Convex optimization

Optimality conditions

Consider the primal-dual pair of problems with **differentiable** functions $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$:

$$\begin{array}{cccc}
Min & f_0(x) \\
& & f_i(x) \le 0, & i = 1, \dots, m \\
& & h_i(x) = 0, & i = 1, \dots, p
\end{array} \right\} (P), \qquad \begin{array}{ccccc}
Max & G(u, v) \\
& & u \ge 0
\end{array} \right\} (D),$$

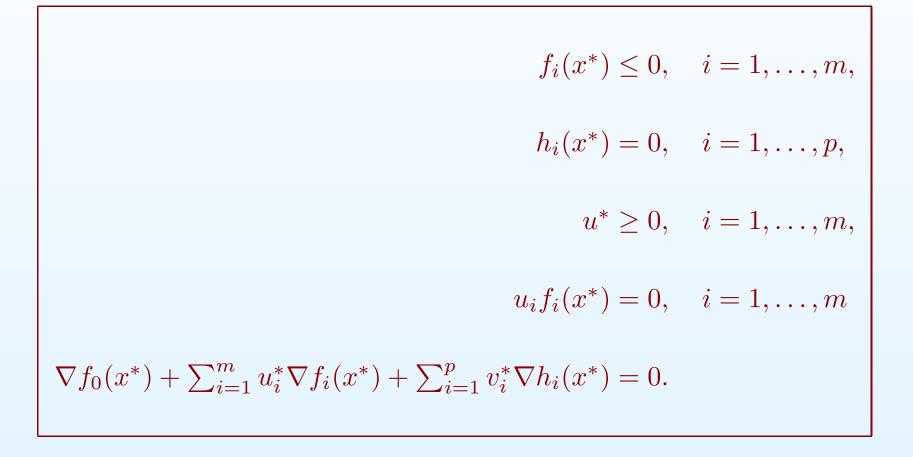
associated with the Lagrangian

$$L(x, u, v) = f_0(x) + \sum_{i=1}^m u_i f_i(x) + \sum_{i=1}^p v_i h_i(x),$$

and the dual function is defined as

$$G(u, v) = \inf_{x} L(x, u, v).$$

KKT (Karush-Kuhn-Tucker) optimality conditions:



If x^* is optimal for (P) and (u^*, v^*) is optimal for (D) and strong duality property $p^* = d^*$ holds, then

$$f_0(x^*) = L(x^*, u^*, v^*) = G(u^*, v^*).$$

Implications:

- Complementarity $u_i f_i(x^*) = 0, i = 1, ..., m$
- If the functions $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ are differentiable, then x^* minimizes $L(x, u^*, v^*)$ and hence $\nabla_x L(x^*, u^*, v^*) = 0$.

For any problem with strong duality and differentiable functions it holds: If x^* and (u^*, v^*) are optimal solutions of (P) and (D), respectively, then they satisfy the system of KKT optimality conditions.

For **convex problems** with differentiable functions it holds: If x^* and (u^*, v^*) satisfy the system of KKT conditions, then x^* is optimal for (P) and (u^*, v^*) is optimal for (D).

If we assume

- the problem is convex,
- the functions $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ are differentiable
- Slater condition is satisfied

then the KKT conditions are necessary and sufficient conditions of optimality.

Importance:

- In some cases it is possible to solve the system of KKT conditions analytically to obtain the optimal solution.
- Many convex optimization algorithms are based on solving the system of KKT conditions.

Example: "Water filling"

Consider the convex optimization problem:

$$\begin{array}{ll}
Min & -\sum_{i=1}^{n} \ln(\alpha_{i} + x_{i}) \\
\mathbf{1}^{T} x = 1, \\
x \ge 0,
\end{array} \right\} \quad (WF)$$

where $\alpha_i > 0$ are given.

- *n* communication channels
- x_i transmitter power allocated to the i-th channel
- $\ln(\alpha_i + x_i)$ communication rate of the channel
- Problem: to allocate a total power of the channels in order to maximize the total communication rate

Lagrangian:

$$L(x, u, v) = -\sum_{i=1}^{n} \ln(\alpha_i + x_i) - u^T x + v(\mathbf{1}^T x - 1)$$

KKT conditions:

- Feasibility: $\mathbf{1}^T x = 1, x \ge 0, u \ge 0;$
- Complementarity: $u_i x_i = 0, i = 1, \dots, m$;

•
$$\nabla_x L(x, u, v) = -\frac{1}{\alpha_i + x_i} - u_i + v = 0$$

The variable *u* can be eliminated: $u = v - \frac{1}{\alpha_i + x_i}$

- Feasibility: $\mathbf{1}^T x = 1$, $x \ge 0$, $v \ge \frac{1}{\alpha_i + x_i}$;
- Complementarity: $x_i\left(v \frac{1}{\alpha_i + x_i}\right) = 0, \ i = 1, \dots, m;$

• If
$$v < \frac{1}{\alpha_i}$$
 then $x_i = \frac{1}{v} - \alpha_i$.

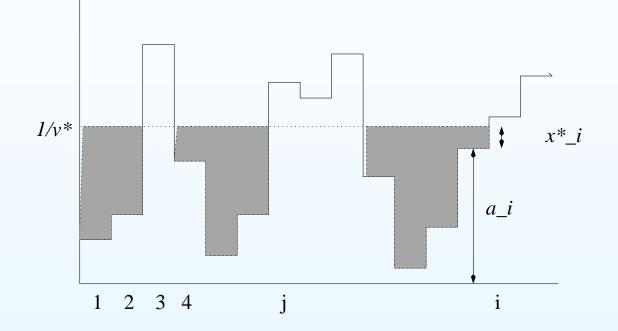
• If $v \ge \frac{1}{\alpha_i}$, then $x_i = 0$. Therefore

$$x_i = \max\left\{0, \frac{1}{v} - \alpha_i\right\}, \quad i = 1, \dots, m$$

а

$$\sum_{i=1}^{n} \max\left\{0, \frac{1}{v} - \alpha_i\right\} = 1.$$

The function on the left is piece-wise linear and increasing in $\frac{1}{v}$ so the equation has a unique solution.



"Water filling" method: The height of each patch is given by α_i . The region is flooded to a level $1/v^*$ which uses a total quantity of water equal to one. The height of the water above each patch is the optimal value of x_i^* .

PERTURBATION AND SENSITIVITY ANALYSIS

$$\begin{array}{ll}
Min & f_0(x) \\ & f_i(x) \le r_i, & i = 1, \dots, m, \\ & h_i(x) = s_i, & i = 1, \dots, p. \end{array} \right\} (P(r, s))$$

- $r_i > 0$ we loosen the i-th constraint
- $r_i < 0$ we tighten the i-th constraint
- Optimal value of the perturbed problem (P(r,s)):

 $p^*(r,s) = \inf\{f_0(x) \mid f_i(x) \le r_i, i = 1, \dots, m, h_i(x) = s_i, i = 1, \dots, p\}$

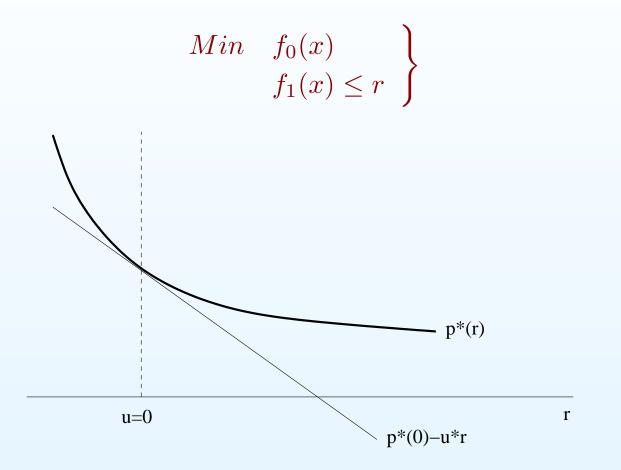
- $p^*(0,0) = p^*$
- If (P) is a convex optimization problem, then $p^*(r,s)$ is a convex function of (r,s)

Assume that strong duality holds $d^* = p^*$ and the dual optimum is attained. Let (u^*, v^*) be the optimal solution of the dual problem. Then:

$$p^*(r,s) \ge p^*(0,0) - (u^*)^T r - (v^*)^T s$$

Conclusions:

- If u_i^* is large and we tighten the i-th constraint (choose $r_i < 0$), then the optimal value $p^*(r, s)$ increases greatly.
- If v_i^* is large and positive and we take $s_i < 0$ or if v_i^* is large and negative and we take $s_i > 0$, then the value $p^*(r, s)$ increases greatly.
- If u_i^* is small and we loosen the i-th constraint (choose $r_i > 0$), then the value $p^*(r, s)$ will not decrease much.
- If v_i^* is small and positive and we take $s_i > 0$ or if v_i^* is small and negative and we take $s_i < 0$, then the value $p^*(r, s)$ will not decrease much.



The optimal value $p^*(r)$ of the perturbed convex problem with one constraint $f_1(x) \le r$ is a convex function of r. Affine function $p^*(0) - u^*r$ is the lower bound on $p^*(r)$.

Local sensitivity analysis

- Assume $p^*(r, s)$ is differentiable at r = 0, s = 0.
- Let $r = te_i$, s = 0. Then

$$\lim_{t \to 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} = \frac{\partial p^*(0, 0)}{\partial r_i}$$

• For t > 0 we have

$$\frac{p^*(te_i,0) - p^*(0,0)}{t} \ge -u_i^*$$

• For t < 0 we have

$$\frac{p^*(te_i,0) - p^*(0,0)}{t} \le -u_i^*$$

• Therefore

$$\frac{\partial p^*(0,0)}{\partial r_i} = -u_i^*$$

• Analogously we obtain

$$\frac{\partial p^*(0,0)}{\partial s_i} = -v_i^*$$

Hence it holds:

$$\frac{\partial p^*(0,0)}{\partial r_i} = -u_i^*, \quad \frac{\partial p^*(0,0)}{\partial s_i} = -v_i^*$$

If x^* is optimal for (P):

- $f_i(x^*) < 0$ inactive constraint $u_i^* = 0$
- $f_i(x^*) = 0$ active constraint-
 - $^{\circ}$ u_i^* is small the constraint can be loosened/tightened without much effect on the optimal value p^* .
 - $\circ u_i^*$ is large if the constraint is loosened/ tightened a bit, the effect on the optimal value will be great