Convex optimization

Convex optimization problems

- Basic terminology
- Formulation of equivalent problems
- Local and global optimum
- Optimality conditions for differentiable functions
- Bisection method for solving quasi-convex problems
- Convex optimization classes

Convex optimization problem in standard form

$$\begin{cases}
 Min & f_0(x) \\
 f_i(x) \le 0, & i = 1, ..., m \\
 h_i(x) = 0, & i = 1, ..., p.
 \end{cases}$$
(CO)

$$f_i(x): \mathbb{R}^n \to \mathbb{R}, \ i=0,1,\ldots,m$$
 - convex functions $h_i(x): \mathbb{R}^n \to \mathbb{R}, \ i=1,\ldots,p$ - affine functions

If f_0 is quasi-convex - quasi-convex optimization problem Feasible solution set:

$$\mathcal{P} = \{x \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p.\}$$

Optimal value:

$$p^* = \inf\{f_0(x) \mid x \in \mathcal{P}\} \in \mathbb{R} \cup \pm \infty, \quad p^* = +\infty \iff \mathcal{P} = \emptyset.$$

• The point $x^* \in \mathcal{P}$ is called **optimal** if

$$f_0(x^*) = p^*, \text{ resp. } f_0(x^*) \le f_0(x) \ \forall x \in \mathcal{P}.$$

- \mathcal{P}^* optimal solutions set convex
- The point $x_{\varepsilon} \in \mathcal{P}$ is called ε -suboptimal, if

$$f_0(x_{\varepsilon}) \leq p * + \varepsilon$$
, resp. $f_0(x_{\varepsilon}) \leq f_0(x) + \varepsilon$, $\forall x \in \mathcal{P} \quad (\varepsilon > 0)$.

• Locally optimal solution $\hat{x} \in \mathcal{P}$:

$$\exists r > 0: \ f_0(\hat{x}) \le f_0(x), \ \forall x \in \mathcal{P}, \|x - \hat{x}\|_2 \le r$$

Feasibility problem

Find
$$x$$
: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$.

$$Min \quad 0$$
 $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p.$

Formulation of equivalent problems:

Transformation of variables

Assume $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is a bijective map. Define

$$F_i(y) = f_i(\phi(y)), i = 0, 1, \dots, m, H_i(y) = h_i(\phi(y)), i = 1, \dots, p$$

Problem (CO) is equivalent to

$$\begin{cases}
 Min & F_0(y) \\
 & F_i(y) \le 0, \quad i = 1, ..., m \\
 & H_i(y) = 0, \quad i = 1, ..., p.
 \end{cases}
 (E1)$$

 x^* is optimal for (CO) $\Rightarrow y^* = \phi^{-1}(x^*)$ is optimal for (E1) y^* is optimal for (E1) $\Rightarrow x^* = \phi(y^*)$ is optimal for (CO)

Formulation of equivalent problems

Transformation of functions

Assume $\psi_0, \psi_1, \dots, \psi_m : \mathbb{R} \to \mathbb{R}$ have the following properties:

- $^{\circ}$ ψ_0 is increasing and convex
- \circ $\psi_{i}(u)$ nondecreasing and convex OR non-increasing and concave
- $\psi_i(u) \leq 0 \Leftrightarrow u \leq 0, \quad \forall i = 1, \dots, m$

Define

$$\tilde{f}_i(z) = \psi_i(f_i(x)), \ i = 0, 1, \dots, m$$

Problem (CO) is equivalent to

Formulation of equivalent problems

Elimination of linear constraints

Consider the constraints $h_i(x) = 0, i = 1, ..., p$ in the form Ax = b where $A \in \mathbb{R}^{p \times x}, b \in \mathbb{R}^p$.

- If $b \notin \mathcal{S}(A) \Rightarrow$ the problem is infeasible.
- If $b \in \mathcal{S}(A) \Rightarrow$ then any solution of the system Ax = b can be expressed as $Fz + x_0$, where $x_0 \in \mathbb{R}^n$ is a (fixed) solution of Ax = b, $F \in \mathbb{R}^{n \times k}$ (k = n h(A)) is a matrix satisfying $\mathcal{S}(F) = \mathcal{N}(A)$ a $z \in \mathbb{R}^k$ is arbitrary.

Problem (CO) is equivalent to

$$\begin{cases}
Min & f_0(Fz + x_0), \\
f_i(Fz + x_0) \le 0, & i = 1, ..., m.
\end{cases} (E3)$$

Formulation of equivalent problems

Slack variables

- $f_k(x) \leq 0 \longrightarrow f_k(x) + s_k = 0, \ s_k \geq 0$
- $^{\circ}$ to preserve the convexity f_k are assumed to be affine

Epigraph formulation

Problem (CO) is equivalent to

Formulation of equivalent problems

Partial optimization

It holds

$$\inf_{x_1, x_2} f(x_1, x_2) = \inf_{x_1} \inf_{x_2} f(x_1, x_2).$$

Let $x = (x_1, x_2) \in \mathbb{R}^n$. Consider the problem

$$Min_{x_1,x_2}$$
 $f_0(x_1,x_2)$
 $f_i(x_1) \le 0, \quad i = 1,\dots, m$

The problem can be solved in 2 phases:

1. $Min_{x_1}f_0(x_1, x_2)$ - find analytical solution x_2^* .

2.
$$Min_{x_1}$$
 $f_0(x_1, x_2^*)$ $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

Local and global minimum

- Every local optimum of a convex problem is also a global optimum.
- Does not hold for quasi-convex optimization problems!!

Optimality conditions for differentiable functions

• If f_0 is convex and differentiable then

$$\forall x, y, \quad x \neq y : f_0(x) \ge f_0(y) + \nabla f_0(y)^T (x - y)$$

• \hat{x} is optimal solution of the problem (CO) $\Leftrightarrow \hat{x} \in \mathcal{P}$ and

$$\forall x \in \mathcal{P} \quad \nabla f_0(\hat{x})^T (x - \hat{x}) \ge 0 \tag{1}.$$

• **geometric interpretation**: vector $-\nabla f(\hat{x})$ defines the supporting hyperplane of the set \mathcal{P} at the point \hat{x}

Unconstrained convex problems The condition (1) is reduced to

$$\nabla f_0(\hat{x}) = 0.$$

Example:

Minimizing quadratic function $f_0(x) = \frac{1}{2}x^TPx + q^Tx + r$. Necessary and sufficient condition of optimality is

$$Px + q = 0.$$

- $q \notin S(P)$ f_0 is unbounded from below the solution does not exist.
- $P \succ 0$ unique solution $\hat{x} = -P^{-1}q$.
- $P \succeq 0$ singular, $q \in \mathcal{S}(P)$ the optimal solution set can be expressed as $\mathcal{P}^* = \{-P^{\dagger}q + \mathcal{N}(P)\}.$

Equality constraint convex problems

• The condition (1) is of the form

$$\nabla f_0(\hat{x})^T(x-\hat{x}) \ge 0, \quad \forall x: Ax = b$$

• Any solution of the system Ax = b can be expressed as $x = \hat{x} + \mathcal{N}(A)$. The condition (1) has the form

$$\nabla f_0(\hat{x})^T v = 0, \quad \forall y : \ y \in \mathcal{N}(A) \quad (Ay = 0)$$

(since $\mathcal{N}(A)$ is a subspace)

• It holds $\nabla f_0(\hat{x}) \in \mathcal{N}(A)^{\perp} = \mathcal{S}(A^T)$. Optimality conditions for \hat{x} are

$$\exists w \in \mathbb{R}^p : \quad A^T w = \nabla f_0(\hat{x}),$$
$$A\hat{x} = b.$$

• if f_0 is quasi-convex and differentiable, then

$$\forall x, y, \ x \neq y : f_0(x) \le f_0(y) \ \Rightarrow \ \nabla f_0(y)^T(x - y) \le 0$$

• Quasi-convex optimization problem: If $\hat{x} \in \mathcal{P}$ and

$$\forall x \in \mathcal{P} \quad \nabla f_0(\hat{x})^T (x - \hat{x}) > 0,$$

then \hat{x} is the optimal solution.

- For convex functions the condition $\nabla f_0(\hat{x}) = 0$ (together with feasibility) guarantees the optimality of \hat{x} . Does not hold in general for quasi-convex functions!
- For convex functions we have the the necessary and sufficient condition, for quasi-convex problems we have only the sufficient condition.

Solving quasi-convex problems via convex feasibility problems

Consider the quasi-convex optimization problem

$$\begin{cases}
 Min & f_0(x) \\
 & f_i(x) \le 0, \quad i = 1, \dots, m \\
 & Ax = b,
 \end{cases}
 \qquad (KKO)$$

i. e. the function f_0 is quasi-convex and the functions f_i are convex (i = 1, ..., m).

• Let $\phi_t(x): \mathbb{R}^n \to \mathbb{R}$, $t \in \mathbb{R}$, be the class of convex functions such that

$$f_0(x) \le t \Leftrightarrow \phi_t(x) \le 0.$$

and for fixed x is $\phi_t(x)$ non-increasing in t.

• Example. $f_0(x) = \frac{e^T x + d}{e^T x + f}$, $\mathcal{D}(f_0) = \{x \mid e^T x + f > 0\}$.

$$\phi_t(x) = c^T x + d - t(e^T x + f)$$

• Denote p^* the optimal value of the problem (KKO). Consider the feasibility problem:

Find x:

$$\phi_t(x) \le 0, \ f_i(x) \le 0, \ i = 1, \dots, m, \quad Ax = b,$$
 (UP)

- If the problem is feasible, then $p^* \leq t$.
- If the problem is infeasible, then $p^* \ge t$.
- Assume that the problem (KKO) is feasible and $p^* \in [a, b]$.

BISECTION METHOD FOR QUASI-CONVEX PROBLEMS

Input: a, b, tolerance ε .

Repeat

1. t := (a+b)/2,

2. Solve the feasibility problem,

3. If (UP) is feasible, b := t, else a := t,

until

 $b-a<\varepsilon$.

To find the ε -suboptimal solution we need to solve

$$N = \left\lceil \log_2 \left(\frac{b - a}{\varepsilon} \right) \right\rceil$$

convex feasibility problems.

Generalized convex optimization problem:

$$Min \quad f_0(x)$$

$$f_i(x) \leq_{\mathcal{K}_i} 0, \quad i = 1, \dots, m$$

$$Ax = b,$$

where $f_0:\mathbb{R}^n \to \mathbb{R}$, $f_i:\mathbb{R}^n \to \mathbb{R}^{n_i}$,

 $\mathcal{K}_0 = \mathbb{R}_+$, $\mathcal{K}_i \subseteq \mathbb{R}^{n_i}$, (i = 1, ..., m) are proper cones

the functions f_i , (i = 0, 1, ..., m) are \mathcal{K}_i -convex.

If the functions f_0, f_1, \ldots, f_m are linear \Rightarrow

\mathcal{K}	\mathbb{R}^n_+	\mathcal{S}^n_+	$\mathcal{K}_{\ \cdot\ _2}$
problem	LP	SDP	SOCP

Known convex optimization classes

Linear programming

$$c \in \mathbb{R}^n, \ F \in \mathbb{R}^{m \times n}, \ g \in \mathbb{R}^m, \ A \in \mathbb{R}^{p \times n}, \ b \in \mathbb{R}^p$$

Quadratic programming

$$P_j \in \mathcal{S}_+^n, \ q_j \in \mathbb{R}^n, \ r_j \in \mathbb{R}, \ j = 0, 1, \dots, m, \ A \in \mathbb{R}^{p \times n}, \ b \in \mathbb{R}^p$$

Second order cone programming

$$c \in \mathbb{R}^n, F_i \in \mathbb{R}^{n_i \times n}, g_i \in \mathbb{R}^{n_i}, f_i \in \mathbb{R}^n, h_i \in \mathbb{R}, i = i, \dots, m, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$$

Semidefinite programming

$$c \in \mathbb{R}^n, F_i \in \mathcal{S}^n, i = 1, \dots, n, G \in \mathcal{S}^n, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$$

$$\left.\begin{array}{ll}
Min & c^T x \\
\sum_{i=1}^n F_i x_i \leq G \\
Ax = b
\end{array}\right\} (SDP)$$

Relations between the classes

Geometric programming

The function $f: \mathbb{R}^n_{++} \to \mathbb{R}$,

$$f(x) = f(x_1, \dots, x_n) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}},$$

where $c_k > 0$ and $a_{ik} \in \mathbb{R}$, i = 1, ..., n, k = 1, ..., K, is called **posynomial function** of degree K.

Geometric programming problem

$$\begin{cases}
 Min & f_0(x) \\
 f_i(x) \le 1, & i = 1, ..., m \\
 h_j(x) = 1, & j = 1, ..., p
 \end{cases}
 \qquad (GP)$$

where f_0, f_1, \ldots, f_m are posynomials of degree K_i and h_1, \ldots, h_p are monomials.

Convex formulations of the geometric programming problem

- transformation of variables $\phi(x) = (e^{x_1}, \dots, e^{x_n})$
- transformation of functions $\psi(u) = \ln u$
- $f_i(x) = \sum_{k=1}^{K_i} c_{ki} x_1^{(a_{ik})_1} \dots x_n^{(a_{ik})_n}$
- $h_j(x) = d_j x_1^{g_{j1}} \dots x_n^{g_{jn}}$

$$Min \quad \tilde{f}_{0}(x) = \ln \left(\sum_{k=1}^{K_{0}} e^{a_{0k}^{T} x + b_{0k}} \right)$$

$$\tilde{f}_{i}(x) = \ln \left(\sum_{k=1}^{K_{i}} e^{a_{ik}^{T} x + b_{ik}} \right) \leq 0, \quad i = 1, \dots, m$$

$$\tilde{h}_{j}(x) = g_{j}^{T} x + h_{j} = 0, \qquad j = 1, \dots, p,$$

$$(KGP)$$

where

$$a_{ik} = ((a_{ik})_1, \dots, (a_{ik})_n), g_j = (g_{j1}, \dots, g_{jn}), b_{ki} = \ln c_{ki}, h_j = \ln d_j, i = 1, \dots, m, j = 1, \dots, p$$