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Abstract

Semidefinite programming (SDP) is a special class of convex programming, which has been
recently intensively studied because of its applicability to various areas, such as combina-
torial optimization, system and control theory or mechanical and electrical engineering.
Moreover, SDP problems can be efficiently solved by interior point methods (IPM). The
most important concept in the IPM theory is the central path. It is an analytic curve in the
interior of the feasible set which tends to an optimal point at the boundary. The properties
of the central path are important for designing and analyzing of the IPM algorithms. In
this paper we will study the existence of different types of so-called weighted interior point
paths.
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1 INTRODUCTION

Semidefinite programming is a special and relatively new field of mathematical pro-
gramming. It contains important classes of problems as special cases, such as linear pro-
gramming, general convex quadratic programming or so called second-order-cone program-
ming. SDP has many interesting applications in combinatorial optimization (MAX-CUT
problem), quasiconvex programming, spectral analysis (min-max eigenvalue problem), en-
gineering (system and control theory, optimal truss design). SDP problems can be solved
in polynomial time by interior point algorithms. More about semidefinite programming
theory and applications can be found in [4, 13].

The central path is crucial in the study of IMP. Most interior point methods follow
the central path to reach an optimal solution. Since the behavior of the central path is
important for the interior point algorithms, its properties are intensively studied (see e.g.
[1, 2, 3]).

1.1 Semidefinite programming problems

Consider Sn - the vector space of n × n symmetric matrices, with the inner product
”•” defined as X •Y = tr(XY). Denote Sn

+ (Sn
++) the closed (open) convex cone of all

positive semidefinite (positive definite) matrices. For X ∈ Sn we will write X � 0 (X � 0)
if X ∈ Sn

+ (X ∈ Sn
++).

Let A1, . . . ,Am,C ∈ Sn and b ∈ Rm are given. Then the primal semidefinite program-
ming problem can be expressed in the form

minimize X •C
subject to Ai •X = bi, for all i = 1, . . . ,m,

X � 0,
(1)
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where X ∈ Sn is the variable. The dual semidefinite programming problem is

maximize bT y
subject to

∑m
i=1 Aiyi + S = C,

S � 0,
(2)

where (S, y) ∈ Sn ×Rm are the variables. We will denote

P0 = {X ∈ Sn | Ai •X = bi, i = 1, . . . ,m;X � 0}

and

D0 = {(S, y) ∈ Sn ×Rm |
m∑

i=1

Aiyi + S = C;S � 0}

the primal and the dual strictly feasible set, respectively.

1.2 Central path in semidefinite programming

The following two assumptions are usually made in semidefinite programming:
(A1) The matrices A1, . . . ,Am are linearly independent.
(A2) P0 6= ∅,D0 6= ∅.
The assumption A1 ensures the one-to one correspondence between the dual variables y
and S. The assumption A2 (also referred to as the interior point assumption) follows from
the duality theorem and the both assumptions together are equivalent to the fact, that the
optimal solution sets are nonempty and bounded (see [12]).
Under these assumptions the well known necessary and sufficient conditions of optimality
hold:

(X, y,S) is optimal if and only if

Ai •X = bi, i = 1, . . . ,m, X � 0,∑m
i=1 Aiyi + S = C, S � 0,

XS = 0.
(3)

The first condition is the primal feasibility, the second condition is the dual feasibility and
the third is the complementarity condition. Interior point methods usually work with the
system

Ai •X = bi, i = 1, . . . ,m, X � 0,∑m
i=1 Aiyi + S = C, S � 0,

XS = µI.
(4)

where, in comparison with (3), the complementarity condition is perturbed. It is well
known that (under the assumptions (A1), (A2)) for any µ > 0 there exists unique solution
(X(µ), y(µ),S(µ)) of (4). 1 Then the central path for semidefinite programming can be
well defined as the set

{ (X(µ), y(µ),S(µ)) | µ > 0}

or alternatively as the map

R++ → Sn ×Rm × Sn, µ→ (X(µ), y(µ),S(µ)).
1This result can be proved by defining the primal and dual logarithmic barrier problems associated with

(1) and (2) and follows from the strict convexity (concavity) of the primal (dual) barrier function. For the
proof see e.g. [4].
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1.3 Symmetrization of the complementarity condition

It is well known that the product of two symmetric matrices is not necessary symmetric.
This may cause problems in the interior point algorithms, which are based on solving the
system (4). Therefore the matrix XS is replaced with a symmetrization matrix Φ(X,S) ∈
Sn and they are equivalent in the following way:

If X � 0,S � 0 then XS = 0 if and only if Φ(X,S) = 0.

In semidefinite programming and semidefinite complementarity problems the following
symmetrization maps are discussed (see [1], [5]-[10]):

Φ1(X,S) = (XS + SX)/2
Φ2(X,S) = X

1
2 SX

1
2

Φ3(X,S) = LT
XSLT

X

Φ4(X,S) = (X
1
2 S

1
2 + S

1
2 X

1
2 )/2

Φ5(X,S) = (UT
SLX + LT

XUT
S)/2

(5)

where X
1
2 ,S

1
2 are the square roots of the matrices X,S; LX is the lower Cholesky factor

of the matrix X and US is the upper Cholesky factor of the matrix S. Let us note, that if
X � 0,S � 0, then the matrices Φ2(X,S),Φ3(X,S) are positive semidefinite, however the
other are not in general.

1.4 Motivation and goal

In linear programming, the concept of the central path can be easily extended to the
concept of the weighted central path—by defining weighted logarithmic barrier functions.
However this technique can not be applied to semidefinite programming. There were more
approaches of how to define the weighted central path in SDP. One of them was developed
by Monteiro et al. (see [5], [8]) originally for nonlinear semidefinite complementarity prob-
lems. Following this approach one can define the weighted central path for SDP as the set
{ (X(µ), y(µ),S(µ)) | µ > 0} of the solutions of the parameterized systems

Ai •X = bi + µ4bi, i = 1, . . . ,m, X � 0,∑m
i=1 Aiyi + S = C + µ4C, S � 0,

Φj(X,S) = φj(µ)W,
(6)

where 4b ∈ Rm,4C ∈ Sn are fixed, W � 0 is the weight, Φj(X,S) is one of the sym-
metrization maps in (5) and

φj(µ) = µ, j = 1, 2, 3; φj(µ) =
√
µ, j = 4, 5.

Therefore, according to the symmetrization map we will distinguish five types of weighted
paths in semidefinite programming.

The authors Monteiro and Zanjacomo ([8]) have proved the existence of the weighted
paths in nonlinear semidefinite complementarity problems using deep results from nonlinear
analysis, based on the theory of the local homeomorphic maps. The another approach,
used by Preiss and Stoer ([9]) was more elementary, it was essentially based on the implicit
function theorem. However, latter authors proved the existence of the weighted path in
linear complementarity problem associated only with the symmetrization Φ1(X,S). The
same symmetrization and technique was used in [11] for the existence of the weighted
central path in SDP. In this paper we extend the result [11] to all five symmetrizations
defined in (5).
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2 PRELIMINARIES

All the symmetrization maps in (5) have very useful properties, which we state in the
following lemmas.

Lemma 1 If X � 0,S � 0, then
a) X • S = tr(Φj(X,S)), j = 1, 2, 3;
b) X • S ≤ 2 tr(Φj(X,S)2), j = 4, 5.

Proof. The statement a) follows directly from the properties of the trace. We will prove
the statement b). From the assumptions of the lemma it follows that the matrices X

1
2 S

1
2

and UT
SLX have nonnegative eigenvalues. But for every square matrix A with nonnegative

eigenvalues it holds that

tr
(A + AT

2

)2
= tr

(A2 + AAT + ATA + (AT )2

4

)
= tr

(A2 + AAT

2

)
≥ tr

(AAT

2

)
.

The rest of the proof follows from the fact that

X • S = tr(X
1
2 S

1
2 S

1
2 X

1
2 ) = tr(UT

SLXLT
XUT

S).

Lemma 2 Let j ∈ {1, . . . , 5} be arbitrary, X � 0, S � 0 and Φj(X,S) � 0. Then X � 0,
S � 0.

Proof. The statement for j=2,3 is obvious. If j=1, and X � 0 is singular, then QTXQ =
D = diag(d1, . . . , dk, 0, . . . , 0) for some orthogonal matrix Q and hence the matrix

QT (XS + SX)Q = DQTSQ + QTSQD

is singular. However this contradicts the assumption. If j=4, the proof is the same. The
statement for j=5 follows from the fact, that if X is singular, then there exists an index
i such that (LX)ii = 0. Then also (UT

SLX + LT
XUS)ii = 0, but this contradicts the

assumption.

Lemma 3 Let ν > 0 and X � 0, S � 0. Then XS = νI if and only if
a) Φj(X,S) = νI, j = 1, 2, 3
b) Φj(X,S) =

√
νI, j = 4, 5.

Proof. ⇒ The statement for j=1,2,3 is obvious. Consider j=4. The matrices X,S commute
and therefore are simultaneously diagonalizable, that is, there exists an orthogonal matrix
Q such that X = QDXQT and S = QDSQT . Therefore

(XS)
1
2 = X

1
2 S

1
2 =

√
νI = S

1
2 X

1
2 = (SX)

1
2

Let j=5. The matrix L = UT
SLX is lower triangular with positive diagonal entries. We

have that XS = νI if and only if UT
SXUS = νI. On the other hand LLT = UT

SXUS =
(
√
νI)(

√
νI) and therefore from the uniqueness of the Cholesky factor we obtain that L =

LT =
√
νI.



EXISTENCE OF WEIGHTED INTERIOR-POINT PATHS IN SDP 5

⇐ The statement is obvious for j=2,3. For j=1 assume that XS + SX = 2νI. For any
symmetric matrix A and positive diagonal matrix D we have that

(AD + DA)ij = (Dii + Djj)Aij = 0 ⇔ Aij = 0.

We have that X = QDQT for some orthogonal matrix Q and positive diagonal matrix D
and hence

XS + SX = QDQTS + SQDQT = 2νI ⇔ DQTSQ + QTSQDQT = 2νI.

Therefore QTSQ must be diagonal. We obtain that X, S are simultaneously diagonalizable
and so they commute. The proof for j=4 is similar. Finally assume that j=5 and UT

SLX +
LT

XUT
S = 2νI. Because the matrix UT

SLX is lower triangular, UT
SLX = LT

XUT
S =

√
νI. So

we obtain UT
SLXLT

XUT
S = UT

SXUT
S = νI that is equivalent to XS = νI.

3 WEIGHTED CENTRAL PATH IN SEMIDEFINITE PROGRAMMING

In this section we will prove that the weighted paths can be well defined (for appropri-
ately chosen weights). To this aim we need to show that for fixed 4b,4C, properly chosen
weight W and any µ > 0 there exists a unique solution of the system (6). 2 Obviously,
such weighted central paths does not lie in the in the interior of the feasible set in general,
and hence they can be useful if the interior point does not exist or is unknown. In the
next we will consider the assumption (A1) and instead of (A2) we will consider a weaker
assumption:

(A3) The system (3) is solvable.
The main tool we will use in the proof of the existence of the weighted paths is the

analytic version of the implicit function theorem (see e.g. [4]).
Define the linear map

A : Sn → Rm, A(X) = [A1 •X, . . . ,Am •X],

and its adjoint

A∗ : Rm → Sn, A∗(y) =
m∑

i=1

Aiyi.

For fixed 4b ∈ Rm,4C ∈ Sn consider the maps F j
µ,W : Sn × Rm × Sn → Rm × Sn × Sn

with parameters µ > 0 and W � 0 (j=1,..,5):

F j
µ,W(X, y,S) =

 A(X)− b− µ4b
A∗(y) + S−C− µ4C

Φj(X,S)− φj(µ)

 . (7)

Clearly the system (6) is equivalent to

F j
µ,W(X, y,S) = 0.

2To prove the existence of the solution of (6) can not be performed the same way as in the case of the
system (4)—it seems not to be possible to characterize the weighted central path in SDP using weighted
logarithmic barrier problems.
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3.1 Regularity of the Fréchet derivatives

In the context of applying the implicit function theorem we will be interested in the
Fréchet derivative of the maps F j

µ,W. It can be derived that if X � 0,S � 0, it is the linear
map

DF j
µ,W(X, y,S)[4X,4y,4S] =

 A(4X)
A∗(4y) +4S

DΦj(X,S)[4X,4S]


with the variables [4X,4y,4S] ∈ Sn ×Rm × Sn where

• DΦ1(X,S)[4X,4S] = 1
2(4XS + S4X +4SX + X4S)

• DΦ2(X,S)[4X,4S] = 〈〈4X〉〉
X

1
2
SX

1
2 + X

1
2 S 〈〈4X〉〉

X
1
2

+ X
1
24SX

1
2

• DΦ3(X,S)[4X,4S] = [[4X]]TLX
SLX + LX

TS[[4X]]LX
+ LX

T4SLX

• DΦ4(X,S)[4X,4S] = 1
2(〈〈4X〉〉

X
1
2
S

1
2 +S

1
2 〈〈4X〉〉

X
1
2
+〈〈4S〉〉

S
1
2
X

1
2 +X

1
2 〈〈4S〉〉

S
1
2
)

• DΦ5(X,S)[4X,4S] = 1
2([[4X]]TLX

US+US
T [[4X]]LX

+[[4S]]TUS
LX+LX

T [[4S]]US
)

and 〈〈B〉〉A ∈ Sn means the solution H of the equation AH + HA = B (which exists and
is unique for every A � 0 and B ∈ Sn), and [[B]]L ∈ Sn is the solution H of the equation
LHT +HLT = B (which exists and is unique for any L ∈ Ln with positive diagonal entries
and any B ∈ Sn, where Ln is the real vector space of all n× n lower triangular matrices).

For ε > 0 denote
Mε = { Z � 0;∃ν : ‖Z− νI‖ < εν}.

and for all j = 1, . . . , 5 define the sets Wj in the following way:

W1 = Sn
++

W2 = M 1√
2

W3 = M 1√
2

or W3 = Dn
++

W4 = Mτ

W5 = Mτ

where

τ =
1 +

√
2−

√
4
√

2 + 2

5− 4
√

2
√

2 + 1

and Dn
++ is the notation for the open convex set of all diagonal matrices with positive

diagonal entries.

Theorem 1 Let X � 0, S � 0. Then

Φj(X,S) ∈ Wj ⇒ DF j
µ,W(X, y,S) is regular linear map.

Proof. The proof of the result for j=1 can be found in [9] or can be easily shown using
the properties of the symmetric Kronecker product. The results for j=2, j=4 and j=5 are
consequences of Lemma 2.3 of [6] and Propositions 4 and 5 of [8], respectively. The result
for j=3, the case W3 = M 1√

2

is a consequence of Lemma 2.4 of [7] and we will prove the
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case W3 = Dn
++.

Assume that X � 0,S � 0 and LT
XSLT

X ∈ Dn
++. We will show, that the system

A(4X) = 0
A∗(4y) +4S = 0

[[4X]]TLX
SLX + LX

TS[[4X]]LX
+ LX

T4SLX = 0
(8)

has only the solution 4X = 4S = 0. It can be easily seen that the first two equations in
(8) imply 4X•4S = 0. Denote U = [[4X]]LX

∈ Ln. Then from the definition of [[4X]]LX

and (8) we have that

UTSLX + LX
TSU + LX

T4SLX = 0,
LXUT + ULT

X = 4X
.

We can express
4S = −(LX

−TUS + SUL−1
X )

and obtain

0 = −4X • 4S = (LXUT + ULT
X) • (LX

−TUS + SUL−1
X ) =

2tr(UTSU) + 2tr[(LT
XSLT

X)(UL−1
X )2].

¿From the assumptions we have that tr(UTSU) = 0 and therefore also U = 0,4X =
0,4S = 0.

The following lemma provides a nice description of Mε.

Lemma 4 Let ε ∈ (0, 1). The set Mε is a convex cone, moreover,

Z ∈Mε ⇔ κ(Z) =
λmax(Z)
λmin(Z)

<
1 + ε

1− ε
.

(where κ(Z) means the condition number of Z.)

Proof. The proof that Mε is a convex cone is straightforward. We will prove the second
part of the lemma. Denote

λmax(Z) = λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λn(Z) = λmin(Z)

the eigenvalues of Z. It holds that Z ∈Mε if and only if Z � 0 and there exists ν > 0 such
that

‖Z− νI‖ = max
i
|λi(Z− ν| < νε. (9)

The inequality (9) is equivalent to

(1− ε)ν < λmin(Z) ≤ λmax(Z) < (1 + ε)ν.

Z ∈Mε ⇔ λmax(Z)
λmin(Z)

<
1 + ε

1− ε
.
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3.2 Boundedness of the weighted path

In the next, besides the assumptions A1 and A3 we will assume the following:

(A4) For any j ∈ {1, . . . , 5} let 4b,4C be such that there exists W0 ∈ Wj and µ0 > 0
such that the system (6) is solvable for W = W0 and ν = µ0.

In what follows, by W0 and µ0 we will denote an arbitrarily chosen weight W0 ∈ Wj

and µ0 > 0 for which the system (6) is solvable. Let us remark that for j ∈ {1, . . . , 5} there
always exist 4b,4C such that they satisfy (A4). In fact, we can choose a weight W0 ∈ Wj

and µ0 > 0 and pick up (X0, y0,S0) ∈ Sn
++ ×Rm × Sn

++ such that

Φj(X0,S0) = φj(µ0)W0.

Then if we let

4b =
A(X0)− b

φj(µ0)
, 4C =

A∗(y0) + S0 −C
φj(µ0)

,

then (X0, y0,S0) is a solution of the system (6) for µ = µ0 and W = W0. On the other
hand, if the assumption (A2) holds, 4b = 0,4C = 0 satisfy (A4) with W0 = I and any
µ0 > 0, since the central path exists.

For µ > 0 and W � 0 we will denote

(X(µ,W), y(µ,W),S(µ,W))

a solution of the system (6) (for some j ∈ {1, . . . , 5}). Obviously, the solution needs not
exist nor be unique. Nevertheless, we can prove the following lemma which states that the
set of all solutions for some µ and W is bounded.

Lemma 5 Let O(W0) ⊂ Sn
++ be a bounded neighborhood of W0. Then the set

M = {(X(µ,W), y(µ,W),S(µ,W)) | 0 < µ ≤ µ0,W ∈ O(W0)}

is bounded.

Proof. Let (X0, y0,S0) be the solution of (6) for µ = µ0 and W = W0. Let 0 < µ ≤ µ0

and W ∈ O(W0) be arbitrary, such that there exist a solution (X(µ,W), y(µ,W),S(µ,W)) of
the system (6). From (A3) we have that there exists (X∗, y∗,S∗) such that:

Ai •X∗ = bi,
m∑

i=1

Aiy
∗
i + S∗ = C, X∗ � 0, S∗ � 0, X∗S∗ = 0.

Define  X̂
ŷ

Ŝ

 =
µ

µ0

 X0

y0

S0

+
(

1− µ

µ0

) X∗

y∗

S∗

 .
Clearly

Ai • X̂ =
µ

µ0
Ai •X0 +

(
1− µ

µ0

)
Ai •X∗ = bi + µ4bi, ∀i = 1, . . . ,m,

m∑
i=1

Aiŷi + Ŝ =
µ

µ0

(
m∑

i=1

Aiy
0
i + S0

)
+
(

1− µ

µ0

)( m∑
i=1

Aiy
0
i + S0

)
= C + µ4C
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and hence

Ai • (X̂−X(µ,W)) = 0,
m∑

i=1

Ai(ŷi − (y(µ,W))i) + (Ŝ− S(µ,W)) = 0.

Therefore
(X̂−Xµ,W) • (Ŝ− Sµ,W) = 0.

This gives
X̂ • S(µ,W) + X(µ,W) • Ŝ = X̂ • Ŝ + X(µ,W) • S(µ,W). (10)

We first observe, that

X̂ • Ŝ =
(
µ

µ0

)2

X0 • S0 +
(

1− µ

µ0

)2

X∗ • S∗ +
µ

µ0

(
1− µ

µ0

)
(X0 • S∗ + S0 •X∗) =

=
(
µ

µ0

)2

X0 • S0 +
µ

µ0

(
1− µ

µ0

)
(X0 • S∗ + S0 •X∗){

≤ µ0 tr(W0) + (X0 • S∗ + S0 •X∗) j = 1, 2, 3,
≤ 2µ0tr((W0)2) + (X0 • S∗ + S0 •X∗) j = 4, 5,

(11)

where the inequalities follow from Lemma 1. According to the same lemma we have

X(µ,W) • S(µ,W) = µ tr(W) ≤ β, j = 1, 2, 3,
X(µ,W) • S(µ,W) ≤ 2tr(W2) ≤ β, j = 4, 5

(12)

for some β > 0, since 0 < µ < µ0 a W ∈ O(W0), which is bounded. Finally, from (10),
(11), (12) we obtain, that

X̂ • S(µ,W) + X(µ,W) • Ŝ ≤ γ

for some γ > 0 and hence the set

M1 =
{
(X(µ,W),S(µ,W)) | µ ∈ (0, µ0〉, W ∈ O(W0)

}
is included in the simplex{

(X,S) | X � 0, S � 0, X̂ • S + X • Ŝ ≤ γ
}

which is bounded, since X̂ � 0, Ŝ � 0. The boundedness of the set M now follows from
the boundedness of M1 and the assumption (A1).

3.3 The existence of the weighted path

Let j ∈ {1, . . . , 5}. Consider the map

Gj : Sn ×Rm × Sn ×R× Sn → Rm × Sn × Sn

such that
Gj(X, y,S, µ,W) = F j

µ,W(X, y,S)

Obviously Gj(X0, y0,S0, µ0,W0) = 0. The following technique is called the analytic con-
tinuation and was used by Preiss and Stoer to prove the existence of the weighted path
in linear complementarity problem associated with the symmetrization (XS + SX)/2 (see
Lemma 3.5, Lemma 3.6, Lemma 3.7 in [9]).
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Lemma 6 Let j ∈ {1, 2, . . . , 5}. Assume µ1 ∈ (0, µ0〉,W1 ∈ Wj and let

ψ : 〈0, 1〉 → (0, µ0〉 ×Wj , ψ(t) = (µt,Wt)

be a continuous path from ψ(0) = (µ0,W0) to ψ(1) = (µ1,W1). Then for all t ∈ 〈0, 1〉 the
system

Gj(X, y,S, µt,Wt) = 0

has a locally unique solution (Xt, yt,St), where Xt � 0,St � 0. Moreover, there exists a
function

gj : R++ × Sn
++ → Sn

++ ×Rm × Sn
++,

which is defined and analytic on some neighborhood of ψ(t), satisfies g(ψ(t)) = (Xt, yt,St)
and

Gj(gj(ψ(t)), ψ(t)) = 0.

Proof. For t ∈ 〈0, 1〉 consider the system

Gj(X, y,S, ψ(t)) = 0, X � 0, S � 0. (13)

The point (X0, y0,S0) is the solution of this system for t = 0. From Theorem 3 it follows
that the partial Fréchet derivative DGj(X, y,S, φ(t)) concerning the variables (X, y,S) is
nonsingular in (X0, y0,S0, φ(0)). From the implicit function theorem we obtain that there
exists an analytic function gj defined on some neighborhood of ψ(0) = (µ0,W0) such that

gj(ψ(0)) = gj(µ0,W0) = (X0, y0,S0)

and
Gj(gj(ψ(t)), ψ(t)) = Gj(gj(µt,Wt), µt,Wt) = 0

on some neighborhood of t = 0. Actually, there is a maximal t̄ ∈ (0, 1〉 such that

gj(ψ(t)) = gj(µt,Wt) = (Xt, yt,St), ∀t ∈ 〈0, t̄).

That means (Xt, yt,St) is a locally unique solution of

F j
µt,Wt(X, y,S) = 0, ∀ t ∈ 〈0, t̄).

Moreover, from Lemma 2 we have that Xt � 0,St � 0. From the continuity of ψ it follows
that ψ(〈0, 1〉) is a compact subset of (0, µ0〉 ×Wj , therefore, according to Lemma 5 the set

{g(ψ(t)) = (Xt, yt,St), | t ∈ 〈0, t̄)}

is bounded. Let tk ∈ 〈0, t̄) for k = 1, 2, . . . and limk→∞ tk = t̄. Then there exists a sequence
{tkj

}∞j=1 chosen from {tk}∞k=1 such that

lim
j→∞

gj(ψ(tkj
)) = (X̄, ȳ, S̄).

Because
Ai •Xtkj = bi + µtkj

4bi, i = 1, . . . ,m, Xtkj � 0,∑m
i=1 Aiy

tkj

i + Stkj = C + µtkj
4C, Stkj � 0,

Ψj(X
tkj ,Stkj ) = φj(µtkj

)Wtkj ,
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by taking limit j →∞ we obtain

Ai • X̄ = bi + µt̄4bi, i = 1, . . . ,m, X̄ � 0,∑m
i=1 Aiȳi + S̄ = C + µt̄4C, S̄ � 0

Ψj(X̄, S̄) = φj(µt̄)Wt̄.

Applying Lemma 2 again we have that X̄, S̄ are positive definite. Therefore (X̄, ȳ, S̄) is
the solution of the system (13) for t = t̄. The partial Fréchet derivative DGj(X, y,S, ψ(t))
concerning the variables (X, y,S) is nonsingular in (X̄, ȳ, S̄) and (X̄, ȳ, S̄) is locally unique
solution of the system

F j

µt̄,W
t̄(X, y,S) = 0.

By applying the implicit function theorem again and from the maximality of t̄ we obtain
that t̄ = 1.

Corollary 1 For any µ ∈ (0, µ0〉 and W ∈ Wj there exists a solution of (6).

Proof. It suffices to prove that having W ∈ Wj and µ ∈ (0, µ0〉 one can find a continuous
path from (µ0,W0) to (µ,W). However, we can define ψ(t) = (tµ + (1 − t)µ0, tW +
(1 − t)W0). Obviously tµ + (1 − t)µ0 ∈ (0, µ0〉 for all t ∈ 〈0, 1〉 and since Wj is convex,
tW + (1− t)W0 ∈ Wj .

Having the existence result stated in Corollary 1 we turn our attention to the uniqueness
of the solutions. As a consequence of Lemma 6 we obtain the following result that will be
useful later.

Corollary 2 For all t ∈ 〈0, 1〉 the function g(ψ(t)) from Lemma 6 is uniquely determined
by the path ψ and the starting value g(ψ(0)).

First, we prove the uniqueness of (6) for a special choice of the weight matrix W = I. This
result will be used then in the proof of Lemma 8.

Lemma 7 Let j ∈ {1, 2, . . . , 5} be arbitrary. If the system

A(X) = b+ µ4b, X � 0,
A∗(y) + S = C + µ4C, S � 0,

Φj(X,S) = φj(µ)I

 (14)

has a solution for some µ > 0 then this solution is unique.

Proof. Suppose there are two solutions (X1, y1,S1), (X2, y2,S2) of the system (14). Let
(4X,4y,4S) = (X1, y1,S1)−(X2, y2,S2). Then A(4X) = 0, Ã(4y)+4S = 0 and hence
4X • 4S = 0.
Lemma 3 states that

Φj(Xi,Si) = φj(µ)I ⇔ XiSi = µI i = 1, 2.

Therefore

µI = X1S1 = (X2 +4X)(S2 +4S) = X2S2 + X24S +4XS2 +4X4S,
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µI = X2S2 = (X1 −4X)(S1 −4S) = X1S1 −X14S−4XS1 +4X4S

and by subtracting the equations above we obtain that

(X1 + X2)4S +4X(S1 + S2) = 0. ⇔ 4S = −(X1 + X2)−14X(S1 + S2).

We can express 4S as
4S = −(X1 + X2)−14X(S1 + S2) (15)

and hence

0 = 4X • 4S = tr(4X4S) = −tr(4X(X1 + X2)−14X(S1 + S2)) =

= −tr((S1 + S2)
1
24X(X1 + X2)−14X(S1 + S2)

1
2 ).

The trace of the positive semidefinite matrix is zero if and only if it is the zero matrix.
That’s why 4X = 0 and from (15) also 4S = 0. Finally, the assumption A1 gives 4y = 0.

We now prove the uniqueness for the general weight matrix W.

Lemma 8 If the system

A(X) = b+ µ4b, X � 0,
A∗(y) + S = C + µ4C, S � 0,

Φj(X,S) = φj(µ)W

 (16)

has a solution for some µ > 0, then this solution is unique.

Proof. Let µ > 0 and suppose there are two solutions (X1, y1,S1), (X2, y2,S2). Consider
the path

ψ : 〈0, 1〉 → R++ ×Wj , ψ(t) = (µ, tI + (1− t)W).

Lemma 6 states that there exist analytic continuations from (X1, y1,S1) and (X2, y2,S2)
along ψ to the solution of the system (14), which is unique (Lemma 7). Denote this
solution (XI , yI ,SI). The analytic continuation from (XI , yI ,SI) along the inverse path
φ−1(t) = φ(1−t) leads to both (X1, y1,S1) and (X2, y2,S2). The uniqueness of the analytic
continuation (Corollary

2) implies (X1, y1,S1) = (X2, y2,S2).

Now we can formulate the main result of the paper, which is a simple consequence of
Corollary 1 and Lemma 8. Let us recall that it was proved under the assumptions (A1),
(A3), (A4).

Theorem 2 Let j ∈ {1, 2, . . . , 5}. Then for any µ ∈ (0, µ0〉 and W ∈ Wj there exists
unique solution of the system (6).

As it was mentioned above, under the assumption (A2) the choice 4b = 0,4C = 0 satisfies
(A4). Hence we obtain the following corollary of Theorem 2.

Corollary 3 Assume (A1) and (A2) and let j ∈ {1, 2, . . . , 5}. Then for any µ > 0 and
W ∈ Wj there exists unique solution of the system

A(X) = b, X � 0,
A∗(y) + S = C, S � 0,

Φj(X,S) = φj(µ)W.
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