Existence of Weighted Interior-Point Paths in Semidefinite Programming

M. Trnovská

Department of Applied Mathematics and Statistics

Faculty of Mathematics, Physics and Informatics

Comenius University - Bratislava

Outline

Semidefinite programming

- The central path
- The weighted central path
- The existence of weighted central paths

Notation

 S^n vector space of real symmetric
 $n \times n$ matrices, dim $S^n = \frac{n(n+1)}{2}$ "•"inner product, defined on S^n as
 $\mathbf{A} \bullet \mathbf{B} = tr(\mathbf{AB}) = \sum_{i=1}^n \sum_{j=1}^n \mathbf{A}_{ij} \mathbf{B}_{ij}$ $\mathbf{X} \succeq 0, \mathbf{X} \in S^n_+$ \mathbf{X} is positive semidefinite $\mathbf{X} \succ 0, \mathbf{X} \in S^n_+$ \mathbf{X} is positive definite

Semidefinite Programming Problem

Data:

$$\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_m, \mathbf{C} \in S^n$$

 $b \in \mathbb{R}^m$

minimize $\mathbf{X} \bullet \mathbf{C}$ subject to $\mathbf{A}_i \bullet \mathbf{X} = b_i$, $i = 1, \dots, m$, $\mathbf{X} \succeq 0$.

Primal and Dual SDP

PRIMAL		DUAL	
minimize subject to	$\mathbf{X} \bullet \mathbf{C}$ $\mathbf{A}_i \bullet \mathbf{X} = b_i,$ $i = 1, \dots, m,$ $\mathbf{X} \succeq 0.$	maximize subject to	$b^T y$ $\sum_{i=1}^m \mathbf{A}_i y_i + \mathbf{S} = \mathbf{C},$ $\mathbf{S} \succeq 0.$

 $\mathbf{X} \in S^n$ primal variable $(y, \mathbf{S}) \in R^m \times S^n$ dual variables

- SDP contains important classes of problems as special cases, e.g.
 - linear programming
 - convex quadratic programming
 - second-order cone programming
- SDP problems can be solved in polynomial time using interior point methods.

SDP Applications

Direct SDP applications:

- Quasiconvex nonlinear programming
- Eigenvalue problems
- System and control theory
- Statistics (experimental design)

SDP Relaxations:

- Combinatorial optimization
- Quadratic programming (nonconvex)

Assumptions

Assumption 1: The matrices A_1, \ldots, A_m are linearly independent, i.e.

$$\sum_{i=1}^{m} \mathbf{A}_{i} u_{i} = 0 \quad \Rightarrow \quad u_{i} = 0, \ i = 1, \dots, m.$$

Assumption 2: There exists an Interior point $(\mathbf{X}, y, \mathbf{S}) \in S^n \times \mathbb{R}^m \times S^n$, i.e.

$$\mathbf{A}_{i} \bullet \mathbf{X} = b_{i}, \qquad i = 1, \dots, m \quad \mathbf{X} \succ 0$$
$$\sum_{i=1}^{m} \mathbf{A}_{i} y_{i} + \mathbf{S} = \mathbf{C} \qquad \mathbf{S} \succ 0$$

Optimality Conditions

 $(\mathbf{X}, y, \mathbf{S})$ is **optimal** if and only if

(primal feasibility) $\mathbf{A}_i \bullet \mathbf{X} = b_i, \ i = 1, \dots, m, \quad \mathbf{X} \succeq 0$

(dual feasibility) $\sum_{i=1}^{m} \mathbf{A}_{i} y_{i} + \mathbf{S} = \mathbf{C}, \qquad \mathbf{S} \succeq 0,$

(complementarity) XS = 0.

Central Path

Perturbed optimality conditions

$$\mathbf{A}_i \bullet \mathbf{X} = b_i, \ i = 1, \dots, m, \quad \mathbf{X} \succeq 0$$
 (primal feasibility)

 $\sum_{i=1}^{m} \mathbf{A}_{i} y_{i} + \mathbf{S} = \mathbf{C}, \quad \mathbf{S} \succeq 0$ (dual feasibility)

 $XS = \mu I$. (perturbed complementarity)

For any $\mu > 0$ there exists unique solution $(\mathbf{X}(\mu), y(\mu), \mathbf{S}(\mu))$ of the system above The central path in SDP is defined as the map

 $R_{++} \to S^n \times R^m \times S^n, \qquad \mu \to (\mathbf{X}(\mu), y(\mu), \mathbf{S}(\mu)).$

Implementation Problems

- 1. The product $\mathbf{XS} \notin S^n$ in general, even if $\mathbf{X}, \mathbf{S} \in S^n$
- 2. The interior point does not exist or is unknown

Solution:

1. So called "complementarity condition symmetrization", e.g.

$$\mathbf{XS} \longrightarrow \frac{\mathbf{XS} + \mathbf{SX}}{2}$$

2. Feasibility condition perturbation

Complementarity Condition Symmetrization

XS is replaced by a symmetrization matrix $\Phi(\mathbf{X}, \mathbf{S}) \in S^n$: If $\mathbf{X} \succeq 0$, $\mathbf{S} \succeq 0$, then $\mathbf{XS} = 0 \Leftrightarrow \Phi(\mathbf{X}, \mathbf{S}) = 0$.

Symmetrization maps:

$$\begin{split} \Phi_1(\mathbf{X}, \mathbf{S}) &= (\mathbf{X}\mathbf{S} + \mathbf{S}\mathbf{X})/2 \\ \Phi_2(\mathbf{X}, \mathbf{S}) &= \mathbf{X}^{\frac{1}{2}}\mathbf{S}\mathbf{X}^{\frac{1}{2}} \\ \Phi_3(\mathbf{X}, \mathbf{S}) &= \mathbf{L}_{\mathbf{X}}^T\mathbf{S}\mathbf{L}_{\mathbf{X}} \\ \Phi_4(\mathbf{X}, \mathbf{S}) &= (\mathbf{X}^{\frac{1}{2}}\mathbf{S}^{\frac{1}{2}} + \mathbf{S}^{\frac{1}{2}}\mathbf{X}^{\frac{1}{2}})/2 \\ \Phi_5(\mathbf{X}, \mathbf{S}) &= (\mathbf{U}_{\mathbf{S}}^T\mathbf{L}_{\mathbf{X}} + \mathbf{L}_{\mathbf{X}}^T\mathbf{U}_{\mathbf{S}})/2 \end{split}$$

Infeasible Central Path

Feasibility condition perturbation

$$\mathbf{A}_i \bullet \mathbf{X} = b_i \quad \longrightarrow \quad \mathbf{A}_i \bullet \mathbf{X} = b_i + \mu \triangle b_i$$

$$\sum_{i=1}^m \mathbf{A}_i y_i + \mathbf{S} = \mathbf{C} \quad \longrightarrow \quad \sum_{i=1}^m \mathbf{A}_i y_i + \mathbf{S} = \mathbf{C} + \mu \triangle \mathbf{C}$$

The Assumption 2 (existence of an interior point) is replaced with:

Assumption 3: There exists an optimal point $(\mathbf{X}, y, \mathbf{S}) \in S^n \times R^m \times S^n$ such that

$$\mathbf{A}_{i} \bullet \mathbf{X} = b_{i}, \quad i = 1, \dots, m, \quad \mathbf{X} \succeq 0,$$
$$\sum_{i=1}^{m} \mathbf{A}_{i} y_{i} + \mathbf{S} = \mathbf{C}, \qquad \mathbf{S} \succeq 0,$$
$$\mathbf{XS} = 0.$$

Weighted central path

Motivation:

Several numerical approaches in interior point methods prefer not to work with the identity matrix I, but with a positive definite matrix W in the perturbed complementarity condition:

$$\Phi(\mathbf{X}, \mathbf{S}) = \mu \mathbf{I} \longrightarrow \Phi(\mathbf{X}, \mathbf{S}) = \mu \mathbf{W}$$

Implementation problems 1,2

Weighted central path

The weighted central path in SDP is defined as the map

 $R_{++} \to S^n \times R^m \times S^n, \qquad \mu \to (\mathbf{X}(\mu), y(\mu), \mathbf{S}(\mu)).$

of the solutions of the system

$$\left. \begin{array}{l} \mathbf{A}_{i} \bullet \mathbf{X} = b_{i} + \mu \triangle b_{i}, \quad i = 1, \dots, m, \quad \mathbf{X} \succ 0, \\ \sum_{i=1}^{m} \mathbf{A}_{i} y_{i} + \mathbf{S} = \mathbf{C} + \mu \triangle \mathbf{C}, \quad \mathbf{S} \succ 0, \\ \Phi_{j}(\mathbf{X}, \mathbf{S}) = \phi_{j}(\mu) \mathbf{W}, \end{array} \right\} \quad (\star)$$

where $\Delta b \in \mathbb{R}^m$, $\Delta \mathbf{C} \in S^n$ are fixed, $\mathbf{W} \succ 0$ is the weight, $\Phi_j(\mathbf{X}, \mathbf{S})$ is one of the symmetrization maps and

 $\phi_j(\mu) = \mu, \quad j = 1, 2, 3; \qquad \phi_j(\mu) = \sqrt{\mu}, \quad j = 4, 5.$

Goal

For any $j \in \{1, \ldots, 5\}$ find the set \mathcal{W}_j of suitable weights

■ Having $j \in \{1, ..., 5\}$, prove that for any $\mathbf{W} \in \mathcal{W}_j$ and any $\mu > 0$ there exists unique solution of the system (*).

Related Papers

R.D.C. Monteiro, P. Zanjacomo, 2000.

- Nonlinear semidefinite complementarity problems
- All five symmetrizations
- Nonlinear analysis theory of local homeomorphic maps

M. Preiss, J. Stoer, 2003.

- Linear complementarity problems
- The symmetrization $(\mathbf{XS} + \mathbf{SX})/2$
- Analytic continuation, Implicit function theorem

Existence of the Weighted Central Path -Proof

Define
$$\mathcal{A}: S^n \to R^m$$
, $\mathcal{A}(\mathbf{X}) = [\mathbf{A}_1 \bullet \mathbf{X}, \dots, \mathbf{A}_m \bullet \mathbf{X}]$
 $\mathcal{A}^*: R^m \to S^n$, $\mathcal{A}^*(y) = \sum_{i=1}^m \mathbf{A}_i y_i$.
and
 $F^j_{\mu, \mathbf{W}}: S^n \times R^m \times S^n \to R^m \times S^n \times S^n$
 $F^j_{\mu, \mathbf{W}}(\mathbf{X}, y, \mathbf{S}) = \begin{bmatrix} \mathcal{A}(\mathbf{X}) - b - \mu \triangle b \\ \mathcal{A}^*(y) + \mathbf{S} - \mathbf{C} - \mu \triangle \mathbf{C} \\ \Phi_j(\mathbf{X}, \mathbf{S}) - \phi_j(\mu) \mathbf{W} \end{bmatrix}$.
 $\begin{bmatrix} \mathbf{X} \succ 0, \quad \mathbf{S} \succ 0, \quad F^j_{\mu, \mathbf{W}}(\mathbf{X}, y, \mathbf{S}) = 0 \end{bmatrix} \iff (\star)$

Idea of the proof:

Identify the set of suitable weights = the set with the property:

 $DF_{\mu,\mathbf{W}}^{j}(\mathbf{X}, y, \mathbf{S})$ is a nonsingular linear map for all $(\mathbf{X}, y, \mathbf{S})$ satisfying (\star) .

- Choose the parameters $\triangle b$, $\triangle C$
- Boundedness of the set of solutions of (*)
- Apply The implicit function theorem and analytic continuation technique on the system $F_{\mu,\mathbf{W}}^{j}(\mathbf{X}, y, \mathbf{S}) = 0$ (which is analytic in all variables and parameters μ, \mathbf{W}
- Uniqueness of the solutions

Nonsingularity of the Fréchet Derivatives

If $\mathbf{X}, \mathbf{S} \in S_{++}^n$, then

$$DF^{j}_{\mu,\mathbf{W}}(\mathbf{X},y,\mathbf{S})[riangle \mathbf{X}, riangle y, riangle \mathbf{S}] = egin{bmatrix} \mathcal{A}(riangle \mathbf{X}) \ \mathcal{A}^{*}(riangle y) + riangle \mathbf{S} \ D\Phi_{j}(\mathbf{X},\mathbf{S})[riangle \mathbf{X}, riangle \mathbf{S}] \end{bmatrix}$$

Lemma 1: Let $\mathbf{X} \succ 0$, $\mathbf{S} \succ 0$. The following implication holds $\Phi_j(\mathbf{X}, \mathbf{S}) \in \mathcal{W}_j \implies DF^j_{\mu, \mathbf{W}}(\mathbf{X}, y, \mathbf{S})$ is a nonsingular linear map.

For $\varepsilon \in (0, 1)$ denote

$$\mathcal{M}_{\varepsilon} = \{ \mathbf{Z} \succ 0; \exists \nu : \| \mathbf{Z} - \nu \mathbf{I} \| < \varepsilon \nu \} = \left\{ \mathbf{Z} \succ 0; \frac{\lambda_{max}(\mathbf{Z})}{\lambda_{min}(\mathbf{Z})} < \frac{1 + \varepsilon}{1 - \varepsilon} \right\}.$$

Existence of Weighted Interior-Point Paths in Semidefinite Programming - p.21/2

Assumption 4: For any $j \in \{1, ..., 5\}$ let $\Delta b, \Delta C$ be such that there exists $\mathbf{W}^0 \in \mathcal{W}_j$ and $\mu_0 > 0$ so that the system (\star) is solvable for $\mathbf{W} = \mathbf{W}^0$ and $\nu = \mu_0$.

Remark: There always exist $\triangle b$, $\triangle C$ such that they satisfy Assumption 4:

Choose arbitrary $\mathbf{W}^0 \in \mathcal{W}_j$, $\mu_0 > 0$ and $(\mathbf{X}^0, y^0, \mathbf{S}^0)$ such that

$$\mathbf{X}^0 \succ 0, \ \mathbf{S}^0 \succ 0 \qquad \Phi_j(\mathbf{X}^0, \mathbf{S}^0) = \phi_j(\mu^0) \mathbf{W}^0.$$

Let

$$\Delta b = \frac{\mathcal{A}(\mathbf{X}^0) - b}{\phi_j(\mu^0)}, \qquad \Delta \mathbf{C} = \frac{\mathcal{A}^*(y^0) + \mathbf{S}^0 - \mathbf{C}}{\phi_j(\mu^0)}$$

Recall:

- **Assumption 1:** A_i are linearly independent, i = 1, ..., m
- Assumption 3: Existence of an optimal solution
- **Assumption 4:** Appropriately chosen $\triangle b$, $\triangle C$

Boundedness:

Lemma 2: Let $\mathcal{O}(\mathbf{W}^0) \subset S^n_{++}$ be a bounded neighborhood of \mathbf{W}^0 . Then the set

 $\mathcal{M} = \{ (\mathbf{X}_{\mathbf{W}}(\mu), y_{\mathbf{W}}(\mu), \mathbf{S}_{\mathbf{W}}(\mu)) \mid 0 < \mu \le \mu_0, \mathbf{W} \in \mathcal{O}(\mathbf{W}^0) \}$

is bounded.

• Let $j \in \{1, ..., 5\}$

Let (μ_0, \mathbf{W}_0) be given in Assumption 4

Let $(\mathbf{X}^0, y^0, \mathbf{S}^0)$ be the solution of the system (\star) for $\mathbf{W} = \mathbf{W}^0$ and $\mu = \mu_0$.

Let $\psi : \langle 0, 1 \rangle \rightarrow (0, \mu_0) \times \mathcal{W}_j$ be a continous path (e.g. a line segment):

 $\psi(0) = (\mu_0, \mathbf{W}^0) \longrightarrow \psi(1) = (\mu_1, \mathbf{W}^1), \qquad \psi(t) = (\mu_t, \mathbf{W}^t)$

Nonsingularity of $DF_{u,\mathbf{W}}^{j}(\mathbf{X}, y, \mathbf{S})$

> Implicit function theorem

> > **Boundedness**

We can make the analytic continuation along ψ from $(\mathbf{X}^0, y^0, \mathbf{S}^0)$ to the solution $(\mathbf{X}^1, y^1, \mathbf{S}^1)$ of the system (*) for $\mathbf{W} = \mathbf{W}^1$ and $\mu = \mu_1$.

There exists (an analytic) function $g: g(\psi(t)) = (\mathbf{X}^t, y^t, \mathbf{S}^t)$, where $(\mathbf{X}^t, y^t, \mathbf{S}^t)$ is the solution of (\star) for for $\mathbf{W} = \mathbf{W}^t$ and $\mu = \mu_t$.

For all $t \in \langle 0, 1 \rangle$ the function $g(\psi(t))$ is uniquely determined by the path ψ and the starting value $g(\psi(0))$.

Existence of Weighted Interior-Point Paths in Semidefinite Programming - p.25/28

EXISTENCE

Corollary: For any $\mu \in (0, \mu_0)$ and $\mathbf{W} \in \mathcal{W}_j$ there exists a solution of (\star)

UNIQUENESS

Lemma 3: Let W = I. If the system (\star) has a solution for some $\mu > 0$ then this solution is unique.

- Lemma 3 + uniqueness of $g(\psi(t))$ imply

Corollary: If the system (\star) has a solution for some $\mu > 0$ and $\mathbf{W} \in \mathcal{W}_i$ then this solution is unique.

Let $j \in \{1, \ldots, 5\}$ and $\mathbf{W} \in \mathcal{W}_j$.

Assumption 1	For any $\mu \in (0, \mu_0)$ there exists unique		
Assumption 3	solution of the system		
	$\mathbf{A}_i \bullet \mathbf{X} = b_i + \mu \triangle b_i, i = 1, \dots, m,$		
Assumption 4	$\sum_{i=1}^{m} \mathbf{A}_i y_i + \mathbf{S} = \mathbf{C} + \mu \triangle \mathbf{C}, \mathbf{S} \succ 0,$		
	$\Phi_j(\mathbf{X}, \mathbf{S}) = \phi_j(\mu) \mathbf{W}, \mathbf{X} \succ 0,$		
Assumption 1	For any $\mu > 0$ there exists unique		
Assumption 2	solution of the system		
	$\mathbf{A}_i \bullet \mathbf{X} = b_i i = 1, \dots, m,$		
	$\sum_{i=1}^{m} \mathbf{A}_i y_i + \mathbf{S} = \mathbf{C}, \mathbf{S} \succ 0,$		
	$\Phi_j(\mathbf{X}, \mathbf{S}) = \phi_j(\mu) \mathbf{W}, \mathbf{X} \succ 0,$		

Conclusion

- this result is not new- the (weighted) central path in semidefinite programming can be considered as a special case of the (weighted) central path in the semidefinite complementarity problem
- we used more elementary technique to show the existence of the more complicated types of weighted paths in SDP
- the result is new for the path associated with L^T_XSL_X and the set of all positive definite diagonal weights
- to show the existence of the weighted paths is the first step for studying its properties (e.g. the limiting behavior)