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The Markov property can be stated as follows: given any condition H, related to
the behavior of the particle before time s > 0, the process Y (t) = B* (t + s) is a
Brownian motion with initial distribution3?

p(I)=P“{B*(s)€I|H}.

This property establishes the independence of the future process B” (t + s) from
the past (absence of memory) when the present B” () is known and reflects the
absence of memory of the random walk.

In the strong Markov property, s is substituted by a random time 7, depending
only on the behavior of the particle in the interval [0, 7]. In other words, to decide
whether or not the event {7 <t} is true, it is enough to know the behavior of the
particle up to time ¢. These kinds of random times are called stopping times. An
important example is the first exit time from a domain, that we will consider in
the next chapter. Instead, the random time defined by

T=inf{t: B(t) > 10 and B(t+1) < 10}

is not a stopping time. Indeed (measuring time in seconds), T is “the smallest”
among the times ¢ such that the Brownian path is above level 10 at time ¢, and
after one second is below 10. Clearly, to decide whether 7 < 3, say, it is not enough
to know the path up to time ¢ = 3, since 7 involves the behavior of the path up to
the future time t = 4.

e Expectation. Given a sufficiently smooth function ¢ = ¢g( ), € R, we can
define the random variable

Z(t) = (go B")(t) = g(B* (1))

Its expected value is given by the formula

E* [Z<t>1=/ng)mx,t,dw:/g<y>r<y—x,t>czy.

R

We will meet this formula in a completely different situation later on.

2.5 Diffusion, Drift and Reaction

2.5.1 Random walk with drift

The hypothesis of symmetry of our random walk can be removed. Suppose our unit
mass particle moves along the x axis with space step h > 0, every time interval of
duration 7 > 0, according to the following rules (Fig. 2.9).

1. The particle starts from x = 0.
2. It moves to the right with probability pg # % and to the left with probability
go = 1 — po independently of the previous step.
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Fig. 2.9. Random walk with drift

Rule 2 breaks the symmetry of the walk and models a particle tendency to
move to the right or to the left, according to the sign of py — go being positive
or negative, respectively. Again we denote by p = p(«,t) the probability that the
particle location is « = mh at time ¢ = N7. From the total probability formula we
have:

p@,t+7)= op(x—ht)+qp(@+hi) (2.87)

with the usual initial conditions
p(0,0)=1 and p(x,0)=0 if x#0.

As in the symmetric case, keeping x and ¢ fixed, we want to examine what happens
when we pass to the limit for h — 0,7 — 0. From Taylor formula, we have

p(r,t+7)=p(x,t)+p: (x,6) T +0(7),

1
p (ot ht) = p(w,t) £ po (2,0) ht Spee (2,0) h° + 0 (h7).

Substituting into (2.87), we get

1
T+ o(7) = §pmh2 + (g0 — po) hp. + 0 (h?). (2.88)

A new term appears: (¢o — po) hp,. Dividing by 7, we obtain

1 h? go — Do) h h?

Again, here is the crucial point. If we let h, 7 — 0, we realize that the assumption

h2
— =2D (2.90)
-

alone is not sufficient anymore to get something non trivial from (2.89): indeed, if

we keep pg and ( constant, we have

(do —po) h
T

— 00

32 P(A|H) denotes the conditional probability of A, given
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and from (2.89) we get a contradiction. What else we have to require? Writing

(go—po)h (g0 —po) h*

T h T

we see we must require, in addition to (2.90), that

LM 4 (2.91)
h
with [ finite. Notice that, since ¢y + pp = 1, (2.91) is equivalent to
1 1
po:§—§h+0(h) and qo:§—|—§h+0(h), (2.92)

that could be interpreted as a symmetry of the motion at a microscopic scale.
With (2.91) at hand, we have

2

and (2.89) becomes in the limit,

We already know that Dp.. models a diffusion phenomenon. Let us unmask the
term bp,, by first examining the dimensions of b. Since gy — pp is dimensionless,
being a difference of probabilities, the dimensions of b are those of h/7, namely of
a velocity.

Thus the coefficient b codifies the tendency of the limiting continuous motion,
to move towards a privileged direction with speed |b|: to the right if b < 0, to
the left if b > 0. In other words, there exists a current of intensity |b| driving the
particle. The random walk has become a diffusion process with drift.

The last point of view calls for an analogy with the diffusion of a substance
transported along a channel.

2.5.2 Pollution in a channel

In this section we examine a simple convection-diffusion model of a pollutant on
the surface of a narrow channel. A water stream of constant speed v transports the
pollutant along the positive direction of the x axis. We can neglect the depth of
the water (thinking to a floating pollutant) and the transverse dimension (thinking
of a very narrow channel).

Our purpose is to derive a mathematical model capable of describing the evo-
lution of the concentration3® = ¢ (z,t) of the pollutant. Accordingly, the integral

z+Ax
/ c(y,t)dy (2.94)

33 [c] = [mass] x | 7t



