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Diplomant: Alexander Erdélyi
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1. INTRODUCTION

Over the last thirty years, a number of economic literature has been devoted to the topic

of modeling foreign exchange rates. Several important events have influenced this effort: the

demise of the Breton Woods system of ‘fixed but adjustable’ exchange rates in the early 1970s,

the following period of free floating, the establishment of the European Monetary System in

1979 with resulting target zones regimes, the foundation of the European Monetary Union and

finally the adoption of common currency Euro in 2002.

A number of models have been introduced to explain the behavior of the exchange rate either

within a band or under the free floating regime. Perhaps the most cited models have been

the flexible price monetary model (see for example Mussa [13]) and the sticky-price monetary

model (due to Dornbusch [5], stochastic modification by Miller and Weller [12]). Most

of other models somehow utilize these concepts.

Instead of discussing specific models in detail, we point out one common feature – under all

models, the exchange rate turns out to be the function of economic fundamentals, expectations

and random disturbances. In symbols, we have

S = S(economic fundamentals, expectations, random influences).

where S denotes the foreign exchange rate (that is, the amount of domestic currency needed

to purchase one unit of foreign currency). Let θ(t) denote the state of economic fundamentals

characterizing the economy at time t. Then the general model of exchange rate is given by

S(t) = f(θ(t)) + x(t) (1.1)

where the term f(θ(t)) holds for the ‘natural’ exchange rate, the rate that would prevail if

the other factors were not present. Howerer, these factors, including expectations, speculation,

or random disturbances are always present. They are reflected by the term x(t). As already

mentioned, various ways of modeling x(t) have been adopted.

The aim of this paper is to propose an interesting way of modeling component x(t) under

the assumption of free floating exchange rate regime. The model will take into account the

expectations of economic agents in such a way that we will be able to demonstrate that even

when economic factors causing the change of the exchange rate are absent, psychology itself

may lead to oscillations.

The rest of the paper is organized as follows. Section 1.1 introduces the idea of the model – a

simple retarded (delay) functional differential equation (RFDE) model. Chapter 2 introduces

the basic theory of RFDEs. Chapter 3 analyzes qualitative properties of the model. In Chapter

4 the results of numerical simulations of the model are given. In Chapter 5 we introduce several

real data observations. Chapter 6 concludes.
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1.1 The proposed model

We will work within the framework given by (1.1). Our aim is to model the variable x(t), the

deviation from the ‘natural’ exchange rate. In this paper we consider the the delay differential

equation model1 given by

ẋ(t) = a(x(t)− x(t− 1)) − b|x(t)|x(t) (1.2)

where a, b > 0 are parameters. We briefly explain the logic behind the two right-hand side

terms in (1.2).

• The first term, a(x(t)− x(t− 1)) ≈ a(S(t)− S(t− 1)):

As long as the exchange rate increases (decreases), it is worthwhile to purchase (sell) for-

eign currency. Hence, the demand for foreign currency goes up (down) and the exchange rate

continues to increase (decrease).

• The second term, −b|x(t)|x(t):

As long as the absolute deviation |x(t)| from the ‘natural’ exchange rate increases, a growing

number of agents realize that the tendency will turn back. Moreover, with increasing absolute

deviation, each agent trades growing quantities. Then for increasing positive (decreasing neg-

ative) deviation the demand for foreign currency goes down (up) propertionately to the square

of the deviation. Hence, the absolute deviation |x(t)| is expected to stop increasing.

The two effects are put together. We have: As long as the exchange rate increases (decreases),

the first term in (1.2) pushes the domestic currency to further depreciation (appreciation)

until outweighed by the effect of the second term. Then the exchange rate stops increasing

(decreasing) and the currency starts to appreciate (depreciate). Intuitively, this process should

lead to oscillations.

In what follows we will analyze model (1.2). We will be, of course, primarily interested in the

qualitative behavior of the model near the only equilibrium x = 0. At the end of this paper we

will test whether the observed data are consistent with the implications of the model.

1 The idea of modeling economic variable by a RFDE model is not entirely new. For example, Mackay [10]

has proposed a RFDE model of commodity price fluctuations.



2. RETARDED FUNCTIONAL DIFFERENTIAL

EQUATIONS – SELECTED TOPICS

Recall that the model under consideration is of the form

ẋ(t) = f(x(t), x(t− 1)) (2.1)

where f : R × R → R is continuous. Equation (2.1) is an example of retarded functional

differential equation (RFDE). To be able to analyze qualitative properties of such a model, at

least a brief survey into the theory of RFDE is necessary.

This chapter summarizes several basic notions relating delay differential equations. The em-

phasis is put on the topics that are pertinent to the analysis given in the Chapter 3. As

most results are given without proofs, we recommend Hale [7], [8] or Diekmann, van Gils,

Verduyn Lunel and Walther [4] for further reference.

2.1 Initial value problem, general autonomous equation

Equation (2.1) is not sufficient to determine x(t). To fix x, we need an initial condition. We

adopt the most convenient way of prescribing x on the interval [−1, 0]. Then we have the initial

value problem

{
ẋ(t) = f(x(t), x(t− 1)), for t ≥ 0,

x(t) = ϕ(t), for −1 ≤ t ≤ 0,
(2.2)

where

ϕ ∈ C ([−1, 0],R)

is a given initial function.

It is well-known that given a continuous function f satisfying Lipschitz condition and a con-

tinuous initial function ϕ, there exists an open interval I ⊃ [−1, 0] and a continuous function

x : I → R, differentiable for t > 0, t ∈ I and such that (2.2) is satisfied. The solution x is

uniquely determined by ϕ and is either unbounded for t > 0 or can be extended to an interval

containing [−1,∞). (The method of steps and the elementary theory of ordinary differential

equations provide us with a proof.)

We will not confine ourselves to a specific system (2.2) and in what follows we will work within

a more general framework. For a fixed h > 0 and for a given function x(t), we denote xt the

function defined on the interval [−h, 0] by

xt(θ) = x(t+ θ), for − h ≤ θ ≤ 0. (2.3)
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Let us assume that xt is, for all t for which it is defined, a continuous mapping from [−h, 0] into

R. In symbols, we have xt ∈ C, where C = C([−h, 0],R) equipped with the supremum norm.

Let F : C → R be a continuous (nonlinear) mapping. The class of autonomous RFDEs we want

to consider is

ẋ(t) = F (xt) (2.4)

with an initial condition x0 = ϕ ∈ C.

Remark. Equation (2.4) is clearly a generalization of equation (2.1). By putting h = 1 and

F (xt) = f(xt(0), xt(−1)) we obtain the same equation.

In the rest of this chapter we introduce the theory needed to analyze the qualitative behavior

of solutions of delay differential equations near an equilibrium. As for ordinary differential

equations (ODE), such an analysis starts with an analysis of the linearized system. Therefore,

we first concentrate on linear autonomous delay equations.

2.2 Linear autonomous RFDE

A linear autonomous RFDE has the form

ẋ(t) = Lxt (2.5)

where L is a continuous linear function mapping C into R. Then, according to the Riesz re-

presentation theorem, there exists a bounded variation function η, defined on [−h, 0] with real

values such that for all φ ∈ C

Lφ =

0∫

−h

φ(θ) dη(θ). (2.6)

Let x(ϕ) be the unique solution to (2.5) with the initial function ϕ ∈ C at zero. Then the

solution operator T (t) : C → C is defined by the relation

xt(ϕ) = T (t)ϕ.

It can be shown that T (t), t ≥ 0 is a strongly continuous semigroup of linear operators on C

on [0,∞). Its infinitesimal generator A is defined as

Aϕ = lim
t→0+

1

t
(T (t)ϕ− ϕ) (2.7)

whenever this limit exits. The operator A is given by

Aϕ(θ) =





dϕ(θ)/dθ, for −h ≤ θ < 0,

Lϕ =
0∫

−h

ϕ(θ) dη(θ), for θ = 0.
(2.8)

The point spectrum of the operator A, denoted σp(A), plays an important role in determining

the behavior of solutions to (2.5). Let us denoteMλ(A) the generalized eigenspace correspon-

ding to a given eigenvalue λ ∈ σp(A). We have the following.
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Lemma 2.1. (cf. [7, p. 168]) If A is defined by equation (2.8), then the spectrum of A consists

of the point spectrum only and λ is in σp(A) if and only if λ satisfies the characteristic equation

∆(λ) = 0 (2.9)

where

∆(λ) = λ−

0∫

−h

eλθ dη(θ).

The roots of equation (2.9) have real parts bounded above and for any λ ∈ σp(A) the general-

ized eigenspace Mλ(A) is finite dimensional. Finally, AMλ(A) ⊆ Mλ(A), or in other words,

Mλ(A) is invariant under A.

Remark. As for ODE, the characteristic equation (2.9) can be also obtained by seeking nontrivial

solutions of (2.1) of the form x(t) = x(0)eλt.

Our next task is to analyze the action of T (t) onMλ(A) for a given λ ∈ σp(A). Let {φ1, . . . , φmλ
}

be a basis of Mλ(A). Since Mλ(A) is invariant under A, there exists a mλ ×mλ matrix Bλ

such that

AΦλ = ΦλBλ (2.10)

where Φλ = (φ1, . . . , φmλ
). The only eigenvalue of the matrix Bλ is λ. We also have

d

dt
T (t)Φλ = T (t)AΦλ = T (t)ΦλBλ.

The action of T (t) on Φλ is given by T (t)Φλ = Φλe
tBλ .

We can reinterpret this in the following way. Let φ ∈ Mλ(A) be arbitrary. Define z(t) to be

the mλ vector of coordinates of T (t)φ with respect to the basis Φλ. Then

ż(t) = Bλz(t). (2.11)

Hence, the restriction of T (t) to the finite dimensional subspaceMλ(A), invariant under A, is

generated by the ordinary differential equation (2.11).

Repeating the above process for all eigenvalues we obtain the following result.

Theorem 2.2. (cf. [7, p. 170]) Let Λ = {λ1, . . . , λp} be a finite set of eigenvalues of A and let

ΦΛ = (Φλ1 , . . . ,Φλp
), BΛ = diag(Bλ1 , . . . , Bλp

),

where Φλj
is a basis for the generalized eigenspace Mλj

(A) and Bλj
is the matrix defined by

(2.10), j = 1, 2, . . . , p. Finally, letMΛ(A) be the mλ1+· · ·+mλp
dimensional subspace spanned

by ΦΛ. Then the action of the semigroup T (t) on MΛ(A) for t ∈ R is given by

T (t)ΦΛ = ΦΛe
tBΛ .

Furthermore, there exists a subspace QΛ of C such that T (t)QΛ ⊆ QΛ for all t ≥ 0 and

C = PΛ ⊕QΛ

where PΛ = {φ ∈ C : φ = ΦΛa, for some vector a}.

As a corollary we obtain that the stationary point of the system (2.5) is asymptotically stable

if Re λ < 0 for all λ ∈ Λ and unstable if there exists λ ∈ Λ such that Re λ > 0.
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2.3 Nonlinear autonomous RFDE

In this section we consider the nonlinear autonomous delay equation

ẋ(t) = F (xt) (2.12)

where F is a continuous and differentiable nonlinear mapping from C into R. Let us assume

that x is the stationary point of (2.12) and denote

L = DF (x). (2.13)

Then the stability properties of the stationary point x can be derived from the properties of

the associated linearized problem

ẏ(t) = Lyt. (2.14)

More precisely, we have

Theorem 2.3. (cf. [4, p. 240]) Let Λ be the set of roots of the characteristic equation corre-

sponding to the linearized problem (2.14). Then the stationary point x of (2.12) is

(i) unstable if Re λ > 0 for some root λ ∈ Λ,

(ii) (locally) exponentially stable if Re λ < 0 for all roots λ ∈ Λ.

Although this result is valuable, it does not explain the situations when there are eigevalues

with both zero and negative real parts. In such cases we have to employ the centre manifold

analysis.

2.4 Centre manifold analysis

Let x = 0 be a stationary point of (2.12) and let L be the linear continuous operator defined

by (2.13). Then (2.12) can be rewritten as

ẋ = Lxt + g(xt) (2.15)

where g ∈ C(C,R) and

g(xt) = F (xt)− Lxt, g(x) = 0, Dg(x) = 0.

In addition, let us assume that g is C1 and that the linear part of (2.15),

ẋ = Lxt (2.16)

has m eigenvalues (counting multiplicity) with zero real parts, all other eigenvalues having

negative real parts. In such a situation, Hale [8] has shown that there exists an m-dimensional

invariant submanifold of the state space C, the centre manifold, and that long term behavior

of the solutions to the nonlinear equation is well approximated by the flow on this manifold.

We briefly summarize the main result.

Let P ⊂ C be the m-dimensional subspace spanned by the solutions to (2.16) corresponding

to the m zero real part eigenvalues and let Φ be its basis. Then there exists a splitting of the

space C = P ⊕ Q such that both P and Q are invariant under the flow T (t) associated with

the linear system (2.16).
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On P , the flow T (t) is equivalent to an ordinary differential equation

ż(t) = Bz(t)

with z ∈ R
m and B the m×m matrix satisfying

AΦ = ΦB. (2.17)

(See Section 2.2 for a detailed discussion of this topic.) The eigenvalues of B correspond to the

m eigenvalues of (2.16) with zero real part. The centre manifold introduced above is given by

Mg = {φ ∈ C : φ = Φz + hg(z), z in neighborhood of zero in R
m}

where hg : R
m → Q is such that hg(z) = o(z) for z → 0. In addition, z satisfies the ordinary

differential equation

ż = Bz + cg(Φz + hg(z)). (2.18)

In equation (2.18), B is given by (2.17) and c is determined from the solution to the equation

adjoint to (2.15). Specifically,

c = Ψ(0)

where Ψ is the basis for the invariant subspace P ∗ of the adjoint problem corresponding to P ,

such that

〈Ψ,Φ〉 = Im. (2.19)

In equation (2.19) symbol Im stands for the m×m identity matrix and the bilinear form 〈·, ·〉

is defined by

〈ψ, φ〉 = ψ(0)φ(0) −

0∫

−h

θ∫

0

ψ(ξ − θ)[dη(θ)]φ(ξ) dξ (2.20)

for φ ∈ C, ψ ∈ C∗ = C ([0, h],R).

Remark. The normalized Ψ (in the sense of (2.19)) can be obtained as follows:

Ψ = 〈Ψ̃,Φ〉−1Ψ̃ (2.21)

where Ψ̃ is any basis for the invariant subspace of the adjoint problem.



3. ANALYSIS OF THE MODEL

This chapter analyzes some qualitative properties of the proposed model. We make use of the

theory introduced in the previous chapter. We consider the delay differential equation

ẋ(t) = a(x(t)− x(t− 1))− b |x(t)| x(t), for t ≥ 0 (3.1)

with the initial condition

x(t) = ϕ(t), for − 1 ≤ t ≤ 0 (3.2)

where a, b > 0 and ϕ ∈ C = C ([−1, 0],R) provided by the supremum norm.

Let x = 0 denote the only equilibrium of (3.1). We are interested whether this steady state is

stable or unstable. The most of this chapter is devoted to this issue.

3.1 Existence, uniqueness and boundedness of the solution

The general result on existence and uniqueness of the solution x was given in the previous

chapter. We proceed with the property of its boundedness.

Lemma 3.1. Let ‖ϕ‖ < 2a/b. Then the solution x(t) of the initial value problem (3.1) – (3.2)

is bounded.

Proof. Let M = 2a/b > 0 and letM be the set of all t satisfying |x(t)| =M . For the sake of

contradiction, suppose that x(t) is not bounded. Then there exists t > 0 such that |x(t)| > M .

As x(t) is continuous, the setM is not empty and it is closed. Then there exists the smallest

element ofM, denoted t0, i.e.

t0 = min
t>0

M = min
t>0

{t : |x(t)| =M} .

We have either x(t0) =M or x(t0) = −M . Let us analyze the first case. The choice of t0 implies

ẋ(t0) ≥ 0. (3.3)

Substituting x(t0) =M into (3.1), we obtain

ẋ(t0) = a(M − x(t0 − 1))− bM 2 < 2Ma− bM 2 =M(2a − bM) = 0,

what contradicts (3.3). Similarly, x(t0) = −M leads both to ẋ(t0) ≤ 0 and

ẋ(t0) = a(−M − x(t0 − 1)) + bM
2 > −2aM + bM 2 =M(−2a+ bM) = 0.

The contradiction is apparent.

Remark. The boundedness of the solution x(t) implies its extendability to an interval containing

[−1,∞].



Chapter 3. Analysis of the model 11

3.2 Characteristic equation – location of the roots

The analysis of the qualitative behavior of solutions near an equilibrium starts with an analysis

of the linearized equation. This reduces to the analysis of the characteristic equation. Recall

that the model (3.1) is of the form

ẋ(t) = f(x(t), x(t− 1)).

The linearization at the equilibrium x is given by

ẋ(t) = D1f(x, x)x(t) +D2f(x, x)x(t− 1).

Hence, the linearization of (3.1) at the only steady state x = 0 yields

ẋ(t) = ax(t)− ax(t− 1) (3.4)

with the corresponding characteristic equation

F (a, λ) = λ− a+ ae−λ = 0. (3.5)

A particularly relevant question is how the location of the roots in the complex plane depends

on the parameter a. We are principally interested in the number of the right half-plane roots

of (3.5). Writing λ = µ+ iν, we obtain two real equations

µ− a+ ae−µ cos ν = 0,

ν − ae−µ sin ν = 0.
(3.6)

Lemma 3.2. Let ν0 6= kπ, k ∈ Z. Then a > 0, µ ≥ 0 implies F (a, µ+ iν0) 6= 0.

Proof. For the sake of contradiction, suppose that there are real numbers a > 0, µ ≥ 0 such

that F (a, µ+ iν0) = 0. As sin ν0 6= 0, we can substitute p =
ν0
sin ν0
. From (3.6) we obtain

a = peµ. (3.7)

In view of (3.7) we have p > 0. Moreover, p > 1 since sin ν0 < |ν0|. Substituting (3.7) into the

first equation of (3.6) yields

µ− peµ + p cos ν0 = 0. (3.8)

Let the real-valued function g be defined by

g(x) = x− pex + p cos ν0.

We can easily verify that g(x) is decreasing on the interval [0,∞) as

g′(x) = 1− pex ≤ 1− p < 0

holds for all x ≥ 0. Since

g(0) = −p+ p cos ν0 = p(cos ν0 − 1) < 0,

there is no nonnegative root x of the equation g(x) = 0. This contradicts (3.8).
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Lemma 3.3. Let ν0 = kπ, k ∈ Z \ {0}. Then there are no roots of F (a, µ+ iν0) = 0.

Proof. Substituting sin ν0 = 0 into the second equation of (3.6) we obtain ν0 = 0. Hence the

statement of the lemma is evident.

The previous two lemmas clearly demonstrate the non-existence of right half-plane roots of

equation (3.5) of the form λ = µ+ iν, ν 6= 0. However, we still have to discuss the case ν = 0.

To find possible purely real right half-plane roots, we have to examine the real-valued function

h(µ) = µ− a+ ae−µ

on the interval [0,∞). First observe that h(0) = 0 for all a > 0. We have

h′(µ) = 1− ae−µ =





> 0 for µ > ln a,

= 0 for µ = ln a,

< 0 for µ < ln a,

i.e., h is decreasing on (−∞, ln a) and increasing on (ln a,∞). To obtain another (except µ = 0)

positive root of h(µ) = 0, it is sufficient that

ln a > 0.

This is satisfied for all a > 1. The following theorem summarizes the conclusions of this section.

Theorem 3.4. The number of zero and right half-plane roots of (3.5) depends on the parameter

a in the following way:

• a < 1: simple zero root, all other roots have negative real parts;

• a = 1: double zero root, all other roots have negative real parts;

• a > 1: simple zero root and simple positive real root, all other roots have negative real parts.

Combining Theorem 3.4 and Theorem 2.3 we obtain the following result.

Corollary 3.5. The stationary point x = 0 of (3.1) is unstable for a > 1.

On the other hand, Theorem 2.3 is not able to decide on stability of x for a ≤ 1. In this case,

the characteristic equation (3.5) has either single or double zero root while all other roots have

negative real parts. This is precisely the situation in which the centre manifold analysis (see

Section 2.4) has to be used.

3.3 Centre manifold analysis

We first show that the presumptions of the technique are satisfied. Equation (3.1) can be

rewritten into

ẋ = Lxt + g(xt)

where L : C → R and g : C → R are given by

Lφ = aφ(0)− aφ(−1), and g(φ) = −b |φ(0)| φ(0). (3.9)
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The operator L can be expressed in the integral form (2.6) by putting

η(θ) =





0, for θ = −1,

−a, for −1 < θ < 0,

0, for θ = 0.

(3.10)

Lemma 3.6. The function g given by (3.9) is C1.

Proof. Let Lφ : C → R be a bounded linear operator given by

Lφh = −2b|φ(0)|h(0). (3.11)

We show that Lφh is the (Fréchet) differential of the mapping g at the point φ ∈ C. We are

supposed to prove that

V = lim
‖h‖→0

‖g(φ+ h)− g(φ) − Lφh‖

‖h‖
= 0.

We have

U = g(φ+ h)− g(φ) = −b|φ(0) + h(0)|(φ(0) + h(0)) + b|φ(0)|φ(0). (3.12)

We are interested in the value of expression (3.12) for ‖h‖ → 0. Hence, without loss of generality,

we can assume that |φ(0)| > |h(0)| for φ(0) 6= 0. Then we have

U =





−b (φ(0) + h(0))2 + bφ2(0) = −2bφ(0)h(0) − bh2(0), for φ(0) > 0,

−b|h(0)|h(0), for φ(0) = 0,

b (φ(0) + h(0))2 − bφ2(0) = 2bφ(0)h(0) + bh2(0), for φ(0) < 0.

(3.13)

Substituting (3.11) and (3.13) we obtain

V = lim
‖h‖→0

‖ − 2b|φ(0)|h(0) − b|h(0)|h(0) − Lφh‖

‖h‖
= lim

‖h‖→0

bh2(0)

‖h‖
= 0.

Therefore

Dg(φ)h = Lφh = −2b|φ(0)|h(0)

is the Fréchet differential of g at the point φ. As Dg is continuous, the function g is C 1.

We also have g(x) = 0 and Dg(x) = 0. This, together with Theorem 3.4 and Lemma 3.6, allows

us to employ the centre manifold analysis for a < 1 and a = 1. We treat both cases separately.

3.3.1 Single zero eigenvalue, a < 1.

In this case, the dimension of the centre manifold is 1. The basis Φ = (φ1) of the eigenspace P

is given by

φ1(θ) = 1, for − 1 ≤ θ ≤ 0.

As Aφ1 = φ1B and

Aφ1(θ) =

{
dφ1(θ)/dθ = 0, for −1 ≤ θ < 0,

Lφ1 = a− a = 0, for θ = 0,
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we have B = 0. Let Ψ̃ = (ψ̃1) be the basis of the invariant subspace P
∗ of the adjoint problem

given by

ψ̃1(θ) = 1, for 0 ≤ θ ≤ 1.

The normalized basis Ψ = (ψ1) can be derived from

ψ1 =
[
〈ψ̃1, φ1〉

]−1
ψ̃1 =

[
〈ψ̃1, φ1〉

]−1
. (3.14)

We simplify the bilinear form (2.20) for η given by (3.10). We have

〈ψ, φ〉 = ψ(0)φ(0) − a

0∫

−1

ψ(ξ + 1)φ(ξ) dξ (3.15)

for given φ ∈ C and ψ ∈ C∗ = C([0, 1],R). We employ (3.14) and (3.15) to obtain

ψ1 =


ψ̃1(0)φ1(0)− a

0∫

−1

ψ̃1(ξ + 1)φ1(ξ) dξ



−1

=


1− a

0∫

−1

dξ



−1

=
1

1− a
.

Then c = Ψ(0) =
1

1− a
. Substituting all necessary elements into (2.18) we obtain the ordinary

differential equation

ż = Bz + cg(φ1z + hg(z)) =
−b

1− a
|z| z + o(z2), for z → 0. (3.16)

Recall from Section 2.4 that the stability properties of this ODE are the same as of the original

RFDE. We postpone the analysis of this system to Section 3.4.

3.3.2 Double zero eigenvalue, a = 1

In this case, the dimension of the centre manifold is 2. The basis Φ = (φ1, φ2) of the eigenspace

P is given by

φ1(θ) = 1, φ2(θ) = θ, for − 1 ≤ θ ≤ 0. (3.17)

As Aφ1 = 0 and

Aφ2(θ) =

{
dφ2(θ)/dθ = 1, for −1 ≤ θ < 0,

Lφ2 = a = 1, for θ = 0,

we have AΦ = (0,1). Recall that AΦ = ΦB. Hence

B =

(
0 1

0 0

)
. (3.18)

Let Ψ̃ = col(ψ̃1, ψ̃2) be the basis of the eigenspace P
∗ given by

ψ̃1(θ) = 1, ψ̃2(θ) = θ, for 0 ≤ θ ≤ 1.
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We make use of formula (3.15) to obtain

〈ψ̃1, φ1〉 = 1−
0∫

−1

dξ = 0,

〈ψ̃2, φ1〉 = 0−
0∫

−1

(ξ + 1) dξ = −
1

2
,

〈ψ̃1, φ2〉 = 0−
0∫

−1

ξ dξ =
1

2
,

〈ψ̃2, φ2〉 = 0−
0∫

−1

(ξ + 1)ξ dξ = −
1

6
.

(3.19)

Substituting (3.19) into (2.21) we have

Ψ =
[
〈Ψ̃,Φ〉

]−1
Ψ̃ =

(
0 1/2

−1/2 1/6

)−1

·

(
ψ̃1
ψ̃2

)
.

The normalized basis Ψ is therefore given by

Ψ(θ) =

(
2/3 −2

2 0

)
·

(
1

θ

)
=

(
2/3− 2θ

2

)
. (3.20)

As a conclusion we obtain

c = Ψ(0) =

(
2/3

2

)
. (3.21)

Let z = (x, y)T . Then

(Φz)(θ) = xφ1(θ) + yφ2(θ) = x+ θy, for − 1 ≤ θ ≤ 0. (3.22)

Substituting (3.9), (3.18), (3.21) and (3.22) into (2.18) gives, for the dynamical system on the

centre manifold, the ‘explicit’ expression

ẋ = y −
2b

3
|x|x+ o

(
(|x|+ |y|)2

)
,

ẏ = −2b|x|x+ o
(
(|x|+ |y|)2

)
,

(3.23)

for (x, y)→ (0, 0). The analysis of the stability properties of this system is given in the following

section.

3.4 Stability analysis – Lyapunov’s second method

Our next task is to analyze the local stability of the systems (3.16) and (3.23). We employ

Lyapunov’s second method as outlined in Appendix. We first analyze equation (3.16),

ż =
−b

1− a
|z| z + o(z2) for z → 0. (3.24)

Let us consider the (positive definite) function V (z) = z2. We have

V̇ (z) =
d

dt
z2(t) = 2zż = −

2b

1− a
|z| z2 +w(z),
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where w(z) = o(|z|3). In other words, for any ε > 0, there exists a δε > 0 such that 0 < |z| < δε
implies |w(z)| < ε|z|3. Let us take ε = 2b/(1 − a). Then there exists δε such that

V̇ (z) < −
2b

1− a
|z|z2 + ε|z|3 = 0 for 0 < |z| < δε

We see that V (z) is a positive definite Lyapunov function for the system (3.16) such that

V̇ (z) < 0 on some neighborhood of zero. Hence, according to Theorem 7.5, the zero steady

state of (3.16) is asymptotically stable.

We now turn our attention to the system (3.23). Recall that it is given by

ẋ = y −
2b

3
|x| x+ hot,

ẏ = −2b|x|x+ hot,
(3.25)

where hot = o
(
(|x|+ |y|)2

)
for (x, y)→ (0, 0).

Right at the beginning of the analysis we have to admit that we have not completely resolved

the question of stability of the zero equilibrium of (3.25). Nevertheless, the results below may

be of some interest.

Lemma 3.7. The zero equilibrium of the truncated system

ẋ = y −
2b

3
|x|x,

ẏ = −2b|x|x,
(3.26)

is asymptotically stable.

Proof. We consider the (positive definite) scalar function V ,

V (x, y) = |x|x2 +
3

4b
y2. (3.27)

By differentiating with respect to (3.26) we obtain

V̇ (x, y) = 3|x|xẋ+
3

2b
yẏ = 3|x|xy − 2b|x|2x2 − 3y|x|x = −2bx4 ≤ 0.

Then V is a positive definite Lyapunov function for the system (3.26) on the region Ω = R
2.

We also have

E = {(x, y) ∈ Ω | V̇ (x, y) = 0} = {(x, y) ∈ R
2 |x = 0}.

It is obvious that the origin is the only invariant subset of E with respect to (3.26). This allows

us to apply Theorem 7.6. Hence, the zero solution of (3.26) is asymptotically stable.

Remark. Applying the same procedure to the system (3.25) does not resolve the stability

question. We obtain

V̇ (x, y) = −2bx4 + o
(
(|x|+ |y|)2(|x|2 + |y|)

)
.

There is no region Ω ⊆ R
2 containing the origin such that V̇ (x, y) ≤ 0 for all (x, y) ∈ Ω.

Lemma 3.8. There exists some region Ω ⊆ R
2 containing the origin such that within Ω \ {0}

the solution to (3.26) rotates clock-wisely around the zero steady state.
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Proof. We use the transformation

x = r sinω, y = r cosω, r ≥ 0, ω ∈ [0, 2π)

to obtain

ṙ = r cosω sinω −
2

3
br2| sinω| sinω (sinω + 3 cosω) + o(r2), (3.28)

and

ω̇ = cos2 ω +
2

3
br| sinω| sinω (3 sinω − cosω) + o(r) (3.29)

for r > 0. Let us concentrate our attention on equation (3.29). For w ∈ {π/2, 3π/2} it reduces

to

ω̇ = 2br > 0.

For w /∈ {π/2, 3π/2} and for r small enough, the term cos2 ω > 0 dominates the right-hand

side of (3.29). Therefore, there exists r0 > 0 such that

ω̇ > 0 on {(r, ω) ∈ (0, r0)× [0, 2π)}.

This proves the statement of the lemma.

Unfortunately, neither Lemma 3.7 nor Lemma 3.8 decides on the local stability behavior of the

zero equilibrium of (3.25).

3.5 Conclusions

The following theorem summarizes the conclusions of this chapter.

Theorem 3.9. Let a, b > 0 be given parameters and let ϕ ∈ C be a given initial function such

that ‖ϕ‖ < 2a/b. Then there exists unique solution x(t) to the initial value problem (3.1) –

(3.2). This solution exists for all t ≥ 0 and is continuous and bounded. The only stationary

point x = 0 of the system (3.1) is

(i) unstable for a > 1,

(ii) asymptotically stable for a < 1.

The behavior of the system near the zero equilibrium for a = 1 remains an open question. We

hope to tackle this problem in the near future.



4. NUMERICAL SIMULATIONS

The previous chapter has been almost entirely devoted to the (local) stability analysis of the

equilibrium of the equation

ẋ(t) = a(x(t)− x(t− 1))− b|x(t)|x(t), (4.1)

where a, b > 0. We have concluded that the stationary point x = 0 is locally asymptotically

stable for a < 1 and unstable for a > 1. We now continue our analysis of the model with several

numerical simulations.

We use simple Euler method1 with step size h = 0.005 to obtain numerical solutions to equation

(4.1). Throughout this chapter, we work with the initial condition2

ϕ(θ) = θ for − 1 ≤ θ ≤ 0.

We treat qualitatively different cases a < 1, a = 1 and a > 1 separately.

4.1 Asymptotically stable trajectories, a < 1

Asymptotically stable trajectories are expected for a < 1. The following results are obtained

for a = 0.8.
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(i) for b = 0.5, M = 3.2
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(ii) for b = 1.5, M = 1.07

Figure 4.1: Numerical solutions for a = 0.8

The above figure is consistent with the conclusions of Chapter 3. We see that the simulations

indicate asymptotically stable trajectories.

1 We have also used more demanding predictor-corrector (PECECE) scheme with 4 step Adams-Bashford

predictor and 4 step Adams-Moulton corrector. We have obtained the same results.
2 We have also worked with other initial conditions. Althought the choice of this condition has affected the

solution trajectories a lot, it has not changed the asymptotic behavior of the solutions.
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Parameter b seems to affect the amplitude of the oscillations in the following way: the larger

b, the smaller the amplitude. This is consistent with Lemma 3.1. (Recall that we have proved

that the solution is bounded above by M = 2a/b.) The same conclusions can be drawn from

the simulations for a = 0.9.
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(i) for b = 0.5, M = 3.6
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(ii) for b = 1.5, M = 1.2

Figure 4.2: Numerical solutions for a = 0.9

The convergence to the zero steady state now appears to be slower.

A number of other simulations have been made for various values of parameters 0 < a < 1

and b > 0 and various initial functions ϕ. Although the results have been different in many

aspects, all simulations have indicated globally asymptotically stable trajectories. The speed of

the convergence has been affected by the parameter a – the larger a, the slower the convergence

(holding b and ϕ constant).

4.2 The boundary point a = 1

Numerical solutions to the initial value problem (3.1) – (3.2) for a = 1 are of particular interest

to us – keep in mind that in this case, we have not resolved the question of the zero steady

state stability yet (see Chapter 3). Two simulations are depicted on the following graphs.
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(i) for b = 0.5, M = 4
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(ii) for b = 1.5, M = 1.33

Figure 4.3: Numerical solutions for a = 1

The solutions are very similar to those obtained for values a < 1 close to 1. However, the

convergence to the zero steady state, if any, is slower. A larger interval is necessary to determine

the behavior of the solutions near zero for t→ ∞.
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The following figure depicts the solution on the interval [0, 300].
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Figure 4.4: Numerical solution for a = 1 and b = 0.5

The above simulation indicates globally asymptotically stable trajectory. The solution appears

to be oscillatory. Of course, this observation is nothing more than the hypothesis about the

asymptotic behavior.

4.3 Locally unstable trajectories, a > 1

Recall that for the case a > 1, the solutions to (4.1) are expected to exhibit locally unstable

behavior. In this section we verify this conjecture. The following results are obtained for the

case a = 1.03.
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(i) for b = 0.5, M = 4.12
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(ii) for b = 1.5, M = 1.37

Figure 4.5: Numerical solutions for a = 1.03

Again, we can observe that the larger the parameter b, the smaller are the amplitudes of the

oscillations. On the other hand, the interval [0, 60] is not sufficient to determine the asymptotic

behavior of the solutions. We use larger interval.
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Figure 4.6: Numerical solution for a = 1.03 and b = 0.5

We are now able to contrast figures 4.4 and 4.6. In the latter case, the trajectory seems to be

(locally) unstable with periodic oscillations.
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The local instability (and periodicity) result is more apparent for larger values of the parameter

a, such as a = 1.2.
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Figure 4.7: Numerical solutions for a = 1.2

As in the previous section, a number of simulations in addition to those depicted here have been

made. All indicate locally unstable and (after some time) globally stable periodic trajectories.

The periods and the amplitudes appear to depend on a and b in the following way: The larger

a, the larger the amplitude and the smaller the period length of the oscillation. The larger b,

the smaller the amplitude. The effect of b on the period length is not very significant.

Remark. The outlined dependence allows us to construct oscillations with different periods and

amplitudes. For example, relatively large period length of approximately 25 can be obtained

for a = 1.01.
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Figure 4.8: Numerical solution for a = 1.01 and b = 0.01

The amplitude of the oscillations can be easily controlled by b – for b = 0.1 the amplitude

would be approximately 0.35, for b = 1 the amplitude would be approximately 0.035.

4.4 Conclusions

The results obtained by numerical simulations are consistent with the theoretical results given

by Theorem 3.9. For a < 1 (but also for a = 1), numerical simulations indicate a globally

asymptotically stable trajectory. For a > 1, numerical simulations indicate a globally stable

periodic trajectory. Both the amplitude and the period of the oscillations are determined by

the parameters a and b.

The case a > 1 is the most interesting one from the viewpoint of a possible economic application

of the model – the zero steady state is unstable, indicating periodic oscillations. We will be in

search of such a behavior while analyzing real data in the following chapter.



5. REAL DATA OBSERVATIONS

This chapter introduces several real data observations. It summarizes the effort to find any

evidence that would support the idea of our model. On the other hand, we have to stress that

it is beyond the scope of this paper to provide rigorous econometric analysis of the issue.

Recall that we wish to model market exchange rate S(t) by

S(t) = f(θ(t)) + x(t), (5.1)

where f(θ(t)) holds for ‘natural’ exchange rate given the state of fundamentals θ(t) and where

x(t) is driven by

ẋ(t) = a(x(t)− x(t− 1))− b|x(t)|x(t). (5.2)

Numerical simulations (see Chapter 4) indicate that such a model implies periodic oscillations

for the variable x(t) (in the case a > 1). Our task is to explore whether observed data exhibit

behavior consistent with this conclusion.

We will work with the daily exchange rates Sk on the eurodollar market in the year 2002. The

discrete form of (5.1) can be rewritten into

xk = Sk − f(θk). (5.3)

We are interested whether the time series xk contains oscillations consistent with the model.

A common way of identifying oscillations of various frequencies in the list of data is to find its

discrete Fourier transformation (DFT), or spectrum. The following paragraph briefly introduces

the idea of this approach.

Let fk, k = 0, 1, . . . , N − 1 be a sample of N values such that the series extended outside the

range {0, . . . , N − 1} is N -periodic. Then the DFT is defined as follows

F (w) =

N−1∑

k=0

fke
2πikw

N , for w = 0, 1, . . . , N − 1. (5.4)

The amplitude of the oscillation with a period length N/w (i.e., one that occurs w times in the

range N) is given by

bw =

∣∣∣∣
2

N
F (w)

∣∣∣∣ , for w = 1, 2, . . . , N/2.

This allows us to identify any relevant oscillations in the time series fk simply by calculating

coefficients bw for various frequencies w.

We apply this procedure on the data set xk. Since it is given by (5.3), we have to estimate

f(θk) first. Unfortunately, this is not simple as the concept of the ‘natural’ exchange rate is

only theoretical. Several possible approaches can be adopted to tackle the problem of estimating

f(θk). We will be trying the following three
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(i) We assume that f(θ(t)) is constant within a certain time interval (such as one quarter);

(ii) We assume that f(θ(t)) has a linear trend and apply the linear regression to estimate it;

(iii) We employ the moving average technique to obtain f(θ(t)).

5.1 Case One – Assumption of constant ‘natural’ exchange rate

In this section we assume that the ‘natural’ exchange rate does not change within a certain,

relatively short interval. There is some logic behind this assumption: The period of two or three

months is too short to cause any significant change of economic fundamentals. The following

graphs depict the data we will be working with.
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k

0.9

1

1.1
Sk

(i) Year 2002, 255 working days

Oct Dec
k

0.95

1

1.05

1.1
Sk

(ii) Winter 2002, 64 working days

Figure 5.1: USD/EUR daily exchange rates

Let us concentrate our attention on the last quarter of the year 2002. The assumption of a fixed

‘natural’ exchange rate within this period allows us to calculate the Fourier transformation

directly for the time series Sk (the subtraction of the constant term f(θk) would result only in

the change of the zero frequency term F (0) in (5.4)). The result of the application the DFT

method on a suitable subinterval1 is shown on the following two graphs.
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Figure 5.2: DFT analysis – power spectrum for the last 52 working days of 2002

The spectrum diagrams indicate that there is a relatively significant periodic oscillation with

frequency 2 (in an interval 52 working days long) corresponding to a 26 working days period.
1 Keep in mind that the method makes sense only if applied on a periodic time series. Therefore, we have

employed the DFT procedure not only on the whole series of 64 winter data, but also on a number of relatively

large subintervals of this period. Figure 5.2 depicts interesting result obtained for a period of 52 working days.
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We might ask whether such a period is observed also in the case of a larger interval. The

answer is, surprisingly, yes. While examining last 102 working days2 of the year 2002, we have

encountered the following behavior.
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Figure 5.3: DFT analysis – power spectrum for the last 102 working days of 2002

Again, the diagrams indicate possible periodic oscillation with 25-26 working days long pe-

riod. Without exaggerating the significance of this result we can conclude this section with an

observation that there might be some support for our model.

5.2 Case Two – ‘Natural’ exchange rate estimated by linear regression

The assumption of a linear trend of observed economic variable belongs to the one most com-

monly used. We use this approach in this section.

We apply the linear regression on the data Sk to obtain

f(θk) ≈ 0.86055 + 0.000664244k (5.5)

with relatively high coefficient of determination R2 = 0.85. Substituting (5.5) into (5.3) for

k = 0, 1, . . . , 254 we obtain a time series of 255 deviations of exchange rates xk from its ‘natural’

level. The data are shown on the following figure.
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Figure 5.4: Deviations of exchange rates from estimated ‘natural’ level, 2002

The application of the DFT method on these data yields the following results.

2 Of course, to do this, the winter data were not enough.
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Figure 5.5: DFT analysis – power spectrum for deviations, 255 values

The above spectrum diagram indicates several relatively significant periodic oscillations (with

periods 128, 43 and 64 working days, respectively). Unfortunately, we have to admit that further

examination has not verified this result. More precisely, different subintervals have indicated

different oscillations.

5.3 Case Three – ‘Natural’ exchange rate estimated by MA technique

An alternative way of smoothing out local fluctuations in a given time series of economic

data is to use an (m-term) moving average technique. The approach allows us, if properly

chosen parameter m, to eliminate any cyclical or random influences. The smoothed data should

therefore well approximate the ‘natural’ exchange rate.

We will work with a simple 20-term moving average3. We subtract the estimated ‘natural’

exchange rates, fk ≈ f(θk), from the observed market rates Sk to obtain fluctuations xk.

We wish to analyze whether these deviations exhibit any periodic behavior. Both the natural

exchange rates and the fluctuations are depicted on the following figure.
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Figure 5.6: Estimated ‘natural’ exchange rates and resulting fluctuations

It is beyond the scope of this paper to present all calculations that have been made. We therefore

only summarize our effort. We have employed the DFT method on a large number of different

time series – subintervals of the series depicted on Figure 5.7 (ii). Although we have obtained

3 We have worked with a number of different m-term moving averages. The results obtained for m near 20

has appeared to be the most revealing.
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many different results, several ones were quite similar. This group has indicated two relatively

significant periodic oscillations with period lengths 16-18 and 26-28 working days. One of these

results is depicted on the following figure.
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Figure 5.7: DFT analysis – power spectrum for fluctuations, 220 values

Similar power spectra have been observed for a number of other subintervals4. On the other

hand, we see that the identified oscillations are not very dominant.

5.4 Conclusions

We are now able to conclude this chapter. We have made a large number of experiments (far

much more than those mentioned in this paper) employing different methods on different time

intervals. We were interested whether the estimated deviations xk exhibit behavior consistent

with the model, i.e. whether the variable xk periodically oscillates around zero.

We have to admit that none of the observations has fully supported this hypothesis. No truly

dominant periodic oscillation has been identified. On the other hand, two or three relatively

significant oscillations have been observed – perhaps the most significant one being that with

a period approximately 25 working days long. The problem of possible more oscillations of

different period lengths could be resolved by adding more processes of the form (5.2) with

suitably chosen parameters5 a and b.

4 As well as for other values of m.
5 Keep in mind that a and b determine the period and the amplitude of the oscillations



6. CONCLUSIONS

In this paper we have introduced a delay differential equation model of oscillations of exchange

rate. The model is given by

ẋ(t) = a(x(t)− x(t− 1))− b|x(t)|x(t), (6.1)

where x(t) denotes the deviation of the market exchange rate from the ‘natural’ exchange rate.

We have examined how the stability of the only steady state x = 0 depends on the parameters

a and b. For a > 1, the stationary point x is locally unstable and numerical simulations indicate

a globally stable periodic trajectory. For a ≤ 1, we have employed the centre manifold analysis.

We have proved that the equilibrium x is locally asymptotically stable for a < 1. Numerical

simulations indicate that this stability is global.

From the mathematical viewpoint, two interesting questions remain open: (i) the proof of the

stability or instability of the zero steady state for a = 1 and (ii) the proof of the periodicity of

the solutions for a > 1. We hope to address these questions in the near future.

From the viewpoint of a possible economic application of the model, only a little evidence has

been found in favor of it. Nevertheless, this is not surprising – the model is too simple. To

tackle the problem of possible more oscillations of different frequencies, more processes of the

form (6.1) can be added. Another improvement of the model could be adding random term

either in equation (6.1) or directly in equation (1.1). On the other hand, such an improvement

would make the analysis of the model much more difficult.



APPENDIX

Lyapunov’s second method

In the analysis of the stability of the systems (3.16) and (3.23) (see Section 3.4), we have made

use of Lyapunov’s second method (also called direct method). This appendix contains a brief

summary of the theory employed. For a more detailed account, including the proofs of the

following results, we refer for example to Brauer, Nohel [2].

Let U ⊂ R
n be open, f ∈ C1(U,Rn). We will consider autonomous differential system

ẋ = f(x). (7.1)

Throughout this appendix we assume that U contains the origin and that x = 0 is an isolated

fixed point of (7.1).

Definition 7.1. The scalar function V (x) is said to be positive definite on the set Ω ∈ R
n if

and only if V (0) = 0 and V (x) > 0 for x 6= 0 and x ∈ Ω.

Definition 7.2. The scalar function V (x) is said to be negative definite on the set Ω ∈ R
n if

and only if −V (x) is positive definite on Ω.

Definition 7.3. The scalar function V ∈ C1(Rn,R) is said to be Lyapunov function at x

for the system (7.1) if there exists some region Ω ⊆ Rn containing the origin such that x ∈ Ω

implies V̇ (x) ≤ 0, where

V̇ (x) =
d

dt
V (x(t)) =

∂V

∂x1
(x)f1(x) + · · ·+

∂V

∂xn

(x)fn(x). (7.2)

We are now ready to introduce the main results.

Theorem 7.4. Let there exist a positive definite Lyapunov function V (x) for the system (7.1)

on some region Ω containing the origin. Then the zero solution of (7.1) is stable.

Theorem 7.5. Let there exist a positive definite Lyapunov function V (x) for the system (7.1)

such that V̇ (x) is negative definite on some region Ω containing the origin. Then the zero

solution of (7.1) is asymptotically stable.

Theorem 7.6. Let there exist a positive definite Lyapunov function V (x) for the system (7.1)

on some region Ω containing the origin. Let the origin be the only invariant subset (with respect

to (7.1)) of the set E = {x ∈ Ω | V̇ (x) = 0}. Then the zero solution of (7.1) is asymptotically

stable.
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