Convex Optimization

Convex Analysis - Functions

A function $f : K \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex**, if *K* is a convex set and $\forall x, y \in K, x \neq y, \forall \lambda \in (0, 1)$ we have

(x, f(x)) (x, f(x)) 0 x y

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$

- $<, \geq, >$ strictly convex, concave, strictly concave
- $f: K \subseteq \mathbb{R}^n \to \mathbb{R}$ is convex iff $\forall x, y \in K, x \neq y, \forall \lambda \in (0, 1)$ $g(\lambda) = f(\lambda x + (1 - \lambda)y)$

is convex.

Sub-level sets

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex

- then $\forall \alpha \in \mathbb{R}$ is $S_{\alpha} = \{x \mid f(x) \leq \alpha\}$ convex and closed.
- and if there exists α_0 such that $S_{\alpha_0} = \{x \mid f(x) \le \alpha_0\}$ is nonempty and bounded, then S_{α} is bounded for any $\alpha > \alpha_0$.

Minima of a convex function

- Every local minimum of a convex function is a global minimum.
- The set of all minima of a convex function is a convex set.
- Strictly convex function has at most one minimum.

Continuity

• Assume $K \subseteq \mathbb{R}^n$ is an open and convex set and $f: K \to \mathbb{R}$ is convex. Then f is Lipschitz continuous on any compact subset of $U \subseteq K$, that is there exists a constant L such that $\forall x, y \in U$

$$|f(x) - f(y)| \le L ||x - y||.$$

- Convex function $f: K \subset \mathbb{R}^n \to \mathbb{R}$ defined on an **open** convex set K is continuous on K.
- Convex function $f: K \subset \mathbb{R}^n \to \mathbb{R}$ defined on a **closed** convex set K is upper semi-continuous on K.

Convex function defined on a **closed** convex set K is not necessarily continuous.

First order conditions

The function $f: K \subset \mathbb{R}^n \to \mathbb{R}$ defined on an convex set K is convex iff

• (First order Taylor approximation lays below the graph of f)

$$\forall x, y, \ x \neq y : f(x) \ge f(y) + \nabla f(y)^T (x - y)$$

(Monotone gradient)

$$\forall x, y, \ x \neq y : (\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$

• $>, \leq, <$ - strictly convex/ concave/ strictly concave

Second order conditions

Th function $f: K \subset \mathbb{R}^n \to \mathbb{R}$ defined on an convex set K is convex iff

• (Positive semidefinite Hessian matrix)

 $\forall x: \nabla^2 f(x) \succeq 0$

- \leq concave,
- \succ , \prec strictly convex/ strictly concave **only one implication** holds - $f(x) = x^4$

Second order conditions

Convex function f(x) and its second order Taylor approximation at the point y - convex quadratic function

$$q(x) = f(y) + \nabla f(y)^T (x - y) + \frac{1}{2} (x - y)^T \nabla^2 f(y) (x - y)$$

Epigraph of a function
$$f: K \subset \mathbb{R}^n \to \mathbb{R}$$
 is the set
 $\mathbf{epi}f = \{(x,t) \mid x \in K, f(x) \le t\}$

- The function is convex \Leftrightarrow its epigraph is a convex set.
- First order condition interpretation: the hyperplane defined by the normal vector (∇f(y), -1) is the supporting hyperplane epif at the boundary point (y, f(y))

$$(x,t) \in \operatorname{epi} f \Rightarrow \begin{pmatrix} \nabla f(y) \\ -1 \end{pmatrix}^T \begin{pmatrix} x \\ t \end{pmatrix} \leq \begin{pmatrix} \nabla f(y) \\ -1 \end{pmatrix}^T \begin{pmatrix} y \\ f(y) \end{pmatrix}$$

Operations preserving convexity

• **nonnegative linear combination:** if f_1, \ldots, f_m are convex $w_1, \ldots, w_m \ge 0$ - then

$$g(x) = w_1 f_1(x) + \dots + w_m f_m(x)$$

is convex.

• affine transformation of variables: if *f* is convex, then

$$g(x) = f(Ax + b)$$

is convex

• **point-wise maximum:** if f_1, \ldots, f_m are convex, then

$$g(x) = \max\{f_1(x), \dots, f_m(x)\}\$$

is convex

Operations preserving convexity

• supremum: if $\forall y \in C$ is f(x, y) convex in x and $\sup_{y \in C} f(x, y) < \infty$, then $g(x) = \sup_{y \in C} f(x, y)$

is convex.

Example: distance (of the point *x*) to the farthest point of the set
 C:

 $g(x) = \sup_{y \in \mathcal{C}} \|x - y\|$

Operations preserving convexity

• infimum: if f(x, y) is convex in (x, y), the set $C \neq \emptyset$ is **convex** and $\inf_{y \in C} f(x, y) > -\infty$, then

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

is convex

• **Example:** distance of the point *x* from the convex set *C*:

 $dist(x, C) = \inf_{y \in C} \|x - y\|$

Operations preserving convexity

• If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, then the **perspective function**

$$g: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}, \ g(x,t) = tf\left(\frac{x}{t}\right)$$

is convex

Composition

$$h(t): \mathbb{R} \to \mathbb{R}, \ f(x): \mathbb{R}^n \to \mathbb{R}, \ H(x) = h(f(x)): \mathbb{R}^n \to \mathbb{R}$$

! the reverse implication does not hold!

 $H(x_1, x_2) = \sqrt{x_1 x_2}$ is concave on \mathbb{R}^2_{++} , $h(t) = \sqrt{t}$ is concave and increasing on \mathbb{R}_{++} , but $f(x_1, x_2) = x_1 x_2$ is not concave (and not convex)

Vector composition

$$h(y): \mathbb{R}^m \to \mathbb{R}, \ f_i(x): \mathbb{R}^n \to \mathbb{R}, \ i = 1, \dots, m,$$

$$H: \mathbb{R}^n \to \mathbb{R}, \ H(x) = h(f_1(x), \dots, f_m(x))$$

$f_i, \forall i$	h	h		H
	\smile	דע	\Rightarrow	
\sim	\smile	XXX	\Rightarrow	\smile
\sim	\frown	דעע	\Rightarrow	\frown
	\frown	XXX	\Rightarrow	\frown

Quasi-convex functions

The function $f: K \subseteq \mathbb{R}^n \to \mathbb{R}$ is called quasi-convex, if the set K is convex and $\forall x, y \in K, \forall \lambda \in [0, 1]$ it holds

 $f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$

- <, ≥, > strictly quasi-convex, quasi-concave, strictly quasi-convex
- quasilinear functions
- Equivalent definition: The function $f : K \subseteq \mathbb{R}^n \to \mathbb{R}$ is called quasi-convex, if the set K is convex and $\forall \alpha \in \mathbb{R}^n$ are the sub-level sets $S_{\alpha} = \{x \mid f(x) \leq \alpha\}$ convex.
- $f: K \subseteq \mathbb{R}^n \to \mathbb{R}$ is quasi-convex $\Leftrightarrow \forall x, y \in K, \forall \lambda \in [0, 1]$ is the function

$$g(\lambda) = f(\lambda x + (1 - \lambda)y)$$

quasi-convex.

Quasi-convex functions

Operations preserving quasi-convexity

• weighted maximum: if f_1, \ldots, f_m are quasi-convex, $w_1, \ldots, w_m \ge 0$ - then

$$g(x) = \max\{w_1 f_1(x), \dots, w_m f_m(x)\}$$

is quasi-convex

• supremum:

if $\forall y \in C$ is the function f(x, y) quasi-convex in x and $\sup_{y \in C} f(x, y) < \infty$, then

$$g(x) = \sup_{y \in \mathcal{C}} f(x, y)$$

is quasi-convex

• infimum:

if f(x, y) is quasi-convex in (x, y), the set $C \neq \emptyset$ is **convex** and $\inf_{y \in C} f(x, y) > -\infty$, then

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

is quasi-convex

First order conditions

• The function $f: K \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set K is quasi-convex **iff**

$$\forall x, y, \ x \neq y : f(x) \le f(y) \ \Rightarrow \ \nabla f(y)^T (x - y) \le 0$$

• Geometric interpretation: if $\nabla f(y) \neq 0$, then $\nabla f(y)$ is the normal of the supporting hyperplane of the sub-level set

 $S = \{x \mid f(x) \le f(y)\}$

at the point *y*.

Second order conditions

• If f is quasi-convex, then $\forall x, y$ it holds

 $y^T \nabla f(x) = 0 \ \Rightarrow \ y^T \nabla^2 f(x) y \ge 0$

• If the function f satisfies $\forall x, y \neq 0$

$$y^T \nabla f(x) = 0 \Rightarrow y^T \nabla^2 f(x) y > 0,$$

then f is quasi-convex.

- $\forall x : \nabla f(x) = 0$ is $\nabla^2 f(x)$ positive (semi)definite
- If $\nabla f(x) \neq 0$, then $\nabla^2 f(x)$ is positive semidefinite on the subspace $\nabla f(x)^{\perp}$ the matrix

$$H(x) = \begin{pmatrix} \nabla^2 f(x) & \nabla f(x) \\ \nabla f(x)^T & 0 \end{pmatrix}$$

has exactly one negative eigenvalue.

Strong convexity

The function $f : \mathbb{R}^n \to \mathbb{R}$ is called strong convex, if there exists $\beta > 0$ such that $\forall x \neq y$ and $\forall \lambda \in (0, 1)$ it holds

$$f(\lambda x + (1 - \lambda)y) + \beta \lambda (1 - \lambda) \|x - y\|^2 \le \lambda f(x) + (1 - \lambda)f(y).$$

- $q(x) = \beta x^T x = \beta ||x||_2^2, \ \beta > 0$ is the weakest strong convex function
- f(x) is strong convex \Leftrightarrow there exists $\beta > 0$ such that the function h(x) = f(x) q(x) is convex.
- If f(x) is strong convex, $\forall \alpha$ are the sub-level sets

$$S_{\alpha} = \{x \mid f(x) \le \alpha\}$$

convex and compact.

Convex function

$$h(x_1, x_2) = e^{-x_1 + x_2^2}$$

and strong convex function

$$f(x) = h(x) + \beta x^T x$$

First and second order conditions

The function f(x) is strong convex \Leftrightarrow if there exists $\beta > 0$ such that

•
$$f(x) \ge f(y) + \nabla f(y)^T (x - y) + \beta ||x - y||^2$$

•
$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 2\beta ||x - y||^2$$

• $\nabla^2 f(x) \succeq \beta I$

Generalized convexity

The cone \mathcal{K} is called **proper** if it has the following properties:

- *K* is convex;
- *K* is closed;
- \mathcal{K} is solid $int(\mathcal{K}) \neq \emptyset$;
- \mathcal{K} is pointed $x \in \mathcal{K} \land -x \in \mathcal{K} \Rightarrow x = 0$

Example: \mathbb{R}^n_+ , \mathcal{S}^n_+ , \mathcal{C}_2

The partial ordering associated with the cone \mathcal{K} :

$$x \preceq_{\mathcal{K}} y \Leftrightarrow y - x \in \mathcal{K}, \quad x \prec_{\mathcal{K}} y \Leftrightarrow y - x \in \operatorname{int}(\mathcal{K})$$

Properties of the generalized inequalities

property	$\preceq_{\mathcal{K}}$	$\prec_{\mathcal{K}}$	
invariant	$x \preceq_{\mathcal{K}} y, \ u \preceq_{\mathcal{K}} v \Rightarrow$	$x \prec_{\mathcal{K}} y, \ u \preceq_{\mathcal{K}} v \Rightarrow$	
	$x + u \preceq_{\mathcal{K}} y + v$	$x + u \prec_{\mathcal{K}} y + v$	
	$x \preceq_{\mathcal{K}} y, \alpha \ge 0 \Rightarrow \alpha x \preceq_{\mathcal{K}} \alpha y$	$x \prec_{\mathcal{K}} y, \alpha > 0 \Rightarrow \alpha x \prec_{\mathcal{K}} \alpha y$	
reflexive	$x \preceq_{\mathcal{K}} x$	$! x \not\prec_{\mathcal{K}} x$	
transitive	$x \preceq_{\mathcal{K}} y, \ y \preceq_{\mathcal{K}} z \Rightarrow$	$x \prec_{\mathcal{K}} y, \ y \prec_{\mathcal{K}} z \Rightarrow$	
	$x \preceq_{\mathcal{K}} y$	$x\prec_{\mathcal{K}} z$	
antisymmetric	$x \preceq_{\mathcal{K}} y, \ y \preceq_{\mathcal{K}} x \Rightarrow x = y$		
	—	$x \prec_{\mathcal{K}} y, \exists u, v \text{ small enough:}$	
		$x + u \prec_{\mathcal{K}} y + v$	
	$x_i \preceq_{\mathcal{K}} y_i, \forall i, \ x_i \to x, y_i \to y$		
	$\Rightarrow x \preceq_{\mathcal{K}} y$		

- $\mathcal{K} = \mathbb{R}^n_+$ $x \preceq_{\mathcal{K}} y \Leftrightarrow x_i \leq y_i \; \forall i = 1, 2, \dots, n$
- $\mathcal{K} = \mathcal{S}^n_+$

Löwner partial ordering of symmetric matrices *≤*:

- $A = Q\Lambda Q^T \preceq \alpha I$ spectrum of the matrix A is bounded above with the constant α
- for the positive semidefinite matrices the inequality $0 \leq A \leq B$ implies $h(A) \leq h(B)$ and $\det(A) \leq \det(B)$

Generalized convexity:

Let $\mathcal{K} \subseteq \mathbb{R}^m$ be a proper cone and $\preceq_{\mathcal{K}}$ is the associated generalized inequality. Then the function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called \mathcal{K} -**convex** if $\forall x, y \in \mathbb{R}^n$ and $\forall \lambda \in [0, 1]$ it holds

$$f(\lambda x + (1 - \lambda)y) \preceq_{\mathcal{K}} \lambda f(x) + (1 - \lambda)f(y).$$

Example: Matrix convexity The function $f : \mathbb{R}^n \to \mathcal{S}^m$ is called matrix convex if

$$f(\lambda x + (1 - \lambda)y) \preceq \lambda f(x) + (1 - \lambda)f(y).$$

 $\forall x, y \in \mathbb{R}^n \text{ and } \forall \lambda \in [0, 1].$

Equivalent definition: the function $z^T f(x)z$ is convex $\forall z \in \mathbb{R}^m$. E. g. the function $f : \mathbb{R}^{n \times m} \to S^n, f(X) = XX^T$ is matrix convex since for fixed z is the function $z^T X X^T z = ||X^T z||^2$ convex quadratic.