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Department of Applied Mathematics and Statistics

Faculty of Mathematics, Physics and Informatics

Comenius University Bratislava

Abstract

In the paper we solve the problem of DH-optimal design on a
discrete experimental domain, which is formally equivalent to maxi-
mizing determinant on the convex hull of a finite number of positive
semidefinite matrices. The problem of DH-optimality covers many
special design settings, e.g. the D-optimal experimental design for re-
gression models with grouped observations. For DH-optimal designs
we prove several theorems generalizing known properties of standard
D-optimality. Moreover, we show that DH-optimal designs can be
numerically computed using a multiplicative algorithm, for which we
give a proof of convergence. We illustrate the results on the problem
of D-optimal augmentation of independent regression trials for the
quadratic model on a rectangular grid of points in the plane.

Keywords: D-optimal design, grouped observations, D-optimal
augmentation of trials, multiplicative algorithm

1 Introduction

Consider the standard homoscedastic linear regression model with un-
correlated observations Y satisfying E(Y ) = βT f(t), where β ∈ Rm

is an unknown vector of parameters and f = (f1, ..., fm)T is a vector
of real-valued regression functions linearly independent on the exper-
imental domain X = {x1, ..., xn}. For this model, constructing the
D-optimal experimental design (see, e.g., monographs [4], or [5]) is
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equivalent to finding a vector of D-optimal weights, which is any so-
lution w∗ of the problem

max

{
ln det

(
n∑
i=1

wif(xi)fT (xi)

)∣∣∣∣∣w ∈ Sn

}
, (1)

where Sn is the unit simplex in Rn:

Sn =

{
w ∈ Rn :

n∑
i=1

wi = 1, w1, ..., wn ≥ 0

}
.

In this paper we study a generalization of the problem (1) that
can be used in a variety of less standard optimal design settings and,
in the same time, exhibits similar theoretical properties as well as
permits the use of efficient algorithms, such as a generalization of the
multiplicative algorithm for the standard problem of D-optimality on
a discrete experimental domain.

Notation: By the symbols Sm,Sm+ and Sm++ we denote the set of
all symmetric, positive semidefinite and positive definite matrices of
type m ×m. The symbol � defines the Loewner partial ordering on
Sm, i.e., A � B⇔ A−B ∈ Sm+ .

Let H be the convex hull of the set of nonzero positive semidefinite
matrices H1, ...,Hn of type m×m, such that

H ∩ Sm++ 6= ∅, (2)

i.e., H contains a regular matrix. Our aim is to find a vector w∗ =
(w∗1, ..., w

∗
n)T that solves the optimization problem

max

{
ln det

(
n∑
i=1

wiHi

)∣∣∣∣∣w ∈ Sn

}
. (3)

Note that there always exists a solution w∗ of (3), and the matrix
M∗ =

∑n
i=1w

∗
iHi is unique and regular, which follows from com-

pactness and convexity of H, existence of a regular matrix in H, and
strict concavity of ln det(·) on Sm++. We will say that the vector w∗ is
a DH-optimal design, and its components w∗1, ..., w

∗
n are DH-optimal

weights corresponding to the elementary design matrices H1, ...,Hn.
The matrix M∗ will be called the DH-optimal information matrix.

Clearly, the standard problem (1) is a special case of (3) with ele-
mentary information matrices corresponding to individual regression
trials, i.e., Hi = f(xi)fT (xi) for all i = 1, ..., n. However, (3) covers
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all problems of approximate D-optimal experimental design in which
there exists a mapping H : X→ Sm+ , such that the information matrix
corresponding to trials in points t1, ..., tk ∈ X is equal to

∑k
i=1 H(ti),

that is in any model, in which the information matrix is additive.

For instance, in the regression model with grouped observations
(see [4], Section II.5.3), the information matrix of a design w ∈ Sn is
given by the formula

M(w) =
n∑
i=1

wiGiK−1
i GT

i ,

where Gi is an m × ri matrix and Ki is a regular ri × ri covariance
matrix of the ri-dimensional vector of observations corresponding to
the trial in the point xi ∈ X. Hence, D-optimality for the model with
grouped observations is a problem of DH-optimality with the basic
information matrices Hi = GiK−1

i GT
i for i = 1, ..., n. In Section 6 we

demonstrate that DH-optimality covers also other design problems,
such as D-optimal augmentation of independent regression trials.

2 Equivalence theorem for DH-optimal

designs

Consider the function Φ : Sm+ → R∪{−∞} defined Φ(M) = ln det(M)
for M ∈ Sm++ and Φ(M) = −∞ otherwise. We will call the function Φ
the ”criterion of D-optimality”. It is well known that Φ is a concave
function and the gradient in M ∈ Sm++ is ∇Φ(M) = M−1, see, e.g.,
[4], Section IV.2.1. Hence the directional derivative in M along the
direction H−M, where H ∈ Sm, is

∂Φ(M; H−M) = tr (∇Φ(M)(H−M)) = tr(M−1H)−m.

Clearly, a matrix M∗ maximizes Φ on H iff M∗ is regular and
∂Φ(M∗,Hi −M∗) ≤ 0 for all i = 1, ..., n, which is equivalent to

tr(M−1
∗ Hi) ≤ m for all i = 1, ..., n.

That is, the optimization problem:

min

{
max
i=1,...,n

tr
(
M−1Hi

) ∣∣∣∣∣M =
n∑
i=1

wiHi, w ∈ Sn
}

(4)

has the optimal value less or equal to m, and M∗ =
∑n

i=1w
∗
iHi,

where w∗i are components of an optimal solution of (4), maximizes the
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determinant on the set H. Moreover, notice that

m ≥ max
i=1,...,n

tr(M−1
∗ Hi) ≥

n∑
i=1

w∗i tr(M
−1
∗ Hi)

= tr

(
M−1
∗

n∑
i=1

w∗iHi

)
= m, (5)

that is maxi=1,...,n tr(M−1
∗ Hi) = m, which means that the optimal

value of the problem (4) is exactly m. Therefore, we know the optimal
value of the problem (4), although we do not know the point at which
it is attained. Moreover, from (5) we see that a coefficient w∗i of the
optimal convex combination is nonzero only if tr(M−1

∗ Hi) = m.

We obtain a generalization of the famous Kiefer-Wolfowitz theorem
of equivalence between the problems of D- and G-optimality (see [3],
or [4] Section IV.2.4):

Theorem 1. Let w∗ ∈ Sn. Then the following three statements are
equivalent:

(i) w∗ is a DH-optimal design;

(ii) w∗ is a solution of the problem (4);

(iii) maxi=1,...,n tr(M−1
∗ Hi) = m, where M∗ =

∑n
i=1w

∗
iHi.

Note also that for any information matrix M ∈ H we have

Φ(M∗)− Φ(M) ≤ tr((M∗ −M)∇Φ(M))

= tr(M∗M−1)−m =
n∑
i=1

w∗i tr
(
HiM−1

)
−m ≤ εM, (6)

where

εM = max
i=1,...,n

tr(HiM−1)−m. (7)

By Theorem 1, if M approaches M∗, then εM converges to 0. There-
fore, inequality (6) can be used to control convergence of DH-optimal
design algorithms; cf. Section 5.

3 Bounds for DH-optimal weights

A well known fact in the theory of D-optimal design is that the com-
ponents of the vector of D-optimal weights are bounded by 1/m from
above (see, e.g., [5] Section 8.12). It turns out that in the case of
general DH-optimality, any optimal weight w∗i satisfies constraints de-
termined by the rank of the corresponding matrix Hi:

4



Theorem 2. Let w∗ be a DH-optimal design. Then

w∗i ≤
rank(Hi)

m
for all i = 1, ..., n.

Proof. Let M∗ =
∑n

i=1w
∗
iHi be the DH-optimal information matrix,

where w∗ is a vector of DH-optimal weights. Fix a single index i ∈
{1, ..., n}, such that w∗i > 0 and denote

Ni = M
− 1

2
∗ HiM

− 1
2
∗ .

From Theorem 1 we know that tr(M−1
∗ Hi) = tr(Ni) = m, which

means that the sum of the eigenvalues of Ni is m. In the same time,
the number of nonzero eigenvalues of Ni cannot exceed rank(Ni) =
rank(Hi). Thus, there exists an eigenvalue λ of the matrix Ni such
that

λ ≥ m(rank(Hi))−1.

Since λ is the eigenvalue of Ni we have det(Ni−λIm) = 0, from which
we obtain

0 = det(Hi − λM∗).

In other words M∗−λ−1Hi is singular. We will show that this implies
w∗i ≤ λ−1. Assume the converse, that is w∗i > λ−1. Then

M∗ − λ−1Hi =
∑
j 6=i

w∗jHj + (w∗i − λ−1)Hi

=
∑
j 6=i

w∗jHj +
w∗i − λ−1

w∗i
w∗iHi �

w∗i − λ−1

w∗i

n∑
j=1

w∗jHj

=
w∗i − λ−1

w∗i
M∗ ∈ Sm++,

which is a contradiction with singularity of M∗ − λ−1Hi. Therefore
w∗i ≤ λ−1 ≤ rank(Hi)m−1.

As a straightforward corollary of the previous theorem we obtain
that if

∑n
i=1 rank(Hi) = m, then the DH-optimal design is simply a

vector w∗ with components w∗i = rank(Hi)/m.

4 Identification of zero weights of DH-

optimal designs

In this section we formulate a direct generalization the method from
the paper [2], which allows us to use any regular information matrix
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M =
∑n

i=1wiHi to identify indices j ∈ {1, ..., n}, such that w∗j = 0
for any DH-optimal design w∗.

Similarly as in the paper [2], let N = M− 1
2 M∗M− 1

2 , where M∗
is the DH-optimal information matrix, and let 0 < λ1 ≤ ... ≤ λm
denote the eigenvalues of N. Let w∗ be any DH-optimal design and

let j ∈ {1, ..., n}, such w∗j > 0. Set Yj = N−
1
2 M− 1

2 H
1
2
j . We have

tr(M−1Hj) = tr(NYjYT
j ) ≥ λ1tr(YjYT

j )

= λ1tr(M−1
∗ Hj) = λ1m, (8)

m∑
i=1

λ−1
i = tr(N−1) = tr(M−1

∗ M)

=
n∑
i=1

witr(M−1
∗ Hi) ≤ m, (9)

m∑
i=1

λi = tr(N) = tr(M∗M−1)

=
n∑
i=1

w∗i tr(HiM−1) ≤ m+ εM, (10)

where εM is defined by (7). Using identical methods as in the paper
[2], we can show that inequalities (9) and (10) imply

λ1 ≥ 1 +
εM
2
−
√
εM(4 + εM − 4/m)

2
, (11)

which together with inequality (8) yields:

Theorem 3. Let w ∈ Sn be any design such that M =
∑n

i=1wiHi

is regular, let w∗ be any DH-optimal design, and let j ∈ {1, ..., n} be
such that w∗j > 0. Then

tr(M−1Hj) ≥ m

[
1 +

εM
2
−
√
εM(4 + εM − 4/m)

2

]
. (12)

Therefore, using any regular information matrix M we can remove
all the basic information matrices Hj for which the inequality (12) is
not satisfied, since corresponding weights of the DH-optimal design
must be 0. This can help us significantly speed up computation of a
DH-optimal design (cf. [2]).
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5 A multiplicative algorithm for con-

structing DH-optimal designs

As a simple numerical method for calculating DH-optimal designs, we
will formulate a generalization of the Titterington-Torsney multiplica-
tive algorithm (see, e.g., [6], [7]).

Let w(0) = (w(0)
1 , ..., w

(0)
n )T be an initial design such that w(0)

i > 0
for all i = 1, ..., n. Based on the design w(j) = (w(j)

1 , ..., w
(j)
n )T , j ≥ 0,

and its information matrix Mj =
∑n

i=1w
(j)
i Hi, we can construct the

new vector w(j+1) = (w(j+1)
1 , ..., w

(j+1)
n )T using the formula:

w
(j+1)
i = m−1tr(M−1

j Hi)w
(j)
i for all i = 1, ..., n. (13)

(Note that (2) and positivity of w(j)
i implies regularity of Mj .) Clearly

n∑
i=1

w
(j+1)
i =

1
m

tr

(
M−1

j

n∑
i=1

w
(j)
i Hi

)
= 1,

that is w(j+1) is also a design. Note that the algorithm is computation-
ally very rapid, since it calculates the inverse of an m×m matrix only
once per iteration, with m being usually small (less than 10 in most
optimal design problems). The speed of calculation is more influenced
by the number n of support matrices, but the number of candidate
support matrices can be significantly reduced during the calculation
using the technique of Section 4.

In the following, we will prove that the multiplicative algorithm
produces a sequence

(
w(j)

)∞
j=1

of designs that converges to the DH-
optimal design in the sense that limj→∞ det(Mj) = det(M∗), where
M∗ is the DH-optimal information matrix. The proof of convergence
of the multiplicative algorithm for the standard D-optimality has been
based on a technique of conditional expectations, see [4], Section V.3.
For the proof of convergence of the multiplicative algorithm for general
DH-optimality, we will use a different approach based on the following
lemmas:

Lemma 1. (Theorem 6.10 of [8], or Theorem IX.5.11. in [1])
If (

A11 A12

A21 A22

)
� 0

and all of the blocks are square matrices of the same size, then

(det A12)2 ≤ det A11 det A22.
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Lemma 2. (Problem 28, Section 6.2 of [8])
Let A,B be positive semidefinite. Then det(A + B) ≥ det A and the
equality occurs if and only if A + B is singular or B = 0.

Theorem 4. For the algorithm defined by (13) it holds det(Mj) ≤
det(Mj+1) for all j ≥ 0, with optimality if and only if Mj = M∗.
Moreover limj→∞ det(Mj) = det(M∗).

Proof. Let M =
∑n

i=1wiHi for some vector w of positive weights
and let M+ =

∑n
i=1w

+
i Hi, where w+ is the vector of weights ob-

tained from w by one step of the multiplicative algorithm, i.e. w+ =
m−1tr(M−1Hi)wi for all i = 1, ..., n. Define αi = tr(M−1Hi)/m =
w+
i /wi and M̃ =

∑n
i=1

1
αi
wiHi, and note that M+ =

∑n
i=1 αiwiHi.

Clearly(
M+ M
M M̃

)
=

n∑
i=1

(
αiwiHi wiHi

wiHi
1
αi
wiHi

)

=
n∑
i=1

( √
αiwiH

1
2
i

√
wi
αi

H
1
2
i

)T ( √
αiwiH

1
2
i

√
wi
αi

H
1
2
i

)
� 0. (14)

From (14) and Lemma 1 it immediately follows that

det2(M) ≤ det(M+) det(M̃). (15)

Let λi be the i−th eigenvalue of the matrix M−1M̃. Using the in-
equality between geometric and arithmetic means we obtain

det
1
m (M−1M̃) =

m∏
i=1

λ
1
m
i ≤

1
m

m∑
i=1

λi =
1
m

tr(M−1M̃)

=
n∑
i=1

wi
αi

tr(M−1Hi) =
n∑
i=1

wi = 1. (16)

Consequently

det(M̃) ≤ det(M), (17)

which together with (15) gives the required inequality

det(M) ≤ det(M+). (18)

To prove the second part of the theorem, assume that

det(M) = det(M+). (19)
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From (15), (17) and (19) it follows, that

det(M) = det(M+) = det(M̃).

Therefore we have equality in (16), which implies that the eigenvalues
λi of the matrix M−1M̃ are all equal. Moreover, since det(M−1M̃) =
1 and the matrices M−1, M̃ are positive definite, we have M−1M̃ = I,
i.e. M = M̃. Using this fact, (14), and properties of the Schur
complement we obtain

M+ −M = M+ −MM̃−1M � 0.

Hence we can apply Lemma 2 with A = M and B = M+ −M,
which, together with (19) and the positive definiteness of M+, implies
M+ = M, i.e.

n∑
i=1

αiwiHi =
n∑
i=1

wiHi.

By multiplying both sides of this equality by 1
mM−1 and by taking

the trace we have
n∑
i=1

αiwi
tr(M−1Hi)

m
=

n∑
i=1

wi
tr(M−1Hi)

m

that is
∑n

i=1 α
2
iwi =

∑n
i=1 αiwi. Since

∑n
i=1 αiwi =

∑n
i=1w

+
i = 1, we

have ( n∑
i=1

αiwi

)2
=

n∑
i=1

α2
iwi. (20)

The equality condition of the weighted Cauchy-Schwarz inequality to-
gether with (20) implies

αi =
tr(M−1Hi)

m
= 1 for all i = 1, ..., n

Therefore M must be DH-optimal by Theorem (1).

The last statement of the theorem can be proved using the same
arguments as in the proof of Proposition V.6 in [4], that is, using
compactness of the space Sn of weights and monotonicity det(Mj) ≤
det(Mj+1), which is strict, unless Mj is optimal.
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6 Example

In this section we will demonstrate a technique of how to apply our
results to the problem of D-optimal approximate augmentation of a
set of regression trials. Consider the quadratic regression with inde-
pendent responses Y modeled by

E(Y ) = β1 + β2u+ β3v + β4u
2 + β5v

2 + β6uv

= fT (u, v)β = (1, u, v, u2, v2, uv)(β1, ..., β6)T ,

where the design point (u, v)T belongs to the experimental domain
X = {x1, ..., xn}, corresponding to the n = 25 point equispaced dis-
crete grid in the square I2 = [−1, 1]× [−1, 1], that is

x5(i−1)+j =
(
i− 3

2
,
j − 3

2

)T
, for i, j ∈ {1, ..., 5}.

Assume that we have already performed k trials uniformly on X,
i.e., we have performed k/n ∈ N trials in each design point (for in-
stance in order to verify validity of the model). Our aim is to perform
γk ∈ N additional trials in a way that maximizes determinant of the
final information matrix.

Let M(x) = f(x)fT (x) for all x ∈ X. In accord with the methodol-
ogy of approximate design of experiments, we shall solve the problem

argmaxw∈Sn
ln det

 n∑
j=1

k

n
M(xj) +

n∑
i=1

γkwiM(xi)

 , (21)

where wi is the proportion of the γk additional trials to be performed
in xi. The problem (21) is clearly equivalent to the problem of DH-
optimality with

Hi =
n∑
j=1

1
n
M(xj) + γM(xi), for i = 1, ..., n.

Due to symmetries of the quadratic model and the experimental
domain X, the D-optimal augmentation design is supported on at
most 9 points, with optimal weights w∗1 = w∗5 = w∗21 = w∗25 corre-
sponding to the vertices of I2, optimal weights w∗3 = w∗11 = w∗15 = w∗23

corresponding to the midpoints of edges of I2, and an optimal weight
w∗13 corresponding to the central point (0, 0). Figure 1 exhibits depen-
dence of the optimal weights on the augmentation factor γ. Notice
that if we add less than about 50% of trials, then the optimal method
is to perform them only in the vertices of the square, and if we add

10



between around 50% and 150% of trials, then we should only perform
them in the vertices and edge midpoints of the square. Naturally, for
γ →∞ the initial phase of experimentation becomes negligible and the
D-optimal augmentation design converges to the standard D-optimal
design.
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Figure 1: Optimal weights depending on the augmentation factor γ corre-
sponding to the support points at the vertices of the square I2 (solid line),
midpoints of the edges of the square I2 (dashed line) and the central point
(0, 0) (dotted line).
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