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Notation

Sn vector space of real symmetric
n× n matrices, dimSn = n(n+1)

2

” • ” inner product, defined on Sn as
A • B = tr(AB) =

∑n
i=1

∑n
j=1 AijBij

X � 0,X ∈ Sn
+ X is positive semidefinite

X ≻ 0,X ∈ Sn
++ X is positive definite
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Semidefinite Programming Problem

Data:
A1,A2, . . . ,Am,C ∈ Sn

b ∈ Rm

minimize X • C

subject to Ai • X = bi,

i = 1, . . . ,m,

X � 0.
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Primal and Dual SDP

PRIMAL DUAL

minimize X • C

subject to Ai • X = bi,

i = 1, . . . ,m,

X � 0.

maximize bT y

subject to
∑m

i=1 Aiyi + S = C,

S � 0.

X ∈ Sn primal variable
(y,S) ∈ Rm × Sn dual variables
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Importance of SDP

SDP contains important classes of problems as special
cases, e.g.

linear programming
convex quadratic programming
second-order cone programming

SDP problems can be solved in polynomial time using
interior point methods .
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SDP Applications

Direct SDP applications:
Quasiconvex nonlinear programming
Eigenvalue problems
System and control theory
Statistics (experimental design)

SDP Relaxations:
Combinatorial optimization
Quadratic programming (nonconvex)
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Assumptions

Assumption 1: The matrices A1, . . . ,Am are linearly
independent, i.e.

m
∑

i=1

Aiui = 0 ⇒ ui = 0, i = 1, . . . ,m.

Assumption 2: There exists an Interior point
(X, y,S) ∈ Sn ×Rm × Sn, i.e.

Ai • X = bi, i = 1, . . . ,m X ≻ 0
∑m

i=1 Aiyi + S = C S ≻ 0
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Optimality Conditions

(X, y,S) is optimal if and only if

(primal feasibility) Ai • X = bi, i = 1, . . . ,m, X � 0

(dual feasibility)
∑m

i=1 Aiyi + S = C, S � 0,

(complementarity) XS = 0.
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Central Path

Perturbed optimality conditions

Ai • X = bi, i = 1, . . . ,m, X � 0 (primal feasibility)

∑m
i=1 Aiyi + S = C, S � 0 (dual feasibility)

XS = µI. (perturbed complementarity)

For any µ > 0 there exists unique solution
(X(µ), y(µ),S(µ)) of the system above

The central path in SDP is defined as the map

R++ → Sn ×Rm × Sn, µ→ (X(µ), y(µ),S(µ)).
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Implementation Problems

1. The product XS /∈ Sn in general, even if X,S ∈ Sn

2. The interior point does not exist or is unknown

Solution:
1. So called "complementarity condition symmetrization",

e.g.

XS −→ XS+SX

2

2. Feasibility condition perturbation
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Complementarity Condition
Symmetrization

XS is replaced by a symmetrization matrix Φ(X,S) ∈ Sn:

If X � 0, S � 0, then XS = 0 ⇔ Φ(X,S) = 0.

Symmetrization maps:

Φ1(X,S) = (XS + SX)/2

Φ2(X,S) = X
1

2 SX
1

2

Φ3(X,S) = L
T
X
SLX

Φ4(X,S) = (X
1

2 S
1

2 + S
1

2 X
1

2 )/2

Φ5(X,S) = (UT
S
LX + L

T
X
US)/2
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Infeasible Central Path

Feasibility condition perturbation

Ai • X = bi −→ Ai • X = bi + µ△bi
∑m

i=1 Aiyi + S = C −→ ∑m
i=1 Aiyi + S = C + µ△C

The Assumption 2 (existence of an interior point) is
replaced with:

Assumption 3: There exists an optimal point
(X, y,S) ∈ Sn ×Rm × Sn such that

Ai • X = bi, i = 1, . . . ,m, X � 0,
∑m

i=1 Aiyi + S = C, S � 0,

XS = 0.
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Weighted central path

Motivation:

Several numerical approaches in interior point methods
prefer not to work with the identity matrix I, but with a
positive definite matrix W in the perturbed
complementarity condition:

Φ(X,S) = µI −→ Φ(X,S) = µW

Implementation problems 1,2
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Weighted central path

The weighted central path in SDP is defined as the map

R++ → Sn ×Rm × Sn, µ→ (X(µ), y(µ),S(µ)).

of the solutions of the system

Ai • X = bi + µ△bi, i = 1, . . . ,m, X ≻ 0,
∑m

i=1 Aiyi + S = C + µ△C, S ≻ 0,

Φj(X,S) = φj(µ)W,











(⋆)

where △b ∈ Rm,△C ∈ Sn are fixed, W ≻ 0 is the weight,
Φj(X,S) is one of the symmetrization maps and

φj(µ) = µ, j = 1, 2, 3; φj(µ) =
√
µ, j = 4, 5.
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Goal

For any j ∈ {1, . . . , 5} find the set Wj of suitable weights

Having j ∈ {1, . . . , 5}, prove that for any W ∈ Wj and any
µ > 0 there exists unique solution of the system (⋆).
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Related Papers

R.D.C. Monteiro, P. Zanjacomo , 2000.

- Nonlinear semidefinite complementarity problems
- All five symmetrizations
- Nonlinear analysis - theory of local homeomorphic maps

M. Preiss, J. Stoer , 2003.

- Linear complementarity problems
- The symmetrization (XS + SX)/2
- Analytic continuation, Implicit function theorem
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Existence of the Weighted Central Path -
Proof

Define A : Sn → Rm, A(X) = [A1 • X, . . . ,Am • X]

A∗ : Rm → Sn, A∗(y) =
∑m

i=1 Aiyi.

and
F j

µ,W : Sn ×Rm × Sn → Rm × Sn × Sn

F j
µ,W(X, y,S) =







A(X) − b− µ△b
A∗(y) + S− C− µ△C

Φj(X,S) − φj(µ)W






.

[

X ≻ 0, S ≻ 0, F j
µ,W(X, y,S) = 0

]

⇐⇒ (⋆)
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Existence of the Weighted Central Path -
Proof (continued)

Idea of the proof:

Identify the set of suitable weights = the set with the
property:

DF j
µ,W(X, y,S) is a nonsingular linear map for all (X, y,S)

satisfying (⋆).

Choose the parameters △b,△C

Boundedness of the set of solutions of (⋆)

Apply The implicit function theorem and analytic
continuation technique on the system F j

µ,W(X, y,S) = 0

(which is analytic in all variables and parameters µ,W

Uniqueness of the solutions
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Existence of the Weighted Central Path -
Proof (continued)

Nonsingularity of the Fréchet Derivatives

If X,S ∈ Sn
++, then

DF j
µ,W(X, y,S)[△X,△y,△S] =







A(△X)

A∗(△y) + △S

DΦj(X,S)[△X,△S]







Lemma 1: Let X ≻ 0, S ≻ 0. The following implication holds

Φj(X,S) ∈ Wj ⇒ DF j
µ,W(X, y,S) is a nonsingular linear map.
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Existence of the Weighted Central Path -
Proof (continued)

For ε ∈ (0, 1) denote

Mε = { Z ≻ 0;∃ν : ‖Z−νI‖ < εν} =

{

Z ≻ 0;
λmax(Z)

λmin(Z)
<

1 + ε

1 − ε

}

.

j Φj(X,S) Wj

1 (XS + SX)/2 Sn
++

2 X
1

2 SX
1

2 M 1
√

2

3 L
T
X
SLX M 1

√

2

or Dn
++

4 (X
1

2 S
1

2 + S
1

2 X
1

2 )/2 Mτ

5 (UT
S
LX + L

T
X
U

T
S
)/2 Mτ

(τ .
= 0, 124848)
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Existence of the Weighted Central Path -
Proof (continued)

Assumption 4: For any j ∈ {1, . . . , 5} let △b,△C be such that
there exists W

0 ∈ Wj and µ0 > 0 so that the system (⋆) is
solvable for W = W

0 and ν = µ0.

Remark: There always exist △b,△C such that they satisfy
Assumption 4:

Choose arbitrary W
0 ∈ Wj , µ0 > 0 and (X0, y0,S0) such that

X
0 ≻ 0, S

0 ≻ 0 Φj(X
0,S0) = φj(µ

0)W0.

Let

△b =
A(X0) − b

φj(µ0)
, △C =

A∗(y0) + S
0 −C

φj(µ0)
,
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Existence of the Weighted Central Path -
Proof (continued)

Recall:

Assumption 1: Ai are linearly independent, i = 1, . . . ,m

Assumption 3: Existence of an optimal solution

Assumption 4: Appropriately chosen △b,△C

Boundedness:
Lemma 2: Let O(W0) ⊂ Sn

++ be a bounded neighborhood of
W

0. Then the set

M = {( XW(µ), yW(µ),SW(µ) ) | 0 < µ ≤ µ0,W ∈ O(W0)}

is bounded.
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Existence of the Weighted Central Path -
Proof (continued)

Let j ∈ {1, . . . , 5}

Let (µ0,W0) be given in Assumption 4

Let (X0, y0,S0) be the solution of the system (⋆) for
W = W

0 and µ = µ0.

Let ψ : 〈0, 1〉 → (0, µ0〉 ×Wj be a continous path (e.g. a
line segment):

ψ(0) = (µ0,W
0) −→ ψ(1) = (µ1,W

1), ψ(t) = (µt,W
t)
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Existence of the Weighted Central Path -
Proof (continued)

Nonsingularity
of DF j

µ,W(X, y,S) We can make the analytic
continuation along ψ from

Implicit function =⇒ (X0, y0,S0) to the solution
theorem (X1, y1,S1) of the system (⋆)

for W = W
1 and µ = µ1.

Boundedness

There exists (an analytic) function g: g(ψ(t)) = (Xt, yt,St),
where (Xt, yt,St) is the solution of (⋆) for for W = W

t and
µ = µt.

For all t ∈ 〈0, 1〉 the function g(ψ(t)) is uniquely
determined by the path ψ and the starting value g(ψ(0)).
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Existence of the Weighted Central Path -
Proof (continued)

EXISTENCE
Corollary: For any µ ∈ (0, µ0〉 and W ∈ Wj there exists a
solution of (⋆)

UNIQUENESS
Lemma 3: Let W = I. If the system (⋆) has a solution for
some µ > 0 then this solution is unique.

- Lemma 3 + uniqueness of g(ψ(t)) imply

Corollary: If the system (⋆) has a solution for some µ > 0 and

W ∈ Wj then this solution is unique.
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Existence of the Weighted Central Path -
Proof (the end)

Let j ∈ {1, . . . , 5} and W ∈ Wj .

Assumption 1 For any µ ∈ (0, µ0〉 there exists unique
Assumption 3 solution of the system

Assumption 4
Ai • X = bi + µ△bi, i = 1, . . . ,m,

∑m
i=1 Aiyi + S = C + µ△C, S ≻ 0,

Φj(X,S) = φj(µ)W, X ≻ 0,

Assumption 1 For any µ > 0 there exists unique
Assumption 2 solution of the system

Ai • X = bi i = 1, . . . ,m,
∑m

i=1 Aiyi + S = C, S ≻ 0,

Φj(X,S) = φj(µ)W, X ≻ 0,
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Conclusion

this result is not new - the (weighted) central path in
semidefinite programming can be considered as a
special case of the (weighted) central path in the
semidefinite complementarity problem

we used more elementary technique to show the
existence of the more complicated types of weighted
paths in SDP

the result is new for the path associated with L
T
X
SLX and

the set of all positive definite diagonal weights

to show the existence of the weighted paths is the first
step for studying its properties (e.g. the limiting behavior)
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