There are several possibilities of generalizing one-factor models, which lead to multifactor

models. They include making a parameter of 1-factor model stochastic (e.g. stochastic volatility
models Anderson and Lund (1996), Fong and Vasicek (1991)), adding another relevant quantity
(consol rate in Brennan and Schwartz (1982), European interest rate in Corzo and Schwartz (2000),
Santamaria and Biscarri (2005)), composition of short ratefrom more components (generalized
CIR model in Cox et al. (1985), consol rate and the spread between the short rate and consol rate
in Schaefer and Schwartz (1984), Christiansen (2002)).

In generalized CIR model, the short rater is the sum of two independent Bessel square root
processes:

r = r1 + r2, (6)

dr1 = κ1(θ1 − r1)dt + σ1

√
r1dw1,

dr2 = κ2(θ2 − r2)dt + σ2

√
r2dw2,

where the Wiener processesw1 andw2 are independent. If the market prices of risk corresponding
to r1 andr2 are taken to beλ1

√
r1 andλ2

√
r2, then the bond priceP (τ, r1, r2) has the form

π(τ, r1, r2) = A(τ)e−B1(τ)r1−B2(τ)r2 , (7)

whereA(τ) = A1(τ)A2(τ) andA1(τ), A2(τ), B1(τ), B2(τ) are the solutions of the systems of
ordinary differential equations 5 arising in 1-factor model, with the appropriate index.
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Figure 1: Examples of term structures correspondening to different pairs ofr1 andr2 such that
r1 + r2 = 0.04. The averaged term structure is in bold.

2. AVERAGING IN TWO-FACTOR MODELS

Since the components of the short rater1 andr2 are not observable and the observable variable is
only their sumr, the interesting questions are the properties of the averaging of the bond prices
conditioned to the given sum ofr1 andr2. This is motived by papers Fouque et al. (2003) about
averaging in stochastic volatility models of stock prices and Cotton et al. (2004) about averaging in
stochastic volatility models of ond prices (where the unobservable random quantity is the volatil-
ity), which are used in the series expansion of the prices. The asymptotic distribution of the hidden
process is used. It can be justified if the processes have beenevolving for a sufficiently long time.

In the same way, we consider the limit distributions in generalized CIR model. It is well known
that the limit distribution of a Bessel square root process is a gamma distribution. Hence the limit
distribution of each ofri (i = 1, 2) in (7) are given by

fi(ri) =
abi

i

Γ(bi)
e−airirbi−1

i

whereai = 2κi

σ2

i

, bi = 2κiθi

σ2

i

for ri > 0 and zero otherwise, and the limit density ofr1 conditioned to
r1 + r2 = r is

f(r1, r) =
f1(r1)f2(r − r1)
∫ r

0
f1(s)f2(r − s)ds

=
f1(r1)f2(r − r1)

M(r)
, (8)

where we denoted the numerator of the fraction byM(r) to simplify the notation of the following
computations. The bond price (7) can be written in terms ofτ , r, r1 and the averaged value is
computed as

P (τ, r) =

∫ r

0

π(τ, r1, r − r1)f(r1, r)dr1. (9)

In the same way, the averaged term structure is given by

P (τ, r) =

∫ r

0

[

− log π(τ, r1, r − r1)

τ

]

f(r1, r)dr1. (10)

In Fig. 1 we give an example. It shows the term structures obtained by the generalized CIR
model and the averaged term structure computed in the way described above.
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3. THE MAIN RESULT

In this paper, we study the following problem: We ask, whether there are such functionsα andβ

that the bond prices are same as the averaged prices from 2-factor CIR model. We restrict ourselves
to certain processes. Drift and volatility of the process, as well as the market price of risk are time-
independent. For zero level of short rate, we require the volatility to be zero,. This consition is
needed to ensure the nonnegativity of short rate. We also assume that the volatility parametersσ
are different for the two processes forming the short rate in2-factor CIR model.

Theorem 3.1 Suppose that

1. functionsα, β, λ depend only onr (and not onτ ),

2. functionsα, β, λ are continuous inr = 0,

3. β(0) = 0,

4. σ1 6= σ2.

Then

1. P (τ, r) → A(τ) asr → 0,

2. ∂P
∂τ

(τ, r) → Ȧ(τ) asr → 0,

3. ∂P
∂r

(τ, r) → −A(τ)
(

b1
b1+b2

B1(τ) + b2
b1+b2

B2(τ)
)

asr → 0,

4. ∂2P
∂r2 (τ, r) is bounded on the neighbourhood ofr = 0.

Now, we state some properties of the Kummer cofluent hypergeometric functions1F1 in the
following lemma, which will be used in the subsequent proof of the theorem 3.1. They can be
found in Abramovitz and Stegun (1972).

Lemma 3.2 1. The following equality holds:

∫ r

0

e−axxb−1(r − x)cdx = rb+c Γ(b)Γ(1 + c)

Γ(1 + b + c)
1F1(b, 1 + b + c,−ar)

2. The series expansion of1F1(a, b, z) is:

1F1(a, b, z) = 1 +
a

b
z +

a(a + 1)

b(b + 1)
z2 + . . . .
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Proof of the theorem 3.1: Firstly, we write the termM(r) appearing in the densityf(r1, r)
and the density itself in the form which will be useful later.

M(r) =

∫ r

0

f1(r1)f2(r − r1)dr1 =

=
ab1

1 ab2
2

Γ(b1 + b2)
e−a2rrb1+b2−1

1F1(b1, b1 + b2,−(a1 − a2)r).

Substituting into the density yields

f(r1, r) =
1

M(r)
f1(r1)f2(r − r1) =

=
1

1F1(b1, b1 + b2,−(a1 − a2)r)

Γ(b1 + b2)

Γ(b1)Γ(b2)

1

rb1+b2−1

[

e−(a1−a2)r1rb1−1
1 (r − r1)

b2−1
]

.

(11)

Now, we proceed to prove the assertions of the theorem:

1. Substituting (11) into the expression for the averaged bond price gives

P (τ, r) =

∫ r

0

π(τ, r1, r − r1)f(r1, r)dr1 =

= Ae−Br 1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−(a1 − a2)r)
. (12)

Since both denominator and numerator of the fraction in (12)converge to unity asr → 0,
we have

lim
r→0

P (τ, r) = A(τ).

2. We compute the derivative ofP with respect toτ :

∂P

∂τ
=

∫ r

0

∂π

∂τ
(τ, r1, r − r1)f(r1, r)dr1 =

= P (τ, r)

[(

Ȧ

A
− Ḃ2r

)

− (Ḃ1 − Ḃ2)

∫ r

0
r1π(τ, r1, r − r1)f(r1, r)dr1

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

]

(13)

The numerator of the fraction in (13) is positive for allr > 0 and can be bounded from
above byr

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1. Hence the fraction is positive and bounded from

above byr, which implies that it converges to zero asr → 0. Since we already know that
P (τ, r) → A(τ) for r → 0, we obtain from (13) that

lim
r→

∂P

∂τ
(τ, r) = Ȧ(τ).

3. In the computation of the derivative∂P
∂r

∂P

∂r
=

∫ r

0

∂π

∂r
(τ, r1, r − r1)f(r1, r) + π(τ, r1, r − r1)

∂f

∂r
(r1, r)dr1 (14)
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there are two derivatives which need to be computed:∂π
∂r

and ∂f

∂r
. Now, we evaluate these

expressions. Firstly,

∂π

∂r
(τ, r1, r − r1) = −B2(τ)π(τ, r1, r − r1). (15)

Secondly,

∂f

∂r
(r1, r) =

f1(r1)f
′
2(r − r1)

M(r)
− f1(r1)f2(r − r1)

M2(r)
M ′(r)

= f(r1, r)

[

f ′
2(r − r1)

f2(r − r1)
−
∫ r

0
f1(s)f

′
2(r − s)ds

∫ r

0
f1(s)f2(r − s)ds

]

(16)

Noting that
f ′

2(x)

f2(x)
= −a2 + (b2 − 1)

1

x

and using it in (16) gives

∂f

∂r
(r1, r) = f(r1, r)(b2 − 1)

[

1

r − r1
−
∫ r

0
1

r−s
f1(s)f2(r − s)ds

∫ r

0
f1(s)f2(r − s)ds

]

. (17)

Substituting (15) and (17) into (14) yields after the rearrangement

∂P

∂r
=P

[

−B2 + (b2 − 1)

(
∫ r

0
1

r−r1

π(τ, r1, r − r1)f(r1, r)dr1
∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

−
∫ r

0
1

r−r1

f1(r1)f2(r − r1)dr1
∫ r

0
f1(r1)f2(r − r1)dr1

)]

. (18)

Let us denote

X1 =

∫ r

0
1

r−r1

π(τ, r1, r − r1)f(r1, r)dr1
∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

, X2 =

∫ r

0
1

r−r1

f1(r1)f2(r − r1)dr1
∫ r

0
f1(r1)f2(r − r1)dr1

.

In this notation,
∂P

∂r
= P (τ, r) [−B2 + (b2 − 1) (X1 − X2)] (19)

We write each of the expressionsX1 andX2 in terms of functions1F1:

X1 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−((B1 − B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2)r))
(20)

and in a similar way

X2 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−(a1 − a2)r)

1F1(b1, b1 + b2,−(a1 − a2)r)
. (21)
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Hence

X1 − X2 =
∂P

∂r
=

1

r

b1 + b2 − 1

b2 − 1

[

G1

G2

− G3

G4

]

,

where we denoted

G1 = 1F1(b1, b1 + b2 − 1,−((B1 − B2) + (a1 − a2))r),

G2 = 1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2))r),

G3 = 1F1(b1, b1 + b2 − 1,−(a1 − a2)r),

G4 = 1F1(b1, b1 + b2,−(a1 − a2)r). (22)

BecauseG2G4 → 1 asr → 0, we need to computeG1G4 −G2G3 to be able to compute the
limit of (18) Since

G1 = 1 − b1

b1 + b2 − 1
((B1 − B2) + (a1 − a2))r + o(r),

G2 = 1 − b1

b1 + b2

((B1 − B2) + (a1 − a2))r + o(r),

G3 = 1 − b1

b1 + b2 − 1
(a1 − a2)r + o(r),

G4 = 1 − b1

b1 + b2
(a1 − a2)r + o(r), (23)

we have

G1G4 − G2G3 = r

(

− b1

b1 + b2 − 1
+

b1

b1 + b2

)

+ o(r). (24)

Hence

X1 − X2 =
b1 + b2 − 1

b2 − 1

1

G2G4

[

(B1 − B2)

(

− b1

b1 + b2 − 1
+

b1

b1 + b2

)

+
o(r)

r

]

=

and

lim
r→0

X1 − X2 =
b1 + b2 − 1

b2 − 1
(B1 − B2)

(

− b1

b1 + b2 − 1
+

b1

b1 + b2

)

Finally, we can compute the limit of (18)

lim
r→0

∂P

∂r
(τ, r) = lim

r→0
P (τ, r) [−B2 + (b2 − 1) (X1 − X2)] =

= A

[

−B2 + (b1 + b2 − 1)(B1 − B2)

(

− b1

b1 + b2 − 1
+

b1

b1 + b2

)]

=

= −A

[

b1

b1 + b2
B1 +

b2

b1 + b2
B2

]

.

4. We show that there is a finite limit of∂
2P

∂r2 (τ, r) as r → 0, from which the boundedness
follows.
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From (18) we have

∂2P

∂r2
=

∂P

∂r
[−B2 + (b2 − 1) (X1 − X2)] + P

∂ [−B2 + (b2 − 1) (X1 − X2)]

∂r

From the definition ofX1 andX2 and already computed limits it follows, that it suffices to
show the existence of the finite limit of∂

∂r

(

1
r
F (r)

)

for r → 0+, where

F (r) =
G1(r)

G2(r)
− G3(r)

G4(r)
. (25)

AssumingF (r) has the series expansionF (r) =
∑∞

k=0 akr
k., the conditiona0 = 0 is

sufficient for boundedness of the term∂
∂r

(

1
r
F (r)

)

in the neighbourhood ofr = 0, which
holds for (25).

Theorem 3.3 Under the hypotheses of the theorem 3.1, there is no one-factor interest rate model,
for which the averaged bond prices satisfy the PDE up to the boundaryr = 0.

Proof: By limit r → 0 in the PDE (2) we obtain, using the results from the previous theorem,
that for allτ > 0.

−Ȧ(τ) + α(r = 0)(−A(τ))

(

b1

b1 + b2

B1(τ) +
b2

b1 + b2

B2(τ)

)

= 0

From this we calculate the value of the functionα for r = 0:

α(r = 0) = −Ȧ(τ)

A(τ)

1
b1B1(τ)
b1+b2

+ b2B2(τ)
b1+b2

= −Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
.

It follows that

−Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
= K1, (26)

whereK1 is a constant (independent ofτ ).
Now we recall that the the functionA(τ) from the 2-factor CIR model can be writen as

A(τ) = A1(τ)A2(τ), whereA1(τ) andA2(τ) are functions appearing in the original CIR model,
correspondening to each of the equations forr1 andr2. Hence they satisfy

Ȧi(τ) = κiθiAi(τ)Bi(τ) (i = 1, 2)

and so we get

Ȧ(τ)

A(τ)
=

˙A1(τ)A2(τ) + A1(τ)Ȧ2(τ)

A1(τ)A2(τ)
=

Ȧ1(τ)

A1(τ)
+

˙A2(τ)

A2(τ)
= κ1θ1B1(τ) + κ2θ2B2(τ).

So the expression in (26) is

K1 = −Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
= −(κ1θ1B1(τ) + κ2θ2B2(τ))

b1 + b2

b1B1(τ) + b2B2(τ)
.
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Sinceb1 +b2 is constant, the important part is the following fraction, which has to be equal to some
constantK:

κ1θ1B1(τ) + κ2θ2B2(τ)

b1B1(τ) + b2B2(τ)
= K.

It implies that
κ1θ1B1(τ) + κ2θ2B2(τ) = K(b1B1(τ) + b2B2(τ))

and so
(κ1θ1 − Kb1)B1(τ) = (Kb2 − κ2θ2)B2(τ)

for eachτ > 0. It is possible in two ways:

1. κ1θ1 − Kb1 = 0, Kb2 − κ2θ2 = 0,

2. B1(τ) = cB2(τ), wherec is a constant.

Now we look at each of these possibilities:

1. The same constantK appears in both equalities. From the first one (i.e.κ1θ1 − Kb1 = 0),
we getK = κ1θ1

b1
and by substituting the value ofb1 = 2κ1θ1

σ2

1

, we obtainK =
σ2

1

2
. In the

same way, from the second equality (i.e.Kb2 − κ2θ2 = 0), we obtainK =
σ2

2

2
. But by the

hypothesis,σ2
1 6= σ2

2, which is a contradiction.

2. We recall the equation forB1 from CIR model:

−Ḃ1(τ) = (κ1 + λ1σ1)B1(τ) +
1

2
σ2

1B1(τ)2 − 1. (27)

From the similar equation forB2(τ)

−Ḃ2(τ) = (κ2 + λ2σ2)B2(τ) +
1

2
σ2

2B2(τ)2 − 1, (28)

together withB1(τ) = cB2(τ), we obtain another expression forB1:

−Ḃ1(τ) = c

[

(κ2 + λ2σ2)B2(τ) +
1

2
σ2B2(τ)2 − 1

]

(29)

The right-hand sides of (27) and (29) have to be equal:

c

[

(κ2 + λ2σ2)B2(τ) +
1

2
σ2B2(τ)2 − 1

]

= (κ1 + λ1σ1)B1(τ) +
1

2
σ2

1B1(τ)2 − 1

for all τ > 0. By continuity, the equality holds also in the limitτ = 0+. From this, we get
c = 1 and hence the functionsB1(τ) andB2(τ) coincide. We denote this function byB(τ).
By subtracting equations (27) and (28) we obtain:

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]B(τ) +

[

−1

2
σ2

1 +
1

2
σ2

2

]

B2(τ) = 0

and, dividing byB(τ) (which is nonzero)

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)] −
1

2

[

σ2
2 − σ2

1

]

B(τ) = 0.

Sinceσ1 6= σ2, it implies thatB(τ) is a constant function, which is a contradiction.

Since both possibilities lead to a contradiction, the theorem is proved.
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4. CONCLUSION

We considered the 2-factor Cox-Ingersoll-Ross model of interest rates and the averaged bond prices
with respect to the asymptotic distribution of the processes forming the short rate, conditioned on
the observable short rate level. Such averaged values are functions of the maturity and the short
rate. Solutions of one factor models are the fuctions of the same variables. Hence we studied the
question, whether there is a one factor model yielding the same bond prices as those obtained by
averaging in the 2-factor Cox-Ingersoll-Ross model. We proved that the answer is negative. In the
future, we plan to study this question also for another two-factor models.
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