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® Basic terminology

® Formulation of equivalent problems

® Local and global optimum

® Optimality conditions for differentiable functions

® Bisection method for solving quasi-convex problems

® Convex optimization classes
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Convex optimization problem in standard form

Min  fo(x)
filr) <0, i=1,....m , (CO)
hz(:v):(), 1 =1, Jips
filz) :R* - R, i=0,1,...,m - convex functions

hi(x) :R* - R, i=1,...,p - affine functions
If fo is quasi-convex - quasi-convex optimization problem

Feasible solution set:
P=A{x|fi(x) <0,i=1,...,m,hi(z)=0,i=1,...,p.}

Optimal value:

p* =inf{fo(x) |r € P} e RUto0, p"=+00 & P =0.
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® The point * € P is called optimal if
fo(x*™) = p*, resp. fo(x*) < fo(z) Va € P.
® P> - optimal solutions set - convex
® The point z. € P is called e-suboptimal, if
fo(ze) < p*+e, resp. fo(x:) < fo(x) +e, V€ P (e >0).
® Locally optimal solution z € P:
Ir > 0: fo(2) < folz), Ve e P,||lx — |2 < r

Feasibility problem
Find z: filx) <0,i=1,...,m, hi(x)=0,71=1,...,p.

Min 0O
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Formulation of equivalent problems:

* Transformation of variables
Assume ¢ : R” — R" is a bijective map. Define

F’L(y) — fz(¢(y))7 g =k i H@(y) — h@(¢(y))a (R=NI S
Problem (CO) is equivalent to

Fi(y) <0, i=1,...,m p(E1)

x* is optimal for (CO) = y* = ¢~ 1(z*) is optimal for (E1)
y* is optimal for (E1) = z* = ¢(y*) is optimal for (CO)
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Formulation of equivalent problems

* Transformation of functions
Assume g, 11, ..., Y, : R — R have the following properties:
© g - is increasing and convex

© 4;(u) - nondecreasing and convex OR non-increasing and
concave

sz(U)SO@’LLSO, Vz:l,,m
Define
fi(z) = ¥i(fi(z)), i =0,1,...,m

Problem (CO) is equivalent to

Min  fo(x)
filx) <0, i=1,....m ;(E2)
hi(x) =0, i=1,...,p
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Formulation of equivalent problems

* Elimination of linear constraints

Consider the constraints h;(x) =0, i =1,...,pinthe form Ax = b
where A € RP** p € RP,
° If b ¢ S(A) = the problem is infeasible.

° If b € S(A) = then any solution of the system Ax = b can be
expressed as F'z + xg, where zo € R" is a (fixed) solution of
Ax = b, F € R"** (k = n — h(A)) is a matrix satisfying
S(F) = N(A) a z € R* is arbitrary.

Problem (CO) is equivalent to

Min  fo(Fz+ xp), (B3)
fi(Fz4+x9) <0, ¢=1,...,m.

~p.7/23



Topic 4: Convex optimization problems

Formulation of equivalent problems

® Slack variables

° fr(x) <0 — fr(x) + s =0, sp >0

© to preserve the convexity - f,, are assumed to be affine

* Epigraph formulation

Problem (CO) is equivalent to

Min 1
fO(CC) —t <0,
fi(z) <0, 1 =1,
hi(x) =0, i =1,

uoo’m,

ce .

 (E4)

/
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Formulation of equivalent problems

® Partial optimization
It holds

inf f(x1,2r2) = infinf f(x1,x2).
Z1,T2 r1 X2

Let x = (x1,x2) € R™. Consider the problem

Minam,xg fO(ajla ZCQ)
fz(ilfl) SO, 1= 1,...,m
The problem can be solved in 2 phases:
1. Ming, fo(x1,xz2) - find analytical solution x3.

Minam fo(ﬂ?l,l‘;)

2 |
filr1) <0, i=1,...,m
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Local and global minimum

® Every local optimum of a convex problem is also a global
optimum.

® Does not hold for quasi-convex optimization problems!!

KVAZIKONVEXNA FUNKCIA

Xglobopt X lokopt
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Optimality conditions for differentiable functions
* If fy is convex and differentiable then
Vo,y, = #y: fo(z) > foly) + Viely)" (z —y)
® 2 is optimal solution of the problem (CO) < z € P and
Ve e P V(@) (z—2)>0 (1).

® geometric interpretation: vector —V f(z) defines the supporting
hyperplane of the set P at the point z

1
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Unconstrained convex problems The condition (1) is reduced to

VY fo(2) = 0.

Example:
Minimizing quadratic function fo(z) = 227 Pz + ¢"'z + r. Necessary
and sufficient condition of optimality is

Px +q=0.
® q¢ S(P) - fois unbounded from below - the solution does not
exist.
®* P > 0 - unique solution £ = —P~1q.

® P > 0-singular, g € S(P) - the optimal solution set can be
expressed as P* = {—PTq + N (P)}.

1
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Equality constraint convex problems

® The condition (1) is of the form

V(@) (x—2)>0, Va: Az =10

® Any solution of the system Ax = b can be expressed as
r =2 + N(A). The condition (1) has the form

Vi(@)'v=0, Vy:yeN() (Ay=0)
(since N'(A) is a subspace)
* |tholds Vfy(£) € N(A)+ = S(AT). Optimality conditions for £ are

Jw e RP : AlTw = Vfy(2),
Az =b.

1
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® if fy is quasi-convex and differentiable, then
Va,y, x #y: fo(x) < foly) = Vio(y)" (z—y) <0

® Quasi-convex optimization problem: If £ € P and
Ve e P V(@) (z—2) >0,
then z is the optimal solution.

® For convex functions the condition V fy(z) = 0 (together with
feasibility) guarantees the optimality of . Does not hold in general
for quasi-convex functions!

® For convex functions we have the the necessary and sufficient
condition , for quasi-convex problems we have only the

sufficient condition. |

1
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Solving quasi-convex problems via convex feasibility problems

Consider the quasi-convex optimization problem

fi(x) <0, i=1,....m p (KKO)
A b

I. e. the function f; is quasi-convex and the functions f; are convex
(:=1,...,m).

* Let ¢¢(x) : R" — R, t € R, be the class of convex functions such
that

fo(x) <t & ¢s(x) <0.

and for fixed x is ¢.(x) non-increasing in t.

1
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* Example. fo(z) = %24, D(fo) = {z | Tz + f > 0}.

() = clo+d-— t(eT:r; + f)

® Denote p* the optimal value of the problem (KKO). Consider the
feasibility problem:

Find x:
oe(x) <0, fi(x)<0,i=1,...,m, Ax =0, (UP)

© If the problem is feasible, then p* < t.
° If the problem is infeasible, then p* > t.

® Assume that the problem (KKO) is feasible and p* € [a, b].
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BISECTION METHOD FOR QUASI-CONVEX PROBLEMS

Input: a, b, tolerance .

Repeat 1.t:=(a+b)/2,

2. Solve the feasibility problem,

3. If (UP) is feasible , b :=t, else a :=t,
until b—a <e.

To find the e-suboptimal solution we need to solve

v = Jioms (),

convex feasibility problems.
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Generalized convex optimization problem:

Min  fo(z)
fi(x) 2k, i=1,...,m
Az = b,

where fo : R" —» R, f; : R® — R"¢,
Ko=Ry, K; CR"™ (¢ =1,...,m) are proper cones

the functions f;, (i =0,1,...,m) are K;-convex.

If the functions fy, f1,..., fn are linear =

K RY SY Ky

problem | LP SDP SOCP
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Known convex optimization classes

® Linear programming
ceR" FeR™" geR™, AecRP" hecRP

Min 'z |
Fr<g ; (LP)
Ax =0b )

® Quadratic programming
P eS8t g eR" r;eR, j=0,1,...,m, AcRP*" HcRP
Min x''Pyx+ ¢tz + o \
'Pr+qle+r; <0, i=1,....m p (QP)
Axr =1b

1
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® Second order cone programming
ceR™ F,e R*" g, eR", f,eR" h;eR, 1=14,....,mAE

RPX" p € RP
Min 'z )
Axr = b )

® Semidefinite programming
ceR" F,eS", i=1,....,n, GeS", A RP*" phcRP

. N\
Min 'z

2?21 Fix; <G ; (SDP)
Ax =0b

|
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Relations between the classes
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Geometric programming
The function f : R} — R,

K
f(x) — f(x17"'7xn) — chxclblkngk ...a’;?’l’nk’
k=1
wherec, >0anda;rz €R, i=1,...,n, k=1,..., K, is called

posynomial function of degree K.

Geometric programming problem

Min  fo(z)
filx) <1, i=1,. > (GP)
h](x) 17 .7 — 1 P

where fo, f1,..., fm are posynomials of degree K; and h4, ..., h, are

monomials.
|

1
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Convex formulations of the geometric programming problem

® transformation of variables - ¢(z) = (e™, ..., e"")
® transformation of functions - ¥)(u) = Inu

* i) = TR el

® hj(z) =djzt ..o

Min  fo(z) = (2501 eaoTkx+b0k) \
fi(z) = 1H(Zk 1ezk"”’+blk)§0, i=1,....m ¢ (KGP)
hj(z) = gfa+h; =0, j=1...,p, |
where

Qi = ((az’kz 1y«-- (aik)n)s g; = (gjh . 7gjn)a By = 0 Cp, hj = lndj,
' 1...

|
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