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A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES∗

BEÁTA STEHLÍKOVÁ† AND ZUZANA ZÍKOVÁ‡

Abstract. A convergence model of interest rates explains the evolution of the domestic short
rate in connection with the European rate. The first model of this kind was proposed by Corzo
and Schwartz in 2000 and its generalizations were studied later. In all these models, the European
rates are modelled by a one-factor model. This, however, does not provide a satisfactory fit to the
market data. A better fit can be obtained using the model, where the short rate is a sum of two
unobservable factors. Therefore, we build the convergence model for the domestic rates based on this
evolution of the European market. We study the prices of the domestic bonds in this model, which
are given by the solution of the partial differential equations. In general, it does not have an explicit
solution. Hence we suggest an analytical approximative formula and derive order of its accuracy in
a particular case.
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1. Introduction. Interest rate is a rate charged for the use of the money. As
an example we show Euribor (European Interbank Offered Rates) interest rates on
the interbank market. Figure 1.1 displays the interest rates with different maturities
(so called term structures) at a given day and the evolution of the selected interest
rate during a given time period.

Fig. 1.1. Example of the term structure of the interest rates (left) and the evolution of interest
rate in time (right). Source: http://www.euribor-ebf.eu.

Interest rates in the countries are not independent. This is particularly true if the
country plans to adopt the euro currency. In this case, the domestic interest rates are
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closely related to the rates in the monetary union, especially shortly before the time
of accession. This is documented in Figure 1.2 which presents the Bribor (Bratislava
Interbank Offered Rates) together with the Euribor rates in the last quarter before
Slovakia adopted euro.

Fig. 1.2. Bribor and Eonia short rate in the last quarter of 2008.

The first model describing this phenomenon has been proposed by Corzo and
Schwarz in [4]. They model the instantaneous European rate re by a mean-reverting
stochastic process dre = κe(θr − re)dt + σedwe with constant volatility σe (known
as Vasicek process in the context of interest rates modelling, see the model in [11]).
The domestic instantaneous rate is then reverting not to a constant value, but to the
current level of the European rate (with a possibility of a minor divergence, see [4] for
details). However, Vasicek model is not necessarily the most suitable model for the
European rates, or the short term interest rates in general. To eliminate the possibility
of negative interest rates in Vasicek model, the model with volatility proportional to
the square root of the interest rate has been proposed by Cox, Ingersoll and Ross
in [5] (CIR model hereafter). The discussion of the proper form of volatility started
with an influential paper [2] by Chan, Karolyi, Longstaff and Sanders (CKLS model
hereafter) who considered more general nonlinear volatility, proportional to the power
of the interest rate, i.e., dre = κe(θe−re)dt+σer

γe

e dwe. They have shown by analysing
the market data that Vasicek and CIR models are rejected when tested as restrictions
of a more general model.

If the short rate is modelled by a stochastic differential equation, the other interest
rates can be computed from the bond prices, which are solutions to the parabolic
partial differential equation. Among the models described above, only the Vasicek
and CIR models have the solution known in a closed form. For a general CIR model,
although found superior in modelling the evolution of the short rate, the bond prices
are not so easily computed. Recently, analytical approximation formulae have been
suggested in [3], [9], [10].

Generalization of the convergence model by Corzo and Schwarz has been studied
in the thesis [8] and the paper [12]. The European short rate is assumed to follow
CIR and general CKLS models respectively. It is shown in [8] that in the case of
uncorrelated Wiener processes governing the evolution of the European and domestic
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short rate, the pricing of a domestic bond can be reduced to solving a system of
ordinary differential equations. For the general case, an analytical approximation
formula has been suggested in [12]. This model was then fit to real Euro area and
Slovak data in the last quarter before Slovakia joined the monetary union. The
resulting fit is, however, not satisfying. This is true for the modelling European
rates by the CIR model in the first place. Hence the first question when building
a convergence model is the suitable model for the European interest rates. This
has been found in the thesis [6]. The instantaneous interest rate is modelled as a
sum of two unobservable mean reverting factors. Their sum is also considered to be
unobservable, instead of identifying it with an overnight rate, to prevent the possible
effect of speculations on the market affecting the overnight. This model achieves a
much better fit, see the comparison in the Figure 1.3.

Fig. 1.3. Fitting the European term structures from the last quarter of 2008 using the 1-factor
CIR and 2-factor CIR models, selected days. Source: [12], [6].

In this paper we propose the convergence model, where the European short rate
is modelled as the sum of two factor of the CKLS type. Pricing European bonds is
derived in the cited work [6]. Here we concentrate on pricing the domestic bonds -
finding explicit solutions, proposing an analytical approximation for the general case
and its preliminary analysis.

The paper is organized as follows: In section 2 we define the model in terms of a
system of stochastic differential equations. Section 3 deals with bond pricing, which
is firstly considered in the general case and then in the special cases which will be
needed in the rest of the paper. In particular, we derive a closed form solution for the
Vasicek-type of a model and a reduction to a system of ODEs for a special case of the
CIR-type model. Based on the Vasicek closed form solution, we propose an analytical
approximation formula for the general CKLS-type model. Using the ODE represen-
tation of the exact solution of the CIR model, we derive the order of accuracy of the
approximation formula in this case. In section 4 we test the proposed approximation
numerically. We end the paper with some concluding remarks in section 5.
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2. Formulation of the model. We propose the following model for the joint
dynamics of the European re and domestic rd instantaneous interest rate. The Eu-
ropean rate re = r1 + r2 is modelled as the sum of the two mean-reverting factors r1

and r2, while the domestic rate rd reverts to the European rate. Volatilities of the
processes are assumed to have a general CKLS form. Hence

dr1 = κ1(θ1 − r1)dt + σ1r
γ1

1 dw1

dr2 = κ2(θ2 − r2)dt + σ2r
γ2

2 dw2

drd = κd((r1 + r2) − rd)dt + σdrγd

d dwd

with Cor(dw) = Rdt, where dw = (dw1, dw2, dwd)T is a vector of Wiener processes
with correlation matrix R, whose elements (i.e., correlations between ri and rj) we
denote by ρij .

Figure 2.1 and Figure 2.2 show the evolution of the factors and the interest rates
for the following set of parameters: κ1 = 3, θ1 = 0.02, σ1 = 0.05, γ1 = 0.5, κ2 =
10, θ2 = 0.01; σ2 = 0.05, γ2 = 0.5, κd = 1, σd = 0.02, γd = 0.5, ρij = 0 for all i, j.

Fig. 2.1. Simulation of the factors r1, r2 (left) and the European short rate re = r1 + r2 (right).

Fig. 2.2. Simulation of the European short rate re and the domestic short rate rd.

3. Bond prices. To compute the bond prices, it is necessary to specify so called
market prices of risk for each factor, in addition to the stochastic differential equations
for the short rates. Denoting the market prices of risk as λ1 = λ1(t, r1, r2, rd), λ2 =
λ2(t, r1, r2, rd), λd = λd(t, r1, r2, rd) we obtain the following PDE for the price P =
P (τ, r1, r2, rd) of the bond with time to maturity τ = T − t (cf. [7]):

−∂P

∂τ
+ [κd((r1 + r2) − rd) − λdσdr

γd

d ]
∂P

∂rd

+ [κ1(θ1 − r1) − λ1σ1r
γ1

1 ]
∂P

∂r1

+ [κ2(θ2 − r2) − λ2σ2r
γ2

2 ]
∂P

∂r2
+

σ2
dr2γd

d

2

∂2P

∂r2
d

+
σ2

1r
2γ1

1

2

∂2P

∂r2
1

+
σ2

2r
2γ2

2

2

∂2P

∂r2
2

+ρ1dσdr
γd

d σ1r
γ1

1

∂2P

∂rd∂r1
+ ρ2dσdr

γd

d σ2r
γ2

2

∂2P

∂rd∂r2
+ ρ12σ1r

γ1

1 σ2r
γ2

2

∂2P

∂r1∂r2
− rdP = 0.
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The PDE holds for all rd, r1, r2 > 0 and τ ∈ [0, T ] and it satisfies the initial condition
P (0, rd, r1, r2) = 1 for all rd, r1, r2 > 0.

3.1. Vasicek and CIR type convergence models. We define the Vasicek-
type convergence model as the model, where the volatilities of the factors are all
constant (i.e., γ1 = γ2 = γd = 0), as a generalization of the one-factor model [11].
Similarly as in this one-factor model, we consider constant market prices of risk, i.e.,
λ1(t, r1, r2, rd) = λ1, λ2(t, r1, r2, rd) = λ2, λd(t, r1, r2, rd) = λd, where λ1, λ2 and λd

are constants.
Similarly, as in one-factor and two-factor models proposed in [5] we define the

CIR-type convergence model as the model with γ1 = γ2 = γd = 1/2 and the mar-
ket prices of risk proportional to the square roots of the corresponding factors, i.e.,
λ1(t, r1, r2, rd) = λ1

√
r1, λ2(t, r1, r2, rd) = λ2

√
r2, λd(t, r1, r2, rd) = λd

√
rd, where

λ1, λ2 and λd are constants.
The PDE for the bond price then reads as

−∂P

∂τ
+ µd

∂P

∂rd

+ µ2
∂P

∂r1
+ µ3

∂P

∂r2
+ +

σ2
dr2γd

d

2

∂2P

∂r2
d

+
σ2

1r
2γ1

1

2

∂2P

∂r2
1

+
σ2

2r
2γ2

2

2

∂2P

∂r2
2

+ρ1dσdr
γd

d σ1r
γ1

1

∂2P

∂rd∂r1
+ ρ2dσdr

γd

d σ2r
γ2

2

∂2P

∂rd∂r2
+ ρ12σ1r

γ1

1 σ2r
γ2

2

∂2P

∂r1∂r2
− rdP = 0,

where

µd = a1 + a2rd + a3r1 + a4r2, µ2 = b1 + b2r1, µ3 = c1 + c2r2

(note that they are in fact the so called risk neutral drifts, cf. [1] for the relation
between bond pricing and the risk neutral measure) with

• a1 = −λdσd, a2 = −κd, a3 = κd, a4 = κd, b1 = κ1θ1 − λ1σ1 ,b2 = −κ1,
c1 = κ2θ2 − λ2σ2, c2 = −κ2 in the Vasicek-type model,

• a1 = 0 a2 = −κd − λdσd, a3 = κd, a4 = κd, b1 = κ1θ1, b2 = −κ1 − λ1σ1,
c1 = κ2θ2, c2 = −κ2 − λ2σ2 in the CIR-type model.

We show that in the Vasicek case and the uncorrelated version (i.e., if the Wiener
processes w1, w2, wd are uncorrelated) of the CIR case, the solution of the PDE, can
be written in a separable form

P (rd, r1, r2, τ) = eA(τ)rd+B(τ)r1+C(τ)r2+D(τ).(3.1)

Furthermore, in the Vasicek model the functions A, B, C, D can be written in the
closed form. In the CIR model, they are solutions to the system of ordinary differential
equations, which can be solved numerically much easier than the original PDE.

To prove the claim about the Vasicek model we insert the expected form of the
solution (3.1) into the PDE with γi = 0. We obtain

rd(−Ȧ + a2A − 1) + r1(−Ḃ + a3A + b2B) + r2(−Ċ + a4A + c2C)

+(−Ḋ + a1A + b1B + c1C +
σ2

d

2
A2 +

σ2
1

2
B2 +

σ2
2

2
C2

+ρ1dσdσ1AB + ρ2dσdσ2AC + ρ12σ1σ2BC) = 0,

which implies the following system of ordinary differential equations:

Ȧ = a2A − 1,
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Ḃ = a3A + b2B,

Ċ = a4A + c2C,

Ḋ = a1A + b1B + c1C +
σ2

d

2
A2 +

σ2
1

2
B2 +

σ2
2

2
C2 + ρ1dσdσ1AB

+ρ2dσdσ2AC + ρ12σ1σ2BC,(3.2)

with initial conditions A(0) = B(0) = C(0) = D(0) = 0. Functions A, B, C are easily
found to be equal to (here and in the subsequent analysis we assume that a2 6= b2 and
a2 6= c2, and we omit the very special case when the coefficients are equal)

A(τ) =
1 − ea2τ

a2
, B(τ) =

a3

(

b2(1 − ea2τ ) − a2(1 − eb2τ )
)

a2b2(a2 − b2)
,

C(τ) =
a4 (c2(1 − ea2τ ) − a2(1 − ec2τ ))

a2c2(a2 − c2)
.

The function D can be found by integration. For the sake of brevity we omit the
details.

Now we consider the uncorrelated CIR case. Substituting γi = 1/2 and zero
correlations ρij = 0; and inserting the expected form of the solution (3.1) into the
PDE we obtain

rd(−Ȧ + a2A +
σ2

d

2
A2 − 1) + r1(−Ḃ + a3A + b2B +

σ2
1

2
B2)

+r2(−Ċ + a4A + c2C
σ21

2

2
C2) + (−Ḋ + a1A + b1B + c1C) = 0,

which implies the system of ordinary differential equations

Ȧ = a2A +
σ2

d

2
A2 − 1,

Ḃ = a3A + b2B +
σ2

1

2
B2,

Ċ = a4A + c2C +
σ2

2

2
C2,

Ḋ = a1A + b1B + c1C,(3.3)

with initial conditions A(0) = B(0) = C(0) = D(0) = 0. Firstly, we find the function
A by separation of variables. Then, we independently numerically solve the ODEs for
B and C, and finally by numerical integration we obtain the function D.

Figure 3.1 shows the examples of term structures from the CIR-type model, where
we have taken λd = λ1 = λ2 = 0. The remaining parameters are the same as in the
section 2. Note the variety of the term structure shapes which can be obtained for
the same values of both the domestic short rate rd and the European short rate re,
depending on the decomposition of re into the factors r1 and r2.

3.2. Analytical approximation formula for general convergence model.

In the general case of the convergence model the assumption (3.1) does not lead to
a solution. We use the idea of finding an approximative formula which has been
successfully used in simpler models (one-factor models in [10], two-factor models in
[6] and [12]). We consider the closed form solution from the model of the Vasicek
type and replace its constant volatilities σ1, σ2, σd by instantaneous volatilities σ1r

γ1

1 ,
σ2r

γ2

2 , σdr
γd

d . In this way we obtain the approximation P ap = P ap(τ, r1, r2, rd).
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Fig. 3.1. Examples of term structures in the CIR-type convergence model. Domestic short
rate rd equals 4% (left) and 3% (right). European short rate re equals 5%, the term structures
correspond to its different decompositions into factors: r1 = 4%, r2 = 1%; r1 = 2.5%, r2 = 2.5%;
r1 = 1%, r2 = 4%.

3.3. Order of accuracy in the case of uncorrelated CIR model. Recall
that we have the separated form of the solution (3.1) for the bond price in CIR model
with zero correlations ρij and the system of ODEs (3.3). The system (3.3) enables us
to compute the derivatives of the functions A, B, C, D at τ = 0 (see Table 3.1) and
consequently the Taylor series expansion of lnP (τ, r1, r2, rd) around τ = 0.

The approximation formula P ap is given in the closed form, hence the Taylor series
can be computed also for lnP ap(τ, r1, r2, rd). (Alternatively, we can use the system
of ODEs similarly as in the case of the exact solution.) The derivatives needed in the
expansion are shown in Table 3.2.

Table 3.1

Calculation of the derivatives of functions A, B, C, D from the CIR model with zero correlations

i 0 1 2 3 4

Ai(0) 0 −1 −a2 −a2
2 + σ2

d −a3
2 + 4a2σ

2
d

Bi(0) 0 0 −a3 −a3a2 − a3b2 −a2
2a3 + a3σ

2
d − a2a3b2 − a3b

2
2

Ci(0) 0 0 −a4 −a4a2 − a4c2 −a2
2a4 + a4σ

2
d − a2a4c2 − a4c

2
2

Di(0) 0 0 −a1 −a1a2 − b1a3 − c1a4 −a1a
2
2 + a1σ

2
d − a2a3b1

−a3b1b2 − a2a4c1 − a4c1c2

Table 3.2

Calculation of the derivatives of functions A, B, C, D from the approximation of the CIR model
with zero correlations.

i 0 1 2 3 4

Ai(0) 0 −1 −a2 −a2
2 −a3

2

Bi(0) 0 0 −a3 −a3a2 − a3b2 −a2
2a3 − a2a3b2 − a3b

2
2

Ci(0) 0 0 −a4 −a4a2 − a4c2 −a2
2a4 − a2a4c2 − a4c

2
2

Di(0) 0 0 −a1 −a1a2 − b1a3 − c1a4 + σ2
drd −a1a

2
2 − a2a3b1 − a3b1b2

−a3b1b2 − a2a4c1 − a4c1c2

+3a2σ
2
drd

Comparing the expressions in Table (3.1) and Table (3.2) we obtain the order
of the difference lnP ap(τ, r1, r2, rd) − lnP (τ, r1, r2, rd), which can be interpreted in
terms of the relative error in bond prices and the absolute error in term structures,
as stated in the following theorem and its corollary.
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Theorem 3.1. Let PCIR,ρ=0 be the bond price in the CIR-type convergence model

with zero correlations and let PCIR,ρ=0,ap be its approximation proposed in section 3.2.

Then

lnPCIR,ρ=0,ap − lnPCIR,ρ=0 = − 1

24
σ2

d (a1 + a2rd + a3r1 + a4r2) τ4 + o(τ4)

for τ → 0+.

Note that the form of the leading term of the approximation error (i.e., − 1
24σ2

d

times the risk neutral domestic drift) is the same as in the two-factor convergence
model [12], where the analogical strategy of forming the approximative formula has
been used.

Corollary 3.2.

1. The relative error of the bond price satisfies

PCIR,ρ=0,ap − PCIR,ρ=0

PCIR,ρ=0
= − 1

24
σ2

d (a1 + a2rd + a3r1 + a4r2) τ4 + o(τ4)

for τ → 0+.

2. The error in interest rates R can be expressed as

RCIR,ρ=0,ap − RCIR,ρ=0 =
1

24
σ2

d (a1 + a2rd + a3r1 + a4r2) τ3 + o(τ3)

for τ → 0+.

Proof. The first corollary is a consequence of the Taylor expansion of the expo-
nential function ex = 1 + x + o(x) for x → 0+. The second corollary follows from the

formula R(τ, r) = − lnP (τ,r)
τ

for calculating the interest rates R from the bond prices
P (cf. [1], [7]).

4. Numerical experiment. We consider the term structures presented in Fig-
ure 3.1 and compare them with the approximate values obtained by the proposed
formula. The results are summarized in Table 4.1 and Table 4.2. The accuracy is
very high (note that Euribor is quoted to three decimal places) even for higher ma-
turities.

Table 4.1

Exact interest rates and their approximations obtained by the proposed formula. The domestic
short rate is 4%, the European short rate is 5%, the columns correspond to the different values of
the factors: r1 = 4%, r2 = 1% (left), r1 = 2.5%, r2 = 2.5% (middle), r1 = 1%, r2 = 4% (right).

maturity exact approx. exact approx. exact approx.

0 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000
0.25 4.06607 4.06607 4.01638 4.01638 3.96668 3.96668
0.5 4.05591 4.05591 3.95219 3.95219 3.84847 3.84847
0.75 4.00932 4.00931 3.87493 3.87493 3.74055 3.74054
1 3.94734 3.94733 3.7995 3.79949 3.65166 3.65165
2 3.69802 3.69796 3.56221 3.56217 3.4264 3.42638
3 3.52184 3.52171 3.41487 3.41479 3.30791 3.30788
4 3.40688 3.40669 3.32208 3.32196 3.23728 3.23724
5 3.32995 3.32972 3.26077 3.26062 3.19158 3.19153
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Table 4.2

Exact interest rates and their approximations obtained by the proposed formula. The domestic
short rate is 3%, the European short rate is 5%, the columns correspond to the different values of
the factors: r1 = 4%, r2 = 1% (left), r1 = 2.5%, r2 = 2.5% (middle), r1 = 1%, r2 = 4% (right).

maturity exact approx. exact approx. exact approx.

0 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000
0.25 3.18127 3.18127 3.13158 3.13158 3.08189 3.08189
0.5 3.26898 3.26898 3.16526 3.16526 3.06154 3.06154
0.75 3.30582 3.30583 3.17144 3.17144 3.03705 3.03705
1 3.31524 3.31524 3.1674 3.16741 3.01957 3.01957
2 3.26573 3.2657 3.12992 3.12991 2.99411 2.99412
3 3.20515 3.20508 3.09818 3.09816 2.99122 2.99124
4 3.1615 3.1614 3.0767 3.07667 2.9919 2.99194
5 3.13134 3.13121 3.06215 3.06211 2.99296 2.99301

5. Conclusions. The paper deals with an approximation of the bond price in
a three factor convergence model of the CKLS type on the basis of the closed form
solution of the Vasicek model. We have numerically tested the proposed approxima-
tion on the CIR model with a zero correlations, for which the exact solution can be
expressed in a simpler form and also analytically derived its accuracy in this case.
The difference of logarithms of the exact solution and the proposed approximation is
of the order O(τ4).

Our next aim is to derive the order of accuracy in the general case. The special
form of the solution in the case considered in this paper makes the analysis more
direct, however, it is possible to study the accuracy of the approximation of the bond
prices also without this structure (see [12] for the analysis of a two-factor convergence
model). Furthemore, we will look for a suitable calibration algorithm and calibrate the
model to the real data to see, whether the increased complexity leads to a significant
improvement in fitting the market data.
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