STRONG DUALITY CONDITIONS IN SEMIDEFINITE PROGRAMMING

Mária Trnovská

Semidefinite optimization problems unify and generalize 'standard' problems, such as linear or quadratic programming. They have linear objective function and the variable is a symmetric matrix, which is required to be positive semidefinite, or (in dual case) the constraint is that an affine combination of symmetric matrices is positive semidefinite. An additional regularity property, that is, an existence of an interior point in the feasible set is needed to prove strong duality in SDP. It is known that this property implies that the dual optimal solution set is nonempty and bounded. We show that it is not only the sufficient but also the necessary condition. So, as a consequence we obtain two new conditions of strong duality.

Many results in LP analogously hold in SDP, but some above are known. Our goal is to show that the equivalence of all positive definite matrices (that is all nonsingular positive semidefinite matrices).

In 1984 Karamarkar published the polynomial "projective" algorithm for solving linear programming (LP) problems, which was very close to interior point methods (IPM). This was the beginning of an IPM development and a suggestion for an uprise of new mathematical programming classes such as semidefinite programming (SDP) or cone programming.

Moreover, more duality results were developed. One of these works was [2], where it was shown that the duality theory in LP can be derived using IPM. In this paper it was also stated and proved that

(i) \( P \neq \emptyset, D^0 \neq \emptyset \implies P^* \neq \emptyset \) and \( P^* \) is bounded;

(ii) \( D \neq \emptyset, P^0 \neq \emptyset \) and the constraint matrix rank is maximal \( \Leftrightarrow P^* \neq \emptyset \) and \( P^* \) is bounded;

where we denote \( P, P^0, P^*(D, D^0, D^*) \) the primal (dual) feasible/strictly feasible/optional solution set.

Many results in LP analogously hold in SDP, but some do not. (see [1],[4]). The reason is that the feasible set in SDP is an intersection of a finite number of hyperplanes and a convex, but nonpolyhedral (like in LP) cone. We were motivated by the fact, that in SDP only the implications from the left to the right in statements (i), (ii) above are known. Our goal is to show that the equivalences hold.

2 DEFINITIONS

We denote \( S^n \) the vector space of \( n \times n \) real symmetric matrices, \( \dim(S^n) = n(n+1)/2 \). We write \( \bullet \) for the inner product defined on \( S^n \) as

\[ X \bullet Y := \text{trace}(XY). \]

\( X \succeq 0, (X \succ 0) \) is notation for positive semidefinite (positive definite) matrix. The set of all positive semidefinite matrices forms a closed convex cone. The interior of this cone consists of all positive definite matrices (that is all nonsingular positive semidefinite matrices).

Let \( A_1, \ldots, A_m, C \in S^n \) and a vector \( b \in R^m \). Then

\[ \begin{align*}
( P) \quad \min \{ C \bullet X \mid A_i \bullet X = b_i; \quad i = 1, \ldots, m; \quad X \succeq 0 \}
\end{align*} \]

is primal SDP problem in standard form, and

\[ \begin{align*}
(D) \quad \max \{ b^T y \mid C - \sum_{i=1}^m A_i y_i \succeq 0 \}
\end{align*} \]

is dual SDP problem in standard form. We denote

\[ P = \{ X \in S^n \mid A_i \bullet X = b_i, \quad i = 1, \ldots, m; \quad X \succeq 0 \}, \]

\[ P^0 = \{ X \in S^n \mid A_i \bullet X = b_i, \quad i = 1, \ldots, m; \quad X > 0 \} \]

primal feasible/ primal strictly feasible set, and similarly

\[ D = \{ y \in R^m \mid \sum_{i=1}^m A_i y_i \preceq C \}, \]

\[ D^0 = \{ y \in R^m \mid \sum_{i=1}^m A_i y_i < C \} \]

dual feasible/ dual strictly feasible set. We write \( p^*, d^* \) for the primal and the dual optimal value, that is

\[ p^* = \inf \{ C \bullet X \mid X \in P \}, \]

\[ d^* = \sup \{ b^T y \mid y \in D \}, \]

and define \( p^* = +\infty \) if \( P = \emptyset \) and \( d^* = -\infty \) if \( D = \emptyset \).

Finally we denote

\[ P^* = \{ X \in P \mid C \bullet X = p^* \} \]

\[ D^* = \{ y \in D \mid b^T y = d^* \} \]

the primal and dual optimal solution set.

In SDP the weak duality holds, that is \( d^* \leq p^* \). If the equality \( d^* = p^* \) holds, then we say that strong duality holds.
3 THEOREMS OF ALTERNATIVES

Consequences

We show that the both equivalences, similar to the ones in LP we mentioned in the first section, hold. Particular results (stated in Theorem 1 and Theorem 2) can be found in [4].

Theorem 1. If $\mathcal{P} \neq \emptyset$, $\mathcal{D} \neq \emptyset$, then $\mathcal{P}^* \neq \emptyset$ and $\mathcal{P}^*$ is bounded.

Theorem 2. If $\mathcal{D} \neq \emptyset, \mathcal{P} \neq \emptyset$ and the matrices $A_1, \ldots, A_m$ are linearly independent, then $\mathcal{P}^* \neq \emptyset$ and $\mathcal{P}^*$ is bounded.

Now, we prove that the reverse holds. First, we introduce an auxiliary lemma, which is a kind of theorem of alternatives and can be found in generalized form in [6].

Lemma 1. Let $G_i \in S^n$, $i = 0, 1, \ldots, m$. Then exactly one of the statements is true:
1. $\exists u \in R^m : G_0 - \sum_{i=1}^m G_i u_i > 0$
2. $\exists Z \in S^n, Z \succeq 0, Z \neq 0 : Z \cdot G_i = 0 \forall i = 1, \ldots, m, Z \cdot G_0 \leq 0$

Proof. Suppose that both alternatives hold at once. Compute

$Z \cdot (G_0 - \sum_{i=1}^m G_i u_i) = Z \cdot G_0 \leq 0.$

But the properties of the matrices at the lefthand side guarantee that the inner product must be positive. Next we will show that at least one of the alternatives holds.

Let

$C = \{G_0 - \sum_{i=1}^m G_i u_i \mid u \in R^m\}, \quad D = \{X \in S^n \mid X > 0\}.$

If $C \cap D \neq \emptyset$, then alternative 1 holds. Suppose $C \cap D = \emptyset$. Obviously, $C$ is a convex subset of $S^n$ and $D$ is an open convex cone. From the separating hyperplane theorem we obtain that

$\exists Z \in S^n, Z \neq 0 : Z \cdot X \leq 0, \forall X \in C, Z \cdot X \geq 0, \forall X \in D.$

From the second inequality it follows that $Z \geq 0$. From the first inequality we obtain

$0 \geq Z \cdot (G_0 - \sum_{i=1}^m G_i u_i) = Z \cdot G_0 - \sum_{i=1}^m (Z \cdot G_i) u_i, \forall u \in R^m.$

Assume that there exists $j \in \{1, \ldots, m\}$ so that $Z \cdot G_j \neq 0$. Then we can find $u = (0, \ldots, 0, u_j, 0, \ldots, 0) \in R^m$ which satisfies

$Z \cdot G_0 - (Z \cdot G_j) u_j > 0.$

Hence $Z \cdot G_i = 0, \forall i = 1, 2, \ldots, m$ and we immediately obtain $Z \cdot G_0 \leq 0$.

Theorem 3. If $\mathcal{P}^* \neq \emptyset$ and $\mathcal{P}^*$ is bounded, then $\mathcal{D}^0 \neq \emptyset$.

Proof. Suppose $\mathcal{P}^* \neq \emptyset$ and $\mathcal{P}^*$ is bounded. We show that $\mathcal{D}^0 \neq \emptyset$. Since $\mathcal{P}^* \neq \emptyset$, there exists $X^* \in \mathcal{P}^*$, and so $p^* = C \cdot X^*$ is finite. A point in $\mathcal{P}^*$ is primal optimal if and only if it satisfies the following conditions:

$A_i \cdot X^* = b_i, \forall i = 1, 2, \ldots, m, \quad C \cdot X^* \leq p^*.$

Because the value $p^*$ is minimal possible, we could replace the equality optimality condition $p^* = C \cdot X^*$ with the inequality condition in the second relation of (1). Now, suppose $\mathcal{D}^0 = \emptyset$. That means

$\exists y \in R^m : C - \sum_{i=1}^m A_i y_i > 0.$

We can apply Lemma 1 and obtain:

$\exists Z \in S^n, Z \geq 0, Z \neq 0 : Z \cdot A_i = 0 \forall i = 1, \ldots, m, Z \cdot C \leq 0.$

Consider the ray $\{W_t = X^* + tZ \mid t \geq 0\}$. We have $A_i \cdot W_t = b_i$ for all $i = 1, 2, \ldots, m$ and $t \geq 0$. Further we have $C \cdot W_t = C \cdot X^* + tC \cdot Z \leq p^*$. Hence the ray $\{W_t \mid t \geq 0\}$ lies in the set $\mathcal{P}^*$. But this contradicts the fact that $\mathcal{P}^*$ is bounded, so the set $\mathcal{D}^0$ must be nonempty.

The following lemma of alternatives will be useful for proving our next result stated in Theorem 4.

Lemma 2. Assume $G_i \in S^n$, $i = 1, \ldots, m$ and $g \in R^m$. Then exactly one of the statements is true:
1. $\exists Z \in S^n, Z \geq 0 : Z \cdot G_i = g_i, \forall i = 1, \ldots, m \land G_1, \ldots, G_m$ are linearly independent
2. $\exists u \in R^m, u \neq 0 : \sum_{i=1}^m G_i u_i \geq 0 \land u^T g \leq 0$

Proof. First, we prove that both alternatives cannot hold at once. Compute

$g^T u = \sum_{i=1}^m (G_i \cdot X) u_i = X \cdot \sum_{i=1}^m G_i u_i \geq 0,$

where the last inequality follows from the fact that $X \succeq 0$ and that $\sum_{i=1}^m G_i u_i \geq 0$ is nonzero. Now, we show that at least one of the alternatives hold. Let

$C = \{h \in R^m \mid \exists X \geq 0 : G_i \cdot X = h_i, i = 1, 2, \ldots, m\},$

$D = \{g\}.$

If $C \cap D \neq \emptyset$, then the first part of alternative 1 holds. If $C \cap D = \emptyset$, then from the separating hyperplane theorem and the fact that $C$ is a convex cone we obtain

$\exists u \in R^m, u \neq 0 : u^T g \leq 0 \land u^T h \geq 0, \forall h \in C.$
From the second inequality we have
\[ 0 \leq u^T h = \sum_{i=1}^{m} u_i (G_i \bullet X) = X \sum_{i=1}^{m} u_i G_i, \quad \forall X > 0. \]
This implies \( \sum_{i=1}^{m} u_i G_i \succeq 0 \) and so the alternative 2 must hold. Finally suppose that the alternative 2 does not hold. That means
\[ \forall u \in R^m \ u \neq 0 : \sum_{i=1}^{m} u_i G_i \succeq 0 \Rightarrow u^T g > 0. \tag{2} \]
If the matrices \( G_1, \ldots, G_m \) were not linearly independent, then \( \exists y \in R^m, y \neq 0 : \sum_{i=1}^{m} y_i G_i = 0 \). But \( 0 \succeq 0 \) and so (2) implies \( y^T g > 0 \).

**Theorem 4.** If \( D^* \neq \emptyset \) and \( D^* \) is bounded, then \( \mathcal{P}^0 \neq \emptyset \) and the matrices \( A_1, \ldots, A_m \) are linearly independent.

*Proof.* Suppose \( D^* \neq \emptyset \) and \( D^* \) is bounded. We show that \( \mathcal{P}^0 \neq \emptyset \) and matrices \( A_1, \ldots, A_m \) are linearly independent. If \( D^* \neq \emptyset \), then there exists \( y^* \in D^* \) and thus the value \( d^* = b^T y^* \) is finite. A point is dual feasible if and only if it satisfies the conditions:
\[ C - \sum_{i=1}^{m} A_i y^*_i \succeq 0, \quad b^T y^* \succeq d^*. \tag{3} \]
Because the value \( d^* \) is maximal possible, we could replace the equality optimality condition \( d^* = b^T y^* \) with the second relation in (3). Suppose \( \mathcal{P}^0 = \emptyset \) or \( A_1, \ldots, A_m \) are not linearly independent. If \( \mathcal{P}^0 = \emptyset \), then
\[ \exists X > 0 : \ A_i \bullet X = b_i \ \forall i = 1, \ldots, m. \]
Applying Lemma 2 we obtain:
\[ \exists u \in R^m, u \neq 0 : \sum_{i=1}^{m} A_i u_i \succeq 0 \land u^T g \leq 0. \]
So we can construct a ray \( \{p' = y^* - tu \mid t \geq 0\} \) which lies in the set \( D^* \). This is a contradiction with the fact that \( D^* \) is bounded.

**4 STRONG DUALITY IN SDP**

In the next theorem we recall two well-known sufficient conditions of strong duality in SDP (see [4]). They can be considered as a special case of the Slater condition known in convex programming.

**Theorem 5.** a) If \( \mathcal{P} \neq \emptyset \) and \( \mathcal{D}^0 \neq \emptyset \), then \( p^* = d^* \).

b) If \( \mathcal{D} \neq \emptyset \), \( \mathcal{P}^0 \neq \emptyset \) and \( A_1, \ldots, A_m \) are linearly independent, then \( p^* = d^* \).

As a consequence of Theorem 3 and Theorem 4 established in this paper we obtain two new sufficient conditions of strong duality.

**Corollary 1.** c) If \( \mathcal{P}^* \neq \emptyset, \mathcal{P}^* \) is bounded, then \( p^* = d^* \).

d) If \( \mathcal{D}^* \neq \emptyset, \mathcal{D}^* \) is bounded, then \( p^* = d^* \).

**5 CONCLUSION**

In semidefinite programming, the existence of a feasible point and the existence of an interior point in the feasible set of the dual counterpart is equivalent to the fact that the optimal solution set is nonempty and bounded. This result is an analogy to the known statement in linear programming (see [2]) and gives us a solid view on some aspects of the duality theory in SDP.

**References**


http://www.orie.cornell.edu/~miketodd/soa5.ps.


Received 1 June 2005

Mária Trnovská (RNDr) is a PhD student of applied mathematics at the Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava. Her supervisor Margaréta Halická is an associate professor at the Faculty of Mathematics, Physics and Informatics, Comenius University.