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Convex optimization
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Significance of convex optimization

• The set of all feasible solutions is always convex.

• Every local minimum is also a global minimum.

• Efficient algorithms based on interior point methods - already
implemented in various solvers or software packages.

• Difficulty: identifying and formulating the optimization problem as
a convex optimization problem → CONVEX ANALYSIS
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• Surprisingly many problems can be formulated as convex
optimization problems: data fitting, portfolio optimization, optimal
control, statistical estimation, combinatorial optimization,
topology / experimental design, geometric problems,.....

• Nonconvex problems - many algorithms are based on solving a
sequence of convex optimization problems

• Convex relaxation of nonconvex problems: bounds on optimal
solution

"In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity"

T. Rockafellar
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Main themes:

• Convex analysis
◦ Convex sets
◦ Convex functions

• Convex optimization problems in general

• Duality

• Optimality conditions

• Applications of convex optimization and CVX modeling system

• Interior point methods
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History of (convex) optimization

• 1900- WW2 - convex analysis - properties of convex sets and
convex functions (Carathéodory, Minkowski, Farkas, Steinitz)

• 1928 - John von Neumann - existence of the minmax saddle
point (game theory)

• 1930 - Wassily Leontief - the first linear program formulation

• 1947 - George Dantzig - simplex algorithm

• 1950’ - quadratic programming
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C. Carathéodory H. Minkowski G. Farkas E. Steinitz

Constantin Carathéodory (1873-1950)
Hermann Minkowski (1864-1909)
Gyula Farkas (1847-1930)
Ernst Steinitz (1871-1928)
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• 1960’ - geometric programming (Duffin, Peterson, Zener)

• WW2-1980 - duality theory, optimizality conditions (Kuhn, Tucker,
Fenchel, Rockafellar)

• 1958 - Sion - generalization of von Neumann’s theorem

• 1960-1970 - new scientific branch: complexity theory

• 1968 - Fiacco, McCormick - barrier methods

• 1972 - Klee, Minty - simplex method is NOT polynomial
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J. von Neumann W. Leontief G. Dantzig R. T. Rockafellar

John von Neumann (1903-1957)

Wassily Leontief (1905-1999)

George Dantzig (1914-2005)

R. Tyrrell Rockafellar http://www.math.washington.edu/ rtr/mypage.html
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• 1979 - Leonid Khachian - ellipsoid method - the 1st polynomial
algorithm for linear programming, slow in practice

• 1984 - Narendra Karmarkar - "projective" algorithm for linear
programming - polynomial AND fast, beginning of the modern
interior point methods (IPM)

Simplex
method

Interior

point

method
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• 1988 - Nesterov, Nemirovski - generalization of IMP for convex
optimization problems

• 1992 - semidefinite programming - first efficient algorithms

• 2000-.... - general cone programming, applications in
engineering, finance, etc. , methods for non smooth convex
optimization problems
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H. W. Kuhn A. W. Tucker Y. Nesterov A. Nemirovski

Harold W. Kuhn http://www.math.princeton.edu/directory/harold-w-kuhn

Albert W. Tucker (1905-1995)

Yurii Nesterov http://www.core.ucl.ac.be/ nesterov/

Arkadi Nemirovski http://www.isye.gatech.edu/faculty-staff/profile.php?entry=an63
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Convex optimization problem formulation:

Min f0(x)

fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p.

fi(x) : R
n → R, i = 0, 1, . . . , m - convex functions

hi(x) : R
n → R, i = 1, . . . , p - affine functions

Feasible set:

P = {x | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p.}

Optimal value:

p∗ = inf{f0(x) | x ∈ P} ∈ R ∪ ±∞, p∗ = +∞ ⇔ P = ∅.
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Widely known subclasses of convex optimization:

1. Least squares problem

Min f0(x) = ‖Ax − b‖22 =
∑m

i=1(a
T
i x − bi)

2

2. Linear programming

Min cT x

aT
i x ≤ bi, i = 1, 2, . . . , m
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Example: Aproximation problem:

Min f0(x) = ‖Ax − b‖

A ∈ R
m×n, b ∈ R

m, x ∈ R
n, ‖ · ‖ is a norm in R

m.
• Ax ≈ b, residual r = Ax − b

• If b ∈ S(A), then clearly p∗ = 0.

l2 l∞ l1

Min ‖Ax − b‖2 Min ‖Ax − b‖∞ Min ‖Ax − b‖1

Min
(
∑m

i=1 r2i
)
1
2 Min maxi |ri| Min

∑m

i=1 |ri|
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l2 - Least-squares

• equivalent with convex quadratic programming problem

Min f0(x) = xT AT Ax − 2bT Ax+ bT b

• x̂ is the optimal solution ⇔ AT Ax = AT b

• Assuming:
1. columns of A are linearly independent;
2. b /∈ S(A) (⇒ m > n),

- the optimal solution can be expressed as

x̂ = (AT A)−1AT b

• puts large penalty on large residuals
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l∞ - Chebyshev (minimax) approximation problem

• Chebyshev approximation is equivalent to linear programming
problem:

Min t

−t1 ≤ Ax − b ≤ t1

where 1 = (1, 1, . . . , 1)T ∈ R
m, t ∈ R.

l1 - approximation problem

• l1 - approximation is equivalent to linear programming problem:

Min 1
T t

−t ≤ Ax − b ≤ t

where t ∈ R
m

• large number of zero or very small residuals
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Generalized convex programming problem

Let C ⊆ R
n be a convex set.

Min f0(x)

x ∈ C
The set C should be properly described in order to analyze the problem
and to design an efficient algorithm for solving it.

Example: S2+ = {X ∈ R
2×2 | X = XT , X is p.s.d} - convex set

X =

(

x y

y z

)

∈ S2+ ⇔ x ≥ 0, z ≥ 0, y2 − xz ≤ 0

- concovex constraint
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• K - proper cone (closed, convex, pointed, int(K) 6= ∅)
• x �K y ⇔ y − x ∈ K
• �K - partial ordering (reflexive, antisymmetric, transitive),

invariant w.r.t. addition, nonnegative scaling, limit; it is NOT a
linear ordering.

- K ⊆ R
m - proper cone

- �K - generalized inequality

A function f : Rn → R
m is called K-convex ⇔ ∀x, y ∈ R

n, ∀λ ∈ [0, 1]:

f(λx+ (1− λ)y) �K λf(x) + (1− λ)f(y).
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Examples of proper cones:
• R

n
+ = {x ∈ R

n | x ≥ 0}
• Sn

+ = {X ∈ R
n×n | X = XT , X je k.s.d.}

• Knorm = {(x, t) ∈ R
n+1 | ‖x‖ ≤ t}

• Kpol = {c ∈ R
n | c1 + c2t+ · · ·+ cntn−1 ≥ 0 ∀t ∈ [0, 1]}
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Generalized convex programming problem:

Min f0(x)

fi(x) �Ki
0, i = 1, . . . , m

Ax = b,

K0 = R
n
+, Ki, (i = 1, . . . , m) are (possibly different) proper cones and

the functions fi, (i = 0, 1, . . . , m) are Ki-convex.

If the functions f0, f1, . . . , fm are linear ⇒

K R
n
+ Sn

+ K‖·‖2

Problem: LP SDP SOCP
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Semidefinite programming

- C, A1, . . . , Am ∈ Sn, b ∈ R
m

• SDP in standard form:

Min tr(CX)

tr(AiX) = bi i = 1, . . . , m

X � 0

• SDP with LMI constraints

Min bT x

x1A1 + · · ·+ xmAm � C
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Example: Markowitz portfolio optimization

n number of assets
xi (relative) amount of the i-th asset (i = 1, 2, . . . , n)
pi return of the i-th asset
p̄ = E(p) expected return
Σ = E((p − p̄)(p − p̄)T ) covariance matrix
xTΣx portfolio variance x - risk meassure

Classical portfolio problem:

Minx xTΣx

p̄T x ≥ rmin

1
T x = 1, x ≥ 0

- convex quadratic problem with linear constraints
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Alternative problem:
Given portfolio x and only partial information about the covariance
matrix Σ - for example

• Lij ≤ Σij ≤ Uij,

• Σii - are known, partial / no information about Σij , i 6= j

• lij ≤ Σij√
(ΣiiΣjj)

≤ uij

We are looking for the worst-case risk withing the given constraints:

MaxΣ xTΣx

Lij ≤ Σij ≤ Uij

Σ � 0
- semidefinite programming problem, since xTΣx = tr(xTΣx) =

tr(ΣxxT ).
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