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A function f : K ⊆ Rn → R is convex, if K is a convex set and
∀x, y ∈ K, x 6= y, ∀λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

(x, f(x))

(y,f(y))

x y0

• <,≥, > - strictly convex, concave, strictly concave

• f : K ⊆ Rn → R is convex iff ∀x, y ∈ K, x 6= y, ∀λ ∈ (0, 1)

g(λ) = f(λx+ (1− λ)y)

is convex.
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Sub-level sets

If f : Rn → R is convex

• then ∀α ∈ R is Sα = {x | f(x) ≤ α} convex and closed.

• and if there exists α0 such that Sα0
= {x | f(x) ≤ α0} is

nonempty and bounded, then Sα is bounded for any α > α0.

Minima of a convex function

• Every local minimum of a convex function is a global minimum.

• The set of all minima of a convex function is a convex set.

• Strictly convex function has at most one minimum.
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Continuity

• Assume K ⊆ Rn is an open and convex set and f : K → R is
convex. Then f is Lipschitz continuous on any compact subset of
U ⊆ K, that is there exists a constant L such that ∀x, y ∈ U

|f(x)− f(y)| ≤ L‖x− y‖.
• Convex function f : K ⊂ Rn → R defined on an open convex set

K is continuous on K.

• Convex function f : K ⊂ Rn → R defined on a closed convex set
K is upper semi-continuous on K.

Convex function defined on a closed convex set K is not necessarily
continuous.

a b

f(x)

0
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First order conditions
The function f : K ⊂ Rn → R defined on an convex set K is convex iff

• (First order Taylor approximation lays below the graph of f )

∀x, y, x 6= y : f(x) ≥ f(y) +∇f(y)T (x− y)

• (Monotone gradient)

∀x, y, x 6= y : (∇f(x)−∇f(y))T (x− y) ≥ 0

• >,≤, < - strictly convex/ concave/ strictly concave

x
y

( )f x

*y

( ) '( )( )f y f y x y� �
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Second order conditions

Th function f : K ⊂ Rn → R defined on an convex set K is convex iff

• (Positive semidefinite Hessian matrix)

∀x : ∇2f(x) � 0

• � - concave,

• ≻,≺ - strictly convex/ strictly concave - only one implication

holds - f(x) = x4
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Second order conditions

x
y

( )f x
( )q x

*y

( )q x

Convex function f(x) and its second order Taylor approximation at the

point y - convex quadratic function

q(x) = f(y) +∇f(y)T (x− y) +
1

2
(x− y)T∇2f(y)(x− y)

– p. 7



Topic 3: Convex Analysis - Functions

Epigraph of a function f : K ⊂ Rn → R is the set

epif = {(x, t) | x ∈ K, f(x) ≤ t}

• The function is convex ⇔ its epigraph is a convex set.

• First order condition interpretation: the hyperplane defined by

the normal vector (∇f(y),−1) is the supporting hyperplane epif
at the boundary point (y, f(y))

(x, t) ∈ epif ⇒
(

∇f(y)

−1

)T (

x

t

)

≤
(

∇f(y)

−1

)T (

y

f(y)

)

epi f

(f’(y),−1)

(y, f(y))
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Operations preserving convexity

• nonnegative linear combination: if f1, . . . , fm are convex
w1, . . . , wm ≥ 0 - then

g(x) = w1f1(x) + · · ·+ wmfm(x)

is convex.

• affine transformation of variables: if f is convex, then

g(x) = f(Ax+ b)

is convex

• point-wise maximum: if f1, . . . , fm are convex, then

g(x) = max{f1(x), . . . , fm(x)}
is convex
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Operations preserving convexity

• supremum:
if ∀y ∈ C is f(x, y) convex in x and supy∈C f(x, y) < ∞, then

g(x) = supy∈C f(x, y)

is convex.

• Example: distance (of the point x) to the farthest point of the set
C:

g(x) = supy∈C ‖x− y‖
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Operations preserving convexity

• infimum:
if f(x, y) is convex in (x, y), the set C 6= ∅ is convex and

infy∈C f(x, y) > −∞, then

g(x) = infy∈C f(x, y)

is convex

• Example: distance of the point x from the convex set C:

dist(x,C) = infy∈C ‖x− y‖
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Operations preserving convexity

• If f : Rn → R is convex, then the perspective function

g : Rn × R++ → R, g(x, t) = tf
(x

t

)

is convex
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Composition

h(t) : R → R, f(x) : Rn → R, H(x) = h(f(x)) : Rn → R

f h h H

⌣ ⌣ ր ⇒ ⌣

⌢ ⌣ ց ⇒ ⌣

⌢ ⌢ ր ⇒ ⌢

⌣ ⌢ ց ⇒ ⌢
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! the reverse implication does not hold!

H(x1, x2) =
√
x1x2 is concave on R2

++, h(t) =
√
t is concave and

increasing on R++, but f(x1, x2) = x1x2 is not concave (and not

convex)

Vector composition

h(y) : Rm → R, fi(x) : R
n → R, i = 1, . . . ,m,

H : Rn → R, H(x) = h(f1(x), . . . , fm(x))

fi, ∀i h h H

⌣ ⌣ րրր ⇒ ⌣

⌢ ⌣ ցցց ⇒ ⌣

⌢ ⌢ րրր ⇒ ⌢

⌣ ⌢ ցցց ⇒ ⌢
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Quasi-convex functions

The function f : K ⊆ Rn → R is called quasi-convex, if the set K is

convex and ∀x, y ∈ K, ∀λ ∈ [0, 1] it holds

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

• <,≥, > - strictly quasi-convex, quasi-concave, strictly
quasi-convex

• quasilinear functions

• Equivalent definition: The function f : K ⊆ Rn → R is called
quasi-convex, if the set K is convex and ∀α ∈ Rn are the

sub-level sets Sα = {x | f(x) ≤ α} convex.

• f : K ⊆ Rn → R is quasi-convex ⇔ ∀x, y ∈ K, ∀λ ∈ [0, 1] is the

function

g(λ) = f(λx+ (1− λ)y)

quasi-convex.
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Quasi-convex functions

x

y

0x2x 1x 1x 2x

( )y f x 

a b x

y

0x2x 1x 1x 2x

( )y f x 

a b
x

y

0x

( )y f x 

a b

x

y

0x

( )y f x 

a b
x

y

0a x 

( )y f x 

b
x

y

0x

( )y f x 

a b

– p. 16



Topic 3: Convex Analysis - Functions

Operations preserving quasi-convexity

• weighted maximum: if f1, . . . , fm are quasi-convex,
w1, . . . , wm ≥ 0 - then

g(x) = max{w1f1(x), . . . , wmfm(x)}
is quasi-convex

• supremum:
if ∀y ∈ C is the function f(x, y) quasi-convex in x and

supy∈C f(x, y) < ∞, then

g(x) = supy∈C f(x, y)

is quasi-convex

• infimum:
if f(x, y) is quasi-convex in (x, y), the set C 6= ∅ is convex and

infy∈C f(x, y) > −∞, then

g(x) = infy∈C f(x, y)

is quasi-convex
– p. 17
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First order conditions

• The function f : K ⊂ Rn → R defined on a convex set K is
quasi-convex iff

∀x, y, x 6= y : f(x) ≤ f(y) ⇒ ∇f(y)T (x− y) ≤ 0

• Geometric interpretation: if ∇f(y) 6= 0, then ∇f(y) is the normal

of the supporting hyperplane of the sub-level set

S = {x | f(x) ≤ f(y)}
at the point y.

y grad f(y)
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Second order conditions

• If f is quasi-convex, then ∀x, y it holds

yT∇f(x) = 0 ⇒ yT∇2f(x)y ≥ 0

• If the function f satisfies ∀x, y 6= 0

yT∇f(x) = 0 ⇒ yT∇2f(x)y > 0,

then f is quasi-convex.

• ∀x : ∇f(x) = 0 is ∇2f(x) positive (semi)definite

• If ∇f(x) 6= 0, then ∇2f(x) is positive semidefinite on the

subspace ∇f(x)⊥ - the matrix

H(x) =

(

∇2f(x) ∇f(x)

∇f(x)T 0

)

has exactly one negative eigenvalue.
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Strong convexity

The function f : Rn → R is called strong convex, if there exists β > 0
such that ∀x 6= y and ∀λ ∈ (0, 1) it holds

f(λx+ (1− λ)y) + βλ(1− λ)‖x− y‖2 ≤ λf(x) + (1− λ)f(y).

• q(x) = βxTx = β‖x‖22, β > 0 is the weakest strong convex

function

• f(x) is strong convex ⇔ there exists β > 0 such that the function

h(x) = f(x)− q(x) is convex.

• If f(x) is strong convex, ∀α are the sub-level sets

Sα = {x | f(x) ≤ α}
convex and compact.

– p. 20



Topic 3: Convex Analysis - Functions

-0.5
0

0.5

-1

0

1
0

1

2

3

4

5

x
1

x
2

h(
x 1,x

2)

-0.5
0

0.5

-1

0

1
0

2

4

6

8

10

x
1

x
2

f(
x 1,x

2)

Convex function

h(x1, x2) = e−x1+x2
2

and strong convex function
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First and second order conditions

The function f(x) is strong convex ⇔ if there exists β > 0 such that

• f(x) ≥ f(y) +∇f(y)T (x− y) + β‖x− y‖2

• (∇f(x)−∇f(y))T (x− y) ≥ 2β‖x− y‖2

• ∇2f(x) � βI
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Generalized convexity

The cone K is called proper if it has the following properties:

• K is convex;

• K is closed;

• K is solid - int(K) 6= ∅;

• K is pointed - x ∈ K ∧ −x ∈ K ⇒ x = 0

Example: Rn
+, Sn

+, C2
The partial ordering associated with the cone K:

x �K y ⇔ y − x ∈ K, x ≺K y ⇔ y − x ∈ int(K)
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Properties of the generalized inequalities

property �K ≺K

invariant x �K y, u �K v ⇒ x ≺K y, u �K v ⇒
x+ u �K y + v x+ u ≺K y + v

x �K y, α ≥ 0 ⇒ αx �K αy x ≺K y, α > 0 ⇒ αx ≺K αy

reflexive x �K x ! x ⊀K x

transitive x �K y, y �K z ⇒ x ≺K y, y ≺K z ⇒
x �K y x ≺K z

antisymmetric x �K y, y �K x ⇒ x = y —

— x ≺K y, ∃u, v small enough:

x+ u ≺K y + v

xi �K yi, ∀i, xi → x, yi → y —

⇒ x �K y
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• K = Rn
+

x �K y ⇔ xi ≤ yi ∀i = 1, 2, . . . , n

• K = Sn
+

Löwner partial ordering of symmetric matrices �:

- A = QΛQT � αI - spectrum of the matrix A is bounded
above with the constant α

- for the positive semidefinite matrices - the inequality

0 � A � B implies h(A) ≤ h(B) and det(A) ≤ det(B)
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Generalized convexity:

Let K ⊆ Rm be a proper cone and �K is the associated generalized

inequality. Then the function f : Rn → Rm is called K-convex if

∀x, y ∈ Rn and ∀λ ∈ [0, 1] it holds

f(λx+ (1− λ)y) �K λf(x) + (1− λ)f(y).

Example: Matrix convexity The function f : Rn → Sm is called matrix convex if

f(λx+ (1− λ)y) � λf(x) + (1− λ)f(y).

∀x, y ∈ Rn and ∀λ ∈ [0, 1].

Equivalent definition: the function zT f(x)z is convex ∀z ∈ Rm. E. g. the function

f : Rn×m → Sn, f(X) = XXT is matrix convex since for fixed z is the function

zTXXT z = ‖XT z‖2 convex quadratic.
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