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A function f : K C R™ — R is convex, if K is a convex set and
Ve,y € K,x # y, VA € (0,1) we have

fAz+ (1 =Ny) < Af(x) + (1 =A)f(y).

(y,f(y)/

(x, f(x))

0 X y

® <, >, > - strictly convex, concave, strictly concave
* f: K CR"™ — Risconvexiff Yo,y € K,z # y, VA € (0,1)

g(A) = f(Az + (1= Ny)
IS convex.
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Sub-level sets
If f:R™ — R is convex

® thenVa e Ris S, = {z | f(z) < a} convex and closed.

® and if there exists ag such that S, = {z | f(z) < ap}is
nonempty and bounded, then S, is bounded for any a > ayg.

Minima of a convex function

® Every local minimum of a convex function is a global minimum.

® The set of all minima of a convex function is a convex set.
® Strictly convex function has at most one minimum.
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Continuity

® Assume K C R™is anopen and convexsetand f: K — R is
convex. Then f is Lipschitz continuous on any compact subset of
U C K, that is there exists a constant L such that Vz,y € U

f(z) = f(y)] < Lz —yll

® Convex function f : K ¢ R™ — R defined on an open convex set
K is continuous on K.

® Convex function f : K ¢ R™ — R defined on a closed convex set
K Is upper semi-continuous on K.

Convex function defined on a closed convex set K is not necessarily
continuous.
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First order conditions
The function f : K C R™ — R defined on an convex set K is convex iff

® (First order Taylor approximation lays below the graph of f)

Va,y, 2 #y: f(z) > f(y) + Vi)' (= —y)
® (Monotone gradient)

Vo,y, © #y: (Vi(z) - Vi) (z—y) >0

* > <, < - strictly convex/ concave/ strictly concave
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f(y)+ f'(y)(x- y)= X
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Second order conditions

Th function f : K ¢ R™ — R defined on an convex set K is convex iff

* (Positive semidefinite Hessian matrix)
Vr:V2f(x) =0

¢ =< -concave,

® -, < - strictly convex/ strictly concave - only one implication
holds - f(z) = 24
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Second order conditions
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Convex function f(z) and its second order Taylor approximation at the

point ¢ - convex quadratic function

@) = 16) + VI (@ — ) + 52— ) V)@ — )
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Epigraph of a function f : K C R™ — R is the set
epif = {(z,t) |z € K, f(z) <t}

® The function is convex < its epigraph is a convex set.

® First order condition interpretation: the hyperplane defined by

the normal vector (V f(y), —1) is the supporting hyperplane epif
at the boundary point (y, f(y))

| Viw \ (= Vi (v
(a:,t)eeplf=>< 4 ) <t><< 1 > (f(?ﬂ)

(v, f(y))
Fy),-1)
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Operations preserving convexity

® nonnegative linear combination: if f;,..., f,, are convex
W1, ..., Wy > 0-then

9(x) = wifr(x) + - + W fr ()
IS convex.
¢ affine transformation of variables: if f is convex, then
g(z) = f(Az +b)
IS convex
® point-wise maximum: if f;,..., f,, are convex, then

g(x) = max{fi(z),..., fm(r)}

IS convex
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Operations preserving convexity

® supremum:
if vy € Cis f(z,y) convex in z and sup, .. f(z,y) < oo, then

g(x) = sup,ec f(z,y)
IS convex.

* Example: distance (of the point z) to the farthest point of the set
C:

9(z) = sup,ec |z — y||

— p. 10
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Operations preserving convexity

® infimum:
if f(x,y) is convexin (z,y), the set C # ) is convex and
inf,ec f(x,y) > —oo, then

g(z) = infyec f(x,y)
IS convex

* Example: distance of the point = from the convex set C"

dist(x,C) = infycc ||x — y|

—p. 11
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Operations preserving convexity

°* |f f:R™ — R is convex, then the perspective function

g . R™ x R+_|_ — R, g(ZIf,t) = tf (%)

IS convex
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Composition
h(t):R—=R, f(z): R" - R, H(z) =h(f(z)) : R* - R

f | nl n J7]
— — s =N —
—~ — \ = —
—~ —~ ya = —~
— —~ \ = —~
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| the reverse implication does not hold!

H(z1,z2) = \/T122 iS concave on R2 _, h(t) = v/t is concave and
increasing on R, ., but f(x1,z2) = 122 IS Nnot concave (and not
convex)

Vector composition
h(y) : R™ = R, fi(x) :R* >R, i=1,...,m,

H:R" - R, H(x) =h(fi(x),..., fm(x))

fivi | h h J7]
-~ =1 =] -
~ NN 2] -
~ |~ A =]~
~ |~ 1N =] -
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Quasi-convex functions

The function f : K C R™ — R is called quasi-convex, if the set K is
convex and Vz,y € K, VA € [0, 1] it holds

fz + (1= ANy) < max{f(z), f(y)}.

® <, >,> - strictly quasi-convex, quasi-concave, strictly
quasi-convex

® quasilinear functions

® Equivalent definition: The function f : K C R" — R is called
guasi-convey, if the set K is convex and Va € R™ are the
sub-level sets S, = {z | f(x) < a} convex.
* f: K CR"™ — Ris quasi-convex < Vz,y € K, VA € [0,1] is the
function
g(A) = f(Az + (1 = AN)y)
quasi-convex.

— p. 15
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Quasi-convex functions
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Operations preserving quasi-convexity

* weighted maximum: if f1,..., f,, are quasi-convex,
Wi, ..., W, > 0-then

g9(x) = max{w f1(z), ..., wnfm(2)}
IS quasi-convex

® supremum:
if Yy € C is the function f(x,y) quasi-convex in x and
sup,cc f(z,y) < oo, then
g(x) = sup,ec f(z,y)
IS quasi-convex
® infimum:
if f(x,y) is quasi-convex in (z,y), the set C # () is convex and
inf,ec f(x,y) > —o0, then
g(z) = infyec f(z,y)
IS quasi-convex

— p. 17
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First order conditions

® The function f : K C R™ — R defined on a convex set K is
quasi-convex iff

Ve, y, e £y f(@) < fly) = Vi) (@—y) <0

* Geometric interpretation: if V f(y) # 0, then V f(y) is the normal
of the supporting hyperplane of the sub-level set

S=A{z|f(z) < fy);
at the point y.

y grad f(y)

— p. 18
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Second order conditions

® If f is quasi-convex, then Vz, y it holds
y' V(@) =0 = y"'V2f(z)y >0
® |[f the function f satisfies Vz,y # 0
y'Vx)=0 = y"'V*f(x)y >0,
then f is quasi-convex.
°* Vz:Vf(zx)=0is V?f(x) positive (semi)definite

* If Vf(x) # 0, then V2f(z) is positive semidefinite on the
subspace Vf(x)* - the matrix

[ Vf(@) Vf(x)
H<x)_<Vf(:r;)T 0 )

has exactly one negative eigenvalue.

— p. 19
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Strong convexity

The function f : R™ — R is called strong convey, if there exists 8 > 0
such that Vx # y and VA € (0, 1) it holds

fOz+ (1= Ny) + BAL = N[z = yl|* < Af(x) + (L= A)f ().

* q(z) = Bxtz = Bllz||5, B > 0is the weakest strong convex
function

® f(x) is strong convex < there exists g > 0 such that the function
h(x) = f(x) — q(x) is convex.

* If f(x) is strong convex, Vo are the sub-level sets

Sa ={z | f(z) < a}
convex and compact.

— p. 20
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Convex function

Wz, Ts) = e~ %1173
and strong convex function
f(z) = h(z) + Bz"x

— p. 21
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First and second order conditions

The function f(x) is strong convex < if there exists 8 > 0 such that

° flz)> fly) + Vi) (z—y)+ Bllz — yl?
* (Vf(x) = Vi)' (z—y) > 28|z -yl

* V2f(x) = I

— p. 22
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Generalized convexity

The cone K is called proper if it has the following properties:

®* K is convex;

* K is closed;

* K is solid - int(K) # 0;

® Kispointed-z e KCA—z e KXL=2=0

Example: R%, 8%, Co
The partial ordering associated with the cone /C:

r=xy & y—-crel x<xy < y—zxcint(k)

— p. 23
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Properties of the generalized inequalities

property e o
invariant r Ky, U =cv=> <Ky, u=v=
rT+u=<xy-+v r+u<xKy-+v
Ty, a>0=arcay | v <cy,a>0=ar < oy
reflexive T =< l o L @
transitive kY, Yk z= T =Ky, Y<K z=
T =Ky Tr <K Z
antisymmetric TkY, YT =T =Yy —
— x <r y, Ju,v small enough:
r+u<xy-+v
T 2K Yir Vi, Ty — T, Y; — Y —
= 2Ky

— p. 24
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* K=RY}
r=xy & <yvVi=12,....n

* K=5%
Lowner partial ordering of symmetric matrices <:

- A =QAQT < ol - spectrum of the matrix A is bounded
above with the constant «

- for the positive semidefinite matrices - the inequality
0 <A< Bimplies h(A) < h(B) and det(A) < det(B)

— p. 25
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Generalized convexity:

Let  C R™ be a proper cone and =< is the associated generalized
inequality. Then the function f : R™ — R™ is called K-convex if
Vx,y € R and VA € [0, 1] it holds

fAz+ (1 =Ny) 2k Af(z) + (1 = A)f(y).

Example: Matrix convexity The function f : R™ — S§™ is called matrix convex if

fz+ (1 =XNy) 2 Af(z) + (1= A)f(y).

Vz,y € R™ and VA € [0, 1].

Equivalent definition: the function 27 f(z)z is convex Vz € R™. E. g. the function
f:R?PX™m 5 87 f(X) = XX7T is matrix convex since for fixed z is the function
2T X XT2 = | XT2||? convex quadratic.

— p. 26
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