O probléme premenlivej volatility v Black—Scholesovom modeli Diplomova praca

3. Ocenovanie opcii

V poslednych dvoch desatro€iach s rozvojom opcii, ako druhu finanéného derivatu,
vzrastd aj vyznam ich ocefiovania. V tejto kapitole sa blizSie pozrieme na jeden
z najznamejSich modelov pre ocerfovanie opcii, ktoré nam ponuka moderna finan¢na
matematika. Konkrétne pb6jde o spojity Black-Scholesov model. F. Black a
M. Scholes uverejnili odvodenie svojho modelu na ocefovanie derivatov akcii
v Casopise Journal of Political Economy v roku 1973 [BS]. Ich praca bola ocenena
Nobelovou cenou za ekondmiu v roku 1997. Odvodenie tohto modelu je uvedené aj
inych knihach, spomefime napriklad knihu J. Hulla [H] alebo skripta J. Komornika,
M. Komornikovej a K. Mikulu [KKM].

3.1 Black-Scholesov model ocenovania opcii

Na Casovy vyvoj ceny derivatu akcie na finanénom trhu sa najCastejSie vyuziva
Black-Scholesova parcialna diferencialna rovnica. Predtym, ako pristupime K jej

odvodeniu, je nutné zaviest' niekolko oznaceni:

» Sje aktualna cena akcie na trhu (stock price)

= Tje expiracna doba (expiration date), t.j. doba, do ktorej sa opcia musi
realizovat

» FE jerealizatna cena (excercise price), t.j. vopred dohodnuta cena akcie

» tjecas, t0O]0, T]

* Vje hodnota opcie, ktora je funkciou ceny akcie a ¢asu, t.j. V=V (S, )

» gje volatilita

* rje spojity bezrizikovy urok

* D je spojity dividendovy urok
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Nasa uloha spociva v stanoveni ceny opcie tak, aby v ¢ase uzatvorenia kontraktu
nebola zvyhodnena ani jedna strana. Nech V (S, ) je optimalna hodnota finanéného
derivatu, zavisiaceho od ceny akcie Sac&asu t. Nebudeme S$pecifikovat akého
derivatu konkrétne, pretoZe nasledujuca analyza ma vSeobecny charakter. Jednotlivé
typy derivatov (call, put opcie, atd’.) budd spifat t istd parcialnu diferencialnu rovnicu
a odliSovat sa budu len v koncovych (expiraénych) podmienkach.

Predpokladajme, Ze vyvoj ceny akcie ako funkcia ¢asu S = S(f) sa vyvija podla

stochastickej diferencialnej rovnice,

dS = u Sdt +o Saw, (3.1.1)
kde dS je zmena ceny akcie za Casovy okamih dt, u je oCakavana navratnost akcie,

o je volatilita Casového vyvoja akcie. Zmenu tzv. Wienerovho procesu sme oznadili
dw.

Standardny Wienerov proces {W(t)tzo} je parametricky systém nahodnych

veli¢in, priCom :

= w(0) =0,

= dw= e+/dt, kde dw je prirastok w za maly ¢asovy interval dta ¢ je
nahodna premenna s normalnym rozdelenim pravdepodobnosti so
strednou hodnotou 0 a rozptylom 1, t.j. & =N(0,1)

» prirastky dw pre r6zne malé (po sebe nasledujluce) ¢asové intervaly dt su

nezavislé.

Je vhodné zdéraznit, Ze v €asovej analyze je podstatnou informaciou relativna

zmena % a nie absolutna zmena ceny akcie dS. Z toho vyplyva, Zze stochasticku

diferencialnu rovnicu (3.1.1) méZeme prepisat do tvaru :

%zudﬁadw. (3.1.2)

Uvedomme si, Ze ak by teraz volatilita bola nulova, o = 0, tak vyvoj ceny akcie

S = 5(#) by bol Uplne deterministicky, ¢im by cena narastala exponencialne podla
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oCakavanej navratnosti akcie u, pretoze dS = u S dt, z Coho integraciou dostavame

S(t) = Soe‘”. V pripade ak o # 0 cena akcie sa stava nepredvidatelnou, preto méze

klesat aj stupat.
Dalej na odvedenie Black-Scholesovej formuly budeme potrebovat Itovu lemu.

Itbova lema
Nech f(x, t) je hladka funkcia dvoch premennych, pri€om premenna x je rieSenim

stochastickej diferencialnej rovnice dx = u(x,t)dt + o(x,t)dw, kde dw je Wienerov

proces. Potom prvy diferenciél funkcie fje dany vztahom:

2
df = ﬂdx + f +102 (x,t)a—f t, (3.1.3)
X t 2 ox?

désledkom €oho funkcia fvyhovuje stochastickej diferencialnej rovnici :

f of 1 , 02f of
df = + u(x,t)—+—-—o°\x,t)—=Hit + o(x,t dw . 3.14
% w4 1o )ax2E’ ()2 (3.1.4)

ox
Ak predpokladame, Ze funkcia V= (S, 1) je nejaka hladka funkcia premennych S a t,
pricom premenna S vyhovuje stochastickej rovnici (3.1.1), t.j. dS=uSdt+o0 Sdw,
ateda u(S,t)=uS, o(S,t) =0 S, mdézeme pouzit Itbovu lemu. Preto funkcia (S, 1)

nahodného procesu S bude spifiat stochasticku diferencialnu rovnicu:

2
dv = V+ysﬂ+1azszﬂ t+05Y aw. (3.1.5)
ot S 2 052 0S

Dalej si vytvorime svoje portfélio P zlozené =z akcii a opcii. Toto uskuto&nime
vhodnou linearnou kombinaciou difuznych rovnic (3.1.1) a (3.1.5) tak, aby sme
eliminovali ndhodnu &ast’ a vytvorili bezrizikové portfélio. Jediny rizikovy €len v oboch
rovniciach je dw. Uvazujme portfélio P, obsahujuce jeden derivat a A akcii. Takyto
postup sa nazyva spojity A-hedging (A vyjadruje pomer poctu akcii k po¢tu opcii

v portféliu). To znamena, Ze portfélio P je dané vztahom:

P=V+AS. (3.1.6)

-10 -
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Zmena hodnoty tohto portfélia za maly asovy interval dt, priCom dA = 0, je rovna:
dP=dV+AdS. (3.1.7)

Dosadenim rovnic (3.1.1) a (3.1.5) do poslednej rovnice (3.1.7) dostdvame

stochasticku rovnicu pre portfolio P:

v vV 1 ,., 0% 0,59V up
dP = +UuS—+—0°S°——+AuSt+ 0 S—+ Ao Saw. 3.1.8
ot H a5 72 asz M g 78S 0 (3-1.8)

Vhodnym stanovenim pomeru A mdézeme anulovat nahodny &len dw. To sa podari
vtedy, ak A zvolime

__ov

0S

Potom je zmena hodnoty portfélia uz diferencialna rovnica deterministicka a rovna sa

(3.1.9)

2
ap =2V 152520V iy (3.1.10)
ot 2 9S?2

AvSak aby nevznikol priestor pre arbitraz, t.). bezrizikovy zisk (ten je mozny len vo
vynimo¢nych pripadoch ato po kratku dobu, lebo po jeho vyskytnuti sa ho vsetci
uCastnici trhu snazia hned vyuzit atym ho vlastne likviduju), musi byt prirastok
portfélia za €as dt rovny prirastku, aky by sme ziskali uloZzenim nasej hodnoty P do

banky
dP=r Pdt. (3.1.11)

Dosadenim vztahu (3.1.11) do (3.1.10) a predelenim dt, dostavame:

2
rp=9V 152520V

3 o7 (3.1.12)
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Nakoniec z rovnic (3.1.6), (3.1.9) a (3.1.12) dostavame pre neznamu funkciu (S, 1)

tzv. Black-Scholesovu parcialnu diferencialnu rovnicu

2
V o rsV 152529V 1y 2. (3.1.13)
at oS 2 9S?2

Spomenieme jedno délezité zovSeobecnenie Black-Scholesovej rovnice a to pripad,
ked su akcionarom spojite vyplacané dividendy s konStantnym dividendovym udrokom
D. Akcionar za maly €asovy okamih dt ziska hodnotu DSdt. Z toho vyplyva, Ze ak
v portfoliu mame A akcii, nas prirastok z tychto akcii za dobu dt bude ADSdt. Tym sa

nam zneni rovnica (3.1.7) na
dP = dV +A dS + A DSdt. (3.1.14)

Rovnakym postupom eliminovania nahodného €lena dw dostavame vztah

ap =PV 4 2826\/ ps &V it (3.1.15)
ot 2 052 0S

Dalej pouzitim myslienky o zamedzeni bezrizikového zisku ziskame rovnicu

v 1 zszaV Dsﬂ- H -s%H (3.1.16)
o 277 97 as 't Tast

Lava Cast rovnice nam vyjadruje bezrizikovy prirastok z A-hedgovaného portfélia
a prava bezrizikovy prirastok z bankového depozitu. TakZze modifikovana Black-
Scholesova rovnica pre ur€enie hodnoty finanéného derivatu na akciu, vyplacajucu

spojité dividendy, ma tvar:

2
Y -p)s? o1 grgn 0

~—— -rv=0. 3.1.17
oS 2 9S?2 r ( )
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3.2 Expiracné a okrajové podmienky

3.2.1 Eurdpske opcie

Najskér sa budeme zaoberat’ eurépskou call opciou. Jej cenu si ozna¢ime znakom
V... Na to, aby sme nasli jednoznacné rieSenie V,.(S, f) pre Sz0 a t[ <O, T), je
potrebné zadat eSte zaciato€nu a okrajové podmienky. V nasom pripade zaciato¢na
podmienka suavisi s Casom expiracie T, preto reSpektujuc tento finanény kontext,
budeme hovorit o expiracnej podmienke. Jej vyznam je vtom, Ze ak cena akcie
S v Case expiracie T prekroci hodnotu E, na ktort bol kontrakt uzavrety v ¢ase t = 0,

tak cena opcie V., musi mat hodnotu S — E, aby nevznikol priestor pre arbitraz. Ak

bude S < E, tak opcia nema ziadnu hodnotu, pretoZe ju nema zmysel uplatfiovat.

TakZe expiraénu podmienku mdézZzeme zapisat v tvare

V.. (S, T) = max(S -E, 0). (3.2.1.1)

Funkcia dana vztahom (3.2.1.1) sa nazyva tiez call — payoff diagram.

V.

ec /

45°

E S

Obrazok ¢.1 - Payoff diagram pre call opciu.

Okrajové podmienky stanovime pre hodnoty S = 0 aS - o . Ak je cena akcie
nulova, tak z rovnice (3.1.1) vyplyva, Zze S = 0 aj v jej dalSom asovom vyvoji, a teda

opcia sa stava bezcennou. Preto:

Ve (0, ) = 0 pre v3etky ¢ 0(0,T). (3.2.1.2)

-13-
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Ak cena akcie rastie nad vSetky ohraniCenia, t.j. S - o , potom cena eurépskej call

opcie je rovné cene akcie zredukovanej o prijmy z dividend, t.j.:
V(S ) - Sel)pre S - w apre vietky t 0(0,T). (3.2.1.3)

Parcialna diferencialna rovnica na vypocet ceny opcie s podmienkami (3.2.1.1),
(3.2.1.2) a (3.2.1.3) sa da rieSit’ aj explicitne. Toto rieSenie pri nulovych dividendach

(D = 0) je zname aj ako Black-Scholesova formula oceriovania opcii. Jej rieSenie ma

tvar:
V,.(S, )= e PTOsN()-Ee”TON(d,), (3.2.1.4)
kde
2
/nélg%ﬁ-fnaz T-t)
d, = a =d. -o\T-t
1 o % =001
a
1 ¢ o
Nllu)=——— e-7dx
() —— _jw

je distribu¢na funkcia normalneho rozdelenia pravdepodobnosti N(O, 1).

Teraz prejdeme na podmienky pre eurépsku put opciu. Je zrejmé, Ze ak v Case
expirécie T je cena akcie S vacsia alebo rovna ako vopred dohodnuta cena E, tak sa
opcia stava bezcennou. V opaénom pripade, ked je S < E, tak cena opcie je dana
rozdielom expiranej ceny a ceny akcie. Takze expiranu podmienku mézeme pisat
v tvare:

Vep (S, T)=max (E - S,0) . (3.2.1.5)

Tato funkcia sa tieZz nazyva aj put-payoff diagram.

-14 -
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V.

ep 4

45

E

Obrazok ¢.2 - Payoff diagram pre put opciu.

Okrajové podmienky:

V,,(0,t)=Ee" (Y pre0t0(0, T)

Vo, (S,t) - 0 preS — o, Ot0(0,T) .

(3.2.1.6)

(3.2.1.7)

Explicitné rieSenie vychadzajuce z put—call parity sa da pisat v tvare:

Vop(S,)=V,o(S,t)-S+E ")

3.2.2 Americké opcie

Obidva druhy opcii (put &i call) sa od eurépskych liSia tym, Ze ich mézZzeme uplatnit

(3.2.1.8)

]

v lubovolnom ¢asovom okamihu t D{O, T>, ¢o dava ich drzitelovi zjavne vacsie prava,

a preto by mala ich cena byt vySSia, nanajvys rovna cene eurdpskej opcie.

V pripade americkej call opcie nevyplacajucej dividendy (D = 0) je zname, Ze

jej cena sa rovna cene europskej call opcie, t.j. V. =V,.. Vyplyva to z toho, Ze:

V,o(S, 1) >V, (S, T) =max (S-E, 0) 0tT(0, T).

(3.2.2.1)

-15 -
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TakZe opciu nie je vyhodné uplatriovat, pretoZe v ase expiracie je jej hodnota dana

payoff diagramom mensia ako V., vlastnenej opcie. TakZe vlastnik ju bude drzat az

do Casu expiracie, alebo ju preda za cenu V..

Odlisny pripad vSak nastava pri akciach, ktoré vyplacaju dividendy. Na jeho

vysvetlenie vyuZijeme analdgiu s problémom prekaZzky.

3.2.2.1 Problém prekazky

Princip prekazky si vysvetlime na modeli natiahnutej struny f (x), ktora je pevne
ukotvena v dvoch bodoch A a B, ponad prekazku g (x). Chceme zistit body, v ktorych

sa struna prestava dotykat prekazky (F, a F,).

Obrazok ¢€.3 — Struna f(x) natiahnuta nad

prekazkou g(x).
Pricom plati:

1) —-f“(x)=0, x D[A , F,] [ [F2, B] vyplyva to z Laplaceovej rovnice
2) f =g, xOF, F,)

3) f(A)=f(B)=0 (3.2.2.1.1)
4) f(Fy)=9(F) f(F,)=9g(F,) - Dirichletove podmienky
5 f(F,)=9'(F), f'(F;)=9'(F,) - podmienka na hladkost.

-16 -
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Tento problém sa da formulovat aj v tvare linearnej komplementarity.

Z obrazku ¢.3 vidime, ze:

ak A<x<F,, tak plati f(x) > g (x) atiezplati —f*(x)=0
ak F <x<F,, takplati f(x)=g(x) atiezplati —f*(x)>0
ak F, <x<B, tak plati f(x) > g (x) atiezplati —f“(x)=0.

Z toho vyplyva:

1) f) =g, x0O[AB]
2) —f*(x) 20, x0O[AB]

142)  — (%) (fx) — g(x)) =0 (3.2.2.1.2)
3) fF(A)=F(B)=0

4) f'a fsu spojité funkcie na intervale[A, B].

Uvedieme este jednu formulaciu problému prekazky, a to v tvare variacnej nerovnice:

Nech 0O je mnozina funkcii v, pre ktoré plati, Ze su spojité a ich prvé derivacie su po
tastiach spojité, v (A) = v (B)=0, v(X) = g (x) pre OxO[A B]. Hradame funkciu

f(x) OO, ktorda ma navysSe spojitu prvu derivaciu taku, Ze integralna rovnica
1
[f ) v (x)-F (x)dx =0 (3.2.2.1.3)
=1

plati pre v3etky testovacie funkcie f(x) OO . Da sa ukazat, Ze existuje prave jedno
rieSenie, ktoré ak je dostatoCne hladké, je zaroven rieSenim problému linearnej

komplementarity, ako aj povodnej ulohy prekazky.

Ukazme si teraz, ako problém prekazky suvisi s ocefiovanim americkych opcii.

V kazdom Casovom okamihu t D[O, T] existuje S, také, ze pre S >S, je hodnota

V.. (S. 1) pod call payoff diagramom. Ak by aj napriek tomu stale platilo V.= V,., tak

ac’

potom si kupime opciu V. (S, ) < S — E a okamZite ju uplatnime. Cize kupime akciu

-17 -
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za E apredame ju za S, pricom za opciu sme zaplatili len V,,. Nas zisk by bol:
S - E - V,> 0. Takze mame nenulovy zisk a nepodstupili sme ziadne riziko. Jeho
eliminaciu spbésobi argument arbitraZze a cena opcie V, vzrastie az na uroveri payoff

diagramu, t.j musi byt nutne splnena podmienka:
V..(S,t)=max (S-E,0) Ot0fo,T]. (3.2.2.2)

Teraz sa dostavame k takzvanej ulohe s volnou hranicou pre americku call opciu,
vyplacajicu dividendy, tj. treba najst krivku S;(t), ktord reprezentuje optimalnu

expiracnu cenu v kazdom ¢asovom okamihu ¢ [ [0, T].

1. S({t)< S (t) - opciu je vyhodné drzat, pretoZe jej hodnota je vacsia ako payoff
diagram. V,, pritom spifia Black-Scholesovu parcialnu diferencialnu rovnicu.
2. S() = S (t) - opcia je uplatnena a ma hodnotu danu payoff diagramom, t.].

V,.(S,)=S-E

VS8imnime si, Ze po dosadeni V. (S, t) = S — E do Black-Scholesovej parcialnej

diferencialnej rovnice

0 0 1 02
E(S-E)+(r—D)Sg(S-E)+EJZSZW(S-E)—r(S-E):rE>0,
dostavame pre S (t) = S;(t) nerovnicu
oV ov,, 1 92V
Tau (r —D)Sa—§°+50282 F;C—rvac >0 . (3.2.2.3)

TakzZe pre vSetky S dostdvame podmienku

2
aVi+(r—D)saVaC +1a232%—rvac >0. (3.2.2.4)
ot S 2 0S?
Okrajové podmienky: V. (0, ) = 0 pre Ov3etky t 0(0, T) (3.2.2.5)
V(S ) ~SePlpresS - o apreldt 0(0,T) (3.2.2.6)
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a expiracna podmienka V.. (S, T) = max(S -E, 0) (3.2.2.7)

zostavaju nezmenené, ale pribudli nam dve podmienky na volnu hranicu

Ve (S ) t)=S;(t)-E %Sf(t)t)ﬂ . (3.2.2.8 -9)

Podobne mdézeme vyjadrit’ problém uréenia optimalnej hodnoty americkej put opcie

v tvare ulohy s volnou hranicou.

Treba najst spojitd funkciu V,,(S, t), S = O, t D(O, T) SO spojitou parcialnou

0V, : :
derivaciou 35 akrivku S; : [0, T] - R tak, aby platilo:

Black-Scholesova parcialna diferencialna rovnica

oV, ov,, 1 %V
+rS—2 +_0g?82—%® _rvy_=0 pre S>S; (t). 3.2.2.10
ot dS 2 682 ap p f () ( )

Algebraicka rovnica

V,,(S.t)=E-S pre S<S;(t). (3.2.2.11)
Okrajové podmienky
V,,(0,t)=Ee" ™Y pre0t0(0, T) (3.2.2.12)
V,p(S,t) - 0 pre S~ w, Ot0(0,T) . (3.2.2.13)
Expiraéna podmienka
V,p(S, T)=max (E - S,0) . (3.2.2.14)

Dve podmienky na volnej hranici

0V (S: (1) 1)

V,o(Sr(t) t)=E - S;(t) s o1 (3.2.2.15-16)
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TakzZe dostavame podobné podmienky ako pri probléme prekazky:

» Black-Scholesova PDR sa zmenila na nerovnicu.
» Hodnota sa musi nachadzat nad alebo na payoff diagrame.

* Hodnota opcie je spojita funkcia dvoch premennych Sa t.

» Prvéa parcialna derivacia % je spoijita funkcia.

Mohli by sme teda naformulovat ulohu volnej hranice vtvare lineérnej

komplementarity napriklad pre V,, (S, t):

aVap , v, )
1. V,(St)a 5a S spojité funkcie

2
a‘\a/;,p “rS 0‘;/;;) +%a232 aa:;p ~rV,,<0, SO0, «] (3.2.2.17)

3. V,,(S t)-Payoff(S)20, SO[0, ]

4. (BS (Vap))( Vyp(S, t)- Payoff(s)) =0, SO0, ]
5. Vap(S,t) -0 pre S - o,

kde BS(V,,) je fava strana Black-Scholesovej rovnice.
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