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1 INTRODUCTION

The question of estimating and explaining movements of a real foreign exchange rate
under the floating regime is crucial in open economies. Economic theory already
presents various models to explain these movements: the purchasing power parity,
the uncovered interest rate parity, the monetary model, the portfolio balanced model
or the Dornbusch model. Although these models vary in the approach used, they
have one common property, that they explain movements of the real foreign exchange
rate only by slowly changing economic fundamentals.

A critique of the above mentioned models first appeared in Baxter and Stockmann
(1989) [2]. The evidence was found that the exchange rate has a tendency to fluctuate
considerably more than financial market analysts think is justified by changes in the
economic fundamentals. Azariadis (1993) [1] demonstrates this phenomenon, called
“exchange-rate overshooting” in the Dornbusch model. Also the fact that abrupt
changes in economical fundamentals do not generally reflect strongly on the exchange
rate movement (and reversely) supports the idea that the exchange rate movements
are not fully explained by economical fundamentals.

Distinction between two types of agents on the market is the idea, occurred in
Jeanne, O. and Rose, A.K. (2002) [11] (“informed” and “noise” traders) and De-
Grauwe and Grimaldi (2002) [8] (“chartists” and “fundamentalists”). Considering
only one type of agents on the market adapting with their strategy to the situation,
Erdélyi, A. (2003) [7] and Brunouvsky, P., Erdélyi, A. and Walther H.O. (2004) [3]
analyzed the model of the deviation of the real exchange rate from its equilibrium.

Despite the fact that economical fundamentals do not explain the real exchange
rate properly, their presence in the model is a contribution. The typical frame for a
model of exchange rate, denoted by S, is

Sn+1 = f(economic fundamentals) + z, (1.1)

This paper presents and analyses the model of x,,, inspired by the model of Brunovskyj,
P., Erdélyi, A. and Walther H.O. [3, 7].

1.1 Model description

The purpose of this diploma thesis is to find an acceptable model of the deviation
x, from the “natural” exchange rate which both corresponds with the behaviour of
agents on the market and is simple enough for analytical and numerical explorations.
There are many possible ways how to simulate such a process, within the framework
of the previous section but only certain types of approach satisfy all the important
requirements needed.
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There are at least three different ways how one can set up such a model. The first
way, analysed in the recent diploma work of Erdélyi, A. [7], and a paper of Brunouvsky,
P., Erdélyi, A. and Walther H.O. [3] is to consider a delay differential equation of the
form

&(t) = A(x(t) —2(t — 1)) — Ba(t)|=(t)| (1.2)

with A, B € R*. This model captures most of the important features of the behavior
of agents on a financial market although it is too simple to explain the observed
reality. In this approach, decisions of agents are distributed in time in order to profit
from transactions made on the market. There is also a parallel approach, in which
agents make their decisions in one moment. The form of such difference model is

Tyt = Tp + A(.ZU” - xnft) - an|xn| (13)

and is equivalent to the model of De Grauwe and Grimaldi (2002) [8]. The value of
the time step ¢ can be chosen arbitrarily, for simplicity we set £ = 1. The second term
in this model causes the trajectories to converge to the zero fixed point (A < 1) or
to diverge to the infinity (A > 1), as indicated by our numerical simulations. This
property is quite unfortunate since it implies that either the real exchange rate loses
completely the influence on the psychology of agents as the time flows or it is prevailed
by that influence and tends to the infinity (since A is constant). Hence we do not
explore this form of the model further.

To set up a reasonable model of z;,, we substituted for the constant A in (1.3) the
function A(z,) of x,. This change implies the improvement of (1.3). In the original
equation (1.3), expectations of people on the market were the same during the whole
time period, whereas with A taken as a function of z,,, agents adapt their expectations
to the value of z,,. The function A(z,,) is set as

Alen) = A ~ |a,))*. (1.4)

where A > 0 and M > 0 are constant and ()" = max{x,0}. The interpretation of
this particular form of A(z,) is the following: The higher the value |z,| is, the lower
is the number of agents, making their decisions due to the increase (resp. decrease)
of the real exchange rate. The proposed model has the form

Tpt+1 = Tp + A(xn - xn—l)(M - |xn|)+ - Bl‘n|xn| ; (15)

where A, B and M are positive.

The precise form of the difference equation (1.5) is derived from our assumptions
on the behavior of agents on the market. Here we present the reasoning behind the
presence of the terms of (1.5).
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e The best approximation for z,,; in the near future with the minimum information
available (only the current value of variable) is x,. Therefore the first term in (1.5)
is .

e For ¢ sufficiently small we have (z,, — z, ;) = (S, — Sp_¢). As long as S,, depreci-
ates (appreciates), investors tend to buy (sell) a foreign currency to profit from this
depreciation (appreciation). This tendency causes a rise (fall) of the demand for the
foreign currency and consequently S, continues in the depreciation (appreciation).
The factor of influence of the rise (fall) of x,, denoted by A represents essentially
sensitivity (elasticity) of potential investors caused by the change of the exchange
rate. Therefore the second term in (1.5) includes A(x,, — x,_4).

e When the value of x,, becomes too high (low), one can reason that the real exchange
rate is higher (lower) then its “natural” value and that such a situation can not persist
any longer, what means that it will fall down (rise up). Agents start to sell (buy)
the foreign currency to prevent themselves from a loss of profit and the real exchange
rate consequently falls down (rises up). The higher |x,| is, the more people think this
way. Therefore this effect is proportionate to the value of z,,. The third term in the
equation (1.5) express this contribution.

The model (1.5) consists of the information about x, and a weighted average of
the two mentioned effects, with weights M — |z,| and |z,| (for |z,| < M). As was
already stated, the number of agents, taking the ” precautious” strategy is proportion-
ate to |x,|. Therefore if we have M agents (resp. N), buying and selling the foreign
currency, |z,| (resp. 2-|z,|) represents number of agents, behaving ”precautious” in
this situation and M —|z,,| (resp. 2 (1—|z,|)) is the number of agents, trying to profit
from the change of the foreign currency. In the case when |z,,| > M, everybody waits
for the change in the trend of the foreign currency and the second term vanishes.

The closer look to the equation (1.5) reveals that there are only two constant
parameters needed. After a substitution z, := Mz, and a = MA, b = MB, we
obtain

Tpi1 = Tp + Ty — Tn1)(1 = |z])T — bxy| 4] (1.6)

Below, we will deal with the normalized equation (1.6).
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In this section, we look closer at the difference equation (1.6) introduced in the pre-
vious chapter. Generally, a second-order difference equation can be rewritten in the
form of a system of two first-order difference equations. We deal with two systems
corresponding to (1.6). The first one takes the form

Tpt1 = Fl(mna yn) = Tp + a(a?n - ?Jn)(l - |xn|)+ - bzn|xn|, (2-1)
Yn+1 = FQ('xn:yn) = Tnp-.

and is obtained by the linear transformation z,, — x,, £,_1 — y,. The second one is
obtained by x, = x,, T, — ¥ — yn and takes a form

Tp+1 = Gl(xna yn) = Tn + ayn(l - |:En|)+ - bl‘n|$n|, (23)
Uni1 = GoTpn,yn) = ayn(1 — |z,])" — by |2 (2.4

From the mathematical point of view, a stability analysis of fixed points which are
periodic points of period one, tells us important facts about the evolution of trajecto-
ries of the recurrence system. As we can easily verify, our system has only one fixed
point, which is the origin in the two-dimensional real space. This point has also a
significant meaning from the economical point of view. It represents the equilibrium,
determined by economical fundamentals. The result, stability or unstability of the
zero fixed point (depending on values of parameters a and b), can tell us whether the
real state converges to the equilibrium or not.

2.1 Numerical simulations

In this section, we present graphs of trajectories, satisfying the system (2.1), (2.2),
obtained by numerical simulations. ! These graphs indicate that for a < 1, the origin
is asymptotically stable and for a > 1, the origin is unstable. As we will see later,
these simulations are in agreement with our theoretical results on stability of the
origin. The case a = 1 can be also simulated, despite the fact that the theoretical
result remains unknown.

' Numerical simulations were performed in MATLAB.
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Figure 1: Simulations of trajectories for a = 0.98, b =1
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Figure 2: Simulations of trajectories fora = 1.1, b =1

AN NN
VUV VV Ve

-0.01

002 i

0 200 400 600 800

Figure 3: Simulations of trajectories fora =1,b=1

2.2 Center manifold theory

The first thing to do when investigating the linear stability of a fixed point is to look
at eigenvalues of the matrix representing the linearized system about that fixed point.
For |z,| < 1 the recurrence equations (2.1), (2.2) can be written as

Tnp1 = Tn+ (@ — Yn) (1 — |z0|) — bxp|za, (2.5

Yn+1 = Tn.
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The linearization about a trivial solution (x,,y,) = (0,0) reduces the system (2.5)—

(2.6) to
(;:) -y (;j) ., where L= ( “;“ s ) (2.7)

It is tempting to say that stability (unstability) of the origin depends only on the
parameter a. But as we will see later, this is not so obvious. When we denote
eigenvalues of L by A; and Ay, we obtain that Ay = 1 and Ay = a. If @ > 1, the
origin is unstable (one eigenvalue lies outside the unit circle). Since one eigenvalue is
always equal to 1, it is impossible to decide at this point for which values of a is the
origin asymptotically stable. The stability is therefore depended also on nonlinearity
in (2.5), where the parameter b seems to play an important role.

To solve the problem of stability we apply the technique of center manifold reduc-
tion which was also used in the diploma thesis of A. Erdélyi (2003) [7] but in the case
of a differential equation. This approach allows us to study in details the critical case
when m eigenvalues (m € N, m > 1) of a matrix representing the linearization of a
mapping R¥ — R¥ (k € N), lie on the unit circle. The method is based on the projec-
tion of the original system to the recurrent system, defined on R¥=™. The inspection
of stability is then provided on a reduced system. The details of this approach can
be found in Carr, J. (1981) [5] for C? mapping and in looss, G. (1979) [10] in the
generalized version for C™ mapping, where n > 1.

2.3 Reduction to a center manifold

Before the center manifold theory can be applied to the system (2.5)—(2.6), the trans-
formation into a form, in which the matrix, corresponding to the linear part of the
system is diagonal, is needed. After the linear transformation

Tn = Up+ QUp, (28)
Yn = Up + Up, (29)
the system (2.5)—(2.6) becomes
Up+1 = Hl(una Un) = Up — g(um Un)’ (2‘10)
Un+1 = H2(un7 Un) = avy, + g(una 'Un)a (211)

where

b
g(u,v) = —avlu + av| + 1 (u+ av)|u + av|. (2.12)
—a
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Theorem 1. If b > 0, the fized point T = (0,0) of (2.10), (2.11) is

e asymptotically stable if a < 1;

e unstable if a > 1.

Proof. Let a < 1. If the map (2.5)—(2.6) is C" the center manifold theory guarantees
the existence of the center manifold of the same smoothness. Although our map is
only C'', it is C* in the half-planes +v > 0. Therefore the center manifold v,, = h(u,,)
can be written separately in the two subspaces in the form of the Taylor series. By

the center manifold properties h(0) = h'(0) = 0 and the Taylor series representation
of h is

h(u) = kiu?® + kfu® + kiu* + - = O(u?), (2.13)

where kli applies in the half-plane +v > 0 respectively. By substituting (2.13) into
(2.10) we get a one dimensional recurrence equation for u, on the center manifold
vn = h(uy) in the form

b
Upi1 = Uy + ah(uy)|u, + ah(uy,)| — - a(u" + ah(uy))|u, + ah(uy,)|. (2.14)

The second term in (2.14) has order O(u}), while the third term has order O(u?). In
addition, there exists 6 > 0 such that for |u,| < 0 we have |ah(u,)| < |u,| (because
of (2.13)). This inequality implies that

|un + ah(u,)| = (un + ah(uy,)) sgn(uy,) . (2.15)
For |u,| < § we obtain

Unti = Un + @h(un)|un + ah(un)| -

b
1—a

1 f a(un + ah(uy,))? sgn(uy,)

up 5g0(un) + O(uy)

= un—

b

—a

= u,(l— un% sgn(un)) + O(u;)

un|) + O(ud) . (2.16)

= u,(1— :

Now we inspect two cases. The first one, when u,, > 0 and the second one, when
u, < 0 (u, = 01is a fixed point of (2.16)). In both cases there exists d; > 0 such that
for |u,| < 01 the third term in (2.16) satisfies

b 2

O(Jul]) < mun.

(2.17)
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If 0 < u, < min{d,d;} then

b b b
<, — 2 2 (1= —2 | ). 2.18
R e T L ( 2@—@”') (2.18)
Since ﬁ is positive (a < 1), we obtain for u, < min{d,d;,2(1 — a)/b} (which is
positive)

0 < Upit < Up. (2.19)
On the other hand 0 < —u,, < min{d, 0, } implies that

> 4 b 2 b 2 4 b 2
Uu Uu u, — u, = u —U
e T T

= %<1—ﬂ£%ﬁm0, (2.20)

and for —u, < min{d, d;,2(1 — a)/b} > 0 we obtain

Up < Upsp < 0. (2.21)

From (2.19), (2.21) follows that if |u,| < min{d,d;,2(1 — a)/b} > 0 and u, # 0
then |u,41| < |un|. Since the origin is the only fixed point of (2.10)-(2.11), it is also
the only fixed point of (2.16). Therefore u,, — 0 for n — oo, i.e. the origin is an
assymptotically stable fixed point of (2.16) for @ < 1. The center manifold theory

consequently implies also the asymptotical stability of the origin, as a fixed point of
(2.10)—(2.11) for a < 1.

On the other hand if @ > 1 there are two linearly independent repelling directions
from the origin in R?, and therefore the origin is repellor. Unfortunately, we were
unable to analyze the case @ = 1 in this way and thus we will not discuss it any
further in this thesis. O



3 AN INVARIANT SET, THE CASE a>1

In this chapter we show that the function G = (G1,G3) : X — YV, X,V C R? which
represents the difference system

Tpi1 = G1(Tp,yn) = 2n +ayn(l — |33n|)Jr — by |y, (3.1)
Unt1 = Go(Tp,ypn) = ay, (1 — |xn|)Jr — bap|Tnl, (3.2)

is a homeomorphism in a certain region. This feature is crucial in identifying limit
properties of trajectories in the case when the value of parameter a is greater then 1.
As we show, for special values of parameters a, b, there exists a monotone sequence
of closed curves, homeomorphic to circle with a bounded “limit” (understood as a
boundary).

3.1 Numerical simulations of an invariant set

First we present a figure of trajectories “winding up” to the invariant set. When
choosing the initial point from the interior of the area, bounded by the invariant set,
the trajectory winds up from the interior, whereas the trajectory of the exterior point,
winds up to the same invariant set from the exterior.

0.6
04+
0.2+

ot

-02
-0.4

-0.6 1

08, 05 0 05 1

Figure 4: Convergence to the invariant set from the interior

According to our numerical investigations (see Fig. 5) for fixed b the size of the
invariant set grows with an increasing parameter a. The problem appears for values
of a, close to 1.5, where the computer no longer gives a result.
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Figure 5: Invariant set for a =1.1,a=13 and a = 1.5 (b= 1)

One can observe that the invariant set is not necessarily symmetric, although the
recurrence system is symmetric. The Fig. 6 shows the two possible nonsymmetric
invariant sets, according to the initial values chosen. Taking the two sets together,
one obtains a set, which is symmetric around the origin.
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Figure 6: Invariant sets for different initial values

Another interesting phenomena can be observed on Fig. 7. For certain special

values of parameter a, the computed limit points of the trajectory indicate a periodic
trajectory with a small period, in other cases they fill an invariant set rather densely.
The number of these points depends also on the value of the parameter a and it can

attain different values (6, 8, 12,...).
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Figure 7: Invariant curve
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These results convinced us to compute a rotation number of our mapping G(a, b)
on the invariant set. Since there is an evidence that the mapping G(a, b) is an orien-
tation preserving homeomorphism on the invariant set, this counting has a rational
aspect. The result is a graph of the average rotation of the arbitrarily chosen point
on the invariant set (simulated with a very large number of iterations), as a function
of a parameter a with b fixed.

0. 16} P(@)
0. 14}
0.12;

0.1
0. 08}
0. 06}
0. 04}
0. 02}

o 1.2 1.4 1.6

Figure 8: Rotation number - Devil’s Stairs

There is a strong similarity between the graph on Fig. 8 and the standard graphs
of rotation number, as a function of some parameter of a corresponding system. The
similarities are in the following facts:

e p(a,b) is a nondecreasing function of a until numerical obstructions occurs;

e for rational numbers 1/q¢ there is an interval I;,, with nonempty interior such
that for all a € I, from a discretization of a we have p(a,b) = 1/¢;

e the more discretization points of a, the more a number of steps on the graph of
p(a, b) is increasing with refining of discretization of a.

Numerical obstructions mentioned, occur for the value of @ =~ 1.5 for b = 1.
This is approximately the value, for which the invariant set almost touches the lines
x = £1. Therefore the problem, we encounter while making numerical observations
may be caused by the fact that the invariant set no longer lies in the area, where G
is homeomorphic (in the next section we show the homeomorphism property of G).

3.2 Homeomorphism property of the mapping G

First, we give a definition of homeomorphism for planar maps.

Definition 1. A mapping G5 : X — Y with 6 > 0 fized, where X C R?>, Y C R?
is said to be a homeomorphism, if (i) Gs is invertible and (i) both G and G5' are
continuous.
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Define the mapping G5 = (G1,4,Gas) : R2 — R? defined for 1 > 6 > 0 by

Gis(r,y) = =+ aymax{l — |z|,d} — bz|z], (3.3)
Gos(z,y) = ay max{1l — |z|,d} — bz|x|. (3.4)

This map is equivalent to the original map (3.1)—(3.2) for z such that max{1—|z|,d} =
max{l — |z],0}, i.e. when |z] < 1 —4. We can now formulate a homeomorphism
theorem.

Theorem 2. Let G5, G5 = (G15,Ga5) : R2 — R?, 6 > 0 be the function defined by
(8.3)-(3.4). Then Gs is a homeomorphism.

Proof. Definition 1 lists three requirements for G5 to be a homeomorphism. One
of the requirements is obviously fulfilled because Gy is continuous. We show the
existence of an inverse mapping to G4 directly by finding its inverse. Denote by '
and y’ the images of x and y in Gy. First, we can observe that

r=1a—y. (3.5)

Since (3.5) is already the equation for = as a function of 2/, 3 and (3.3) is linear in y,
we can simply replace x by ' — ¢ in (3.3) and derive an equation for y as a function
of ', y'. Starting with

o' = (2" —¢) + aymax{l — |2’ — ¢/, 6} — b(z" — )|z’ — ¥/, (3.6)
we obtain
_ Yy =yl —y| (3.7)
amax{1l — |z’ —y'|,d}
The inverse mapping to a mapping G5 then has the form
= Gi;([ﬁ’, y)=a2"—1y, (3.8)
v = Gl = LNV ] (59)

amax{1l — |z’ — y/|,0}

The last thing to prove is that Gj'(z',9') is continuous. The function Gl_’};(x’,y’)
is linear, therefore it is continuous. Also the function Gi(ls(z’,y’) is continuous be-
cause both the numerator and the denominator are continuous functions and the
denominator is positive (greater than ad). O

We proved that Gy is a planar homeomorphism. Since G is the same function as
Gs on the set H = {(z,y) € R?* : |z| < 1 — 4§} also G is a homeomorphism from H to
G(H).
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3.3 Basic properties of homeomorphism

In this section we present some characteristics of homeomorphisms with their proofs.
We start with the definition of a disconnected metric space and Jordan Theorem to
which we will refer later in the work.

Definition 2. A metric space X is said to be disconnected if there exist open subsets
A and B such that A,B# 0, ANB =10, and X = AU B. A metric space is said to
be connected if it is not disconnected.

Theorem 3 (Jordan Theorem). If D C R? is a topological circle, the set E '\ D
has exactly two different components where D s their common border. In addition,
one of these two components is bounded and the other one is unbounded.

Both the formulation and the proof of the Jordan Theorem can be found in the
book of Cerny, I. (1983) [6] and we omit it here.

Theorem 4. Let f : X — Y be a homeomorphism, where X C R? and Y C R? are
both compact. The following statements hold true:

(1) O C X is open < f(O) CY is open;

(2) K C X is compact < f(K) CY is compact;

(8) O C X is open and connected < f(O) CY; is open and connected;
(4) x € X\0X & f(x) e Y\ 9OY;

(5) x € 0X & f(x) € IY;

Proof. We prove the five statements in the same order as they are stated.

(1) “=” Using the fact that f is continuous, we get that an inverse image of any
open subset O of X is also open. We can write a set O as O = f~'(f(O)). That
means that f(O) is an inverse image of O (which is open) in f. Therefore f(O)
is also open.

“«" The proof of this implication is analogous using the fact that f=! is con-
tinuous.

(2) “=" Let {y,} be a sequence in the range of f(X) =Y. Then there are corre-
sponding points {z,} in X with y, = f(z,). Since X is compact we can find
a subsequence of z, that converges in X, z,, — . Since f is continuous one
has f(z,,) — f(z) in Y. Hence {y,} has a convergent subsequence and Y is
compact.

“<” The same argument can be used to prove this implication.



3 AN INVARIANT SET, THE CASE A > 1 14

(3) “=" Assume that X is connected but Y is not. From the definition of a dis-
connected space there exist A, B # (), A, B C' Y open such that AN B = () and
AUB =Y. Because f is a homeomorphism, it is invertible with the inverse
7' Let us denote U = f~'(A), V = f~!(B). U and V are also open (accord-
ing to (1) which we have already proven). In addition U UV = X (because
f~!is one to one). The set X is connected and we have U NV # (). Let us
denote P = UNV. Also P C U implies f(P) C f(U) and similarly P C V
implies f(P) C f(V). Then we have f(P) € f(U)N f(V) # () which leads to
contradiction.

“«<" The proof of this implication can be carried out as in the previous case.

(4) “="If x € X \0X then there has to exist O, C X \ 90X open such that z € O,.
Then we can write

f(0z) C f(X) =Y. (3.10)

Since f is a homeomorphism and O, is open f(O,) is also open. In addition we
have f(x) € f(O,) therefore f(z) € Y \ 9Y.

“«<" The proof of this implication can be done similarly as it was in the previous
one, with f~! taken instead of f.

(5) This equivalence may be proven using (4). Since the image (and also the inverse
image) of any point taken from an interior of X (or Y) lies also in an interior of
the image of X (or an inverse image of Y) we can say the following. There does
not exist a point x € X \ 0X such that f(z) € Y nor a point y € Y\ Y such
that f~!(y) € 0X. Since the mapping f is one to one there exists a bijection
between 0X and 0Y'.

3.4 Boundeness of trajectories

In the section 1.1 of this paper, we also considered the simple model of a deviation
of a foreign exchange rate from its equilibrium value (1.3). We did not investigated
it further because of the dynamical properties of the model for ¢ > 1. Numerical
simulations indicate that trajectories of the simple model diverge to infinity when the
parameter a > 1 is close to 1. On the other hand, a completely different dynamics
occurs in the model proposed here. The observation is that trajectories are bounded
when the initial values lie in a certain region around the origin and a, b are not very
large.

To prove the boundeness of trajectories we try to find a symmetric area around
the origin, which is mapped into itself and is a subset of {(z,y) : |z| < 1} (where
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G is a homeomorphism). The symmetry of the area around the origin is a natural
requirement, because the system

Yn+1 = ayn(l - |xn|)+ - bxn|$n|7 (312)

is also symmetric. Since we inspect only a subset of {(x,y) : |x| < 1}, we can use a
simplification of (3.11), (3.12), denoted by f = (f1, f2)

Tpt1 = f1(xn,yn) =Zp+ ayn(l - |xn|) - bxn|xn|7 (3'13)
Yn+1 = fQ(mnayn) = ayn(l - |zn|) - bl‘n|$n| (314)

3.4.1 Lipschitz property of the mapping f
Let the mapping f : R? — R? satisfy (3.13)-(3.14). Consider a metric p in R? defined
as
p(XaU) = |£E—U|+|y—?)|, (315)

where X = (z,y) € R? and U = (u,v) € R?. In this subsection, we present a proof
of Lipschitz property of the mapping f with respect to the metric p.
Theorem 5. The mapping f = (f1, f2), given by (3.13)-(3.14), has a Lipschitz prop-
erty on H={(z,y) € R? : |z| < 1, |y| < 1}, i.e. there exists k € R" satisfying:

Ife >0 and X,U € H such that p(X,U) < g, then p(f(X), f(U)) < ke,
with the Lipschitz constant k = max{1 + 2a + 4b, 2a}.

Proof. Let us denote X = f(X) and U = f(U), where X = (21, 22) and U = (uy, us).
In the first step we compute the upper bounds for the matrix elements of the gradient
of f:

p, = Ohlne) o Oh(wues) oo Oh(wnes) o Ofa(@3y)
Then

|Fi1] = |1 —ax9 sgn(xy) — 2bjzy|| <1+ a+20b, (3.16)

|Fio| = fa(1—|z1])| <a, (3.17)

[Foi| = | —awg sgn(w1) — 2b|z|| < a+2b, (3.18)

[Foo| = |a(1 = |aa])] < a. (3.19)
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Using the mean value theorem, p(X,U) can be computed directly:

p(X,0) = |filer,29) = fi(ur, us)| + | falwr, 22) — fo(ur, us)|
= |fi(z1,22) = fi(@1, u2) + fi(@1,uz) — fi(ug, ug)|
+|fa(w1, 2) — fa(@1, u2) + fa(w1, u2) — folur, ug)l
|fi(@r, 2) = fi@n, ue)| + [fi(zr, uz) — fi(ur, us)l
+f2(w1, 22) — fal@r, uo)| + | o, uz) — fa(ur, ug)l

IN

afl(xay) afl(may)
= |2 o = | 2D
an(may) af?(may)
|2 ) b 4 | 2 1 =, (320

where ¢1,c3 € [x9,us] and co, ¢4 € [x1,u1]. By substituting inequalities (3.16)—(3.19)
into (3.20) we obtain

p(X,U) < 2alzy — ug| + (1 + 2a + 4b)|z; — uy]. (3.21)

Thus
p(X,U) < max{1+ 2a + 4b, 2a}p(X,U) . (3.22)
Therefore, the function f has a Lipschitz property with a Lipschitz constant k =

max{1 + 2a + 4b, 2a}. O

3.4.2 The computer assisted proof of boundeness of trajectories

In our effort to find a region, mapped into itself we restricted ourselves to a class of
regions with polygonal boundaries, symmetric around the origin. Naturally, the final
shape depends on values of parameters a and b. We present a computer assisted proof
of boundeness for special values of a, b.

Theorem 6 (Boundeness). If a = 1.1 and b = 1.3, then there exists a region
P C{(z,y) e R?: |z| < 1,|y| < 1}, containing the origin such that

f(P)cCP,

where f is the mapping, given by (3.13) and (3.14).

Lemma 1. Let us denote by P the set of all (x,y) € R? bounded by the symmetric
octagon defined by vertices O; = (O}, 0?) where
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Oo = (0.64,0.43), O, = (—0.64,—0.43),
01 = (0.55,0.53), 05 = (—0.55,—0.53),
O, = (—0.29,0.39), O = (0.29, —0.39),
03 = (—0.5,0.1), O; = (0.5, —0.1).

Ifa=1.1 and b = 1.3, then f(P) C P and f(O)NO =0, where O = OP.

Before we start the proof of lemma, we present a figure of the octagon O and its image.
The closed curve around the origin represents the numerically computed invariant set.

0.6 t
0.4 ;

0.2 ¢

% k_’
-0.2 + // n

-0.4 | 1
N

_06 L

_08_

1 -05 0 0.5 1

Figure 9: The Octagon and its Image

Computer Assisted Proof. The proof is carried out in three steps. The first and the
second one consist of estimating errors produced during the computation and the third
one summarizes the result. To obtain numerical results, a programming language
MATLAB™ | with a relative computing precision 10~'* of the operation of addition
(includes also substraction and multiplication), is used. Constant b is fixed at 1.3 and
a is fixed at 1.1.

The octagon O is represented by a discretization of its lateral sides O,,, where n
is the number of equidistant points, which we use in place of every side of O. In our
numerical implementation we used n = 1000.

In the first part, we compute the error, caused by the discretization. We denote
by D the minimal distance

D =min{p(X,U): X € O,U € f(O)}. (3.23)

The algorithm computes an estimate of D (based on a discretization), denoted by
D,,, where

D,, = min{p(X,,U,) : X, € O,,U, € f(O,)}. (3.24)

Naturally, the inequality D < D, holds true. The Lipschitz property of f enables
us to compute the error arising from the discretization of O. Let X = (x,y) € O
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and U = (u,v) € f(O) be arguments of the minimum of D and X,, = (z,,y,) € Oy,
Up = (un,v,) € f(Oy) be arguments of the minimum od D,,. Then, there has to
exist X, = (Zn,Jn) € O, and U, = (@U,,7,) € f(O,) such that p(X,,X) < 1/n
(because the discretization of O is equidistant) and p(U,U,) < k/n, where k =
max{1 + 2a + 4b, 2a} (the Lipschitz constant of f). Then

Dn — ,O(XnaUn) S,O(XnaUn) - |jn_an|+|gn_’5n|7
|Z, —x+x—u+u—"1Uy| + |G —y+y—v+0v—7,

< @y — x|+ |z —ul 4+ |u— | + |G — y| + ly — 0] + v — 0y

= p(Xn, X) +p(X,U) + p(U,U,)
1 k 1+k

< lyipyfepy il (3.25)
n n n

and therefore, since D,, > D

1+k
0<D,-D<-—" (3.26)
n

In the second step, a precise absolute error of D,,, originating from the roundoff error
of the computer is computed. Let us denote by X the computer estimate of X. Since
D,, is the minimum of a finite set of numbers, then

|D, — D,| <e, (3.27)
with
e = max{p(X,,Y,) — p(X,. Vo) }, (3.28)

where p(X,,Y,) is the estimate of the distance p(X,, Y,).

In order to compute the upper bound ¢ for | D,, — D,,| (which is in fact the absolute
error of D,,), we inspect the whole algorithm computing D,,. We start by choosing
an arbitrary point X = (21, x2) € O such that

1 = tO; +(1—1)0;, (3.29)
19 = tO} +(1—1)03, (3.30)

where j = (i+1) mod 8 and ¢ € [0,1]. From the fact that the relative roundoff error
is 10717 it follows that

t—t
‘T‘ <10 (3.31)
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and consequently

it —t < 10715t <1071, (3.32)
iy — 21| = {0} + (1 -0} — O] — (1 —1)0}]
= |t—tl.l0; —Oj| < |t —t[ < 107", (3.33)
iy — 25| = [{0? + (1 - 10?2 —t0? — (1 —1)0?|
= |t —t].|0} O < |t —t[ < 107", (3.34)
p(X,X) = |&y — x|+ &y — 29| < 21075, (3.35)

Since fi(z,y) and fo(z,y) satisfy (3.13), (3.14) and f has a Lipschitz property with
Lipschitz constant k& = max{1 + 2a + 4b, 2a}, the relation

1F1(X) = (X)) + [ fo(X) = fo(X)] < kp(X, X) < 2k107"° (3.36)

holds true.

In this step of the algorithm, we already know the estimate of f(X) and its
distance from the octagon O has to be computed. Sides of O are lines, in the form

(O} =0}y — (02 = 0) & — (0}0% + 020}) = 0. (3.37)

We denote by d,; the minimal distance of f(X) from the line (3.37), by d,; the
estimate of the minimal distance of f(X) from the same line and

dX = min dm,ia (338)
1€40,1,...7}
and similarly
dx = min _d,,. (3.39)
i€{0,1,...7}
Then
e = max{|dyx — dx| : X € O} (3.40)

Now our task consist of the evaluation of . The formula for dx (the distance of f(X)
from a line given by (3.37)) can be easily derived for p, defined by (3.15) as

1 1
ax = . M(f(X 41
X ie{%,lf?.n{wg—o;r|01.1_O]1,|}| (f())I (3.41)

where

M(f(X)) = (O] — 0;) f2(X) — (07 = OF) f1(X) — (O} OF + O; 0;). (3.42)
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Then

ldy —dyx| <

. 1
= m‘“{|02 oz’ |01 }

. 1
- mm{wz |01

Finally, it is necessary to compute |M( (X)) — M(f )|-

[M(f(X)) = M(fF(X))] = (O] = O)) fo(X) = (0] = 0)) f1(X) = (0} 0} + O;0))
—(0; = 0) fo(X) + (O = 07) f1(X) + (0; 0 + 07 0;)]

|M(f M(f(X)] (3.43)

|M(f M(f(X)] (3.44)

< [0} = Oj|1f2(X) = fo(X)] + 107 = OJ|| (X)) = f1(X))]
< (X)) = LX)+ 1A(X) = £(X)]
< 2k1071. (3.45)
Using the coordinates of vertices of O, we obtain
0f —Oj| > 10.64—0.55]>2.10"", (3.46)
07— 0% > [0.53—-0.43]>10". (3.47)

The value of € can be computed from (3.40) using (3.44) and (3.45) this way
max{|dy — dx|: X € O}
max { [min{m, BYM(f(X)) — M(f(X))@ X e o}

5. max{2k.10"1°}
k1071, (3.48)

9

IN

VANVAN

Finally, we can summarize the two errors, which arise from the discretization on one
side and from the computer rounding on the other side. The crucial inequalities we
obtained are (3.26) and (3.48). The final error equals

, ) 14k
|D,, — D| < |D,, — D,,| + |D,, — D| — k107 (3.49)
n

For ¢« = 1.1 and b = 1.3 an easy computation gives us that k£ < 9, therefore for
n = 1000 we obtain

|D, — D| < 9.107* + i <102, (3.50)
n

Now we compare the result on ﬁn, computed by the Matlab program, with the
maximal error of |D,, — D| for a = 1.1, b = 1.3. On one side, we estimated that

|D, — D| <1072 (3.51)
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On the other side,
D, = 2.9833.1072, (3.52)

according to our program. It can be observed, that the result (3.52) is greater then
the maximal possible absolute error (3.51). From this fact follows that the actual D
(the distance between the octagon O and his image) is positive, e. g. the set P, with

octagonal border, is mapped into itself (from Properties of Homeomorphism (4)) and
OPNAf(P) =0 (from D > 0). Since O = P and f(O) = df(P), also ON f(O) = (.

O

Remark 1. Tt is already proved that for special values of a and b trajectories are
bounded, but we can say more. One can observe that the function f is linear in
parameter a. Moreover, ﬁn(a) is partly linear in a. The figure Fig. 10 of the function
D, (a) indicates, that for all parameters satisfying 1 < a < 1.19 b = 1.3 D,(a) is
greater than the error |D, — D|, what implies that f(P) C P. The horizontal line
in the graph represents the maximal error of |1A)n — D| and the partly linear function
represents D, (a).

0. 035f
0. 03} ’D‘n @
0. 025}
0. 02}
0. 015}
0.01}

0.005f 1P, Dl

a
Ok ‘ ‘ ‘ ‘ J
1 1. 05 1.1 1.15 1.2 1.25

Figure 10: The comparison of D, (a) and |D,, — D|

Remark 2. The Boundeness Theorem is already proved by the Lemma 1.

Remark 3. We can formulate a trivial consequence of the Boundeness Theorem, which
is: for (z,y) € P the trajectories, given by (x,,y,) = f™(z,y) lies in P.

3.5 Existence of a monotone sequence of closed curves

In the region where |z,| < 1, the system given by (3.1), (3.2) is equivalent to

Tpi1 = fl(xmyn) =Tp + ayn(l - |xn|) - bxn|xn|7 (3'53)
Yn+1 = f2($nayn) = ayn(l - |xn|) - bzn|xn| (3-54)
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We transform (3.53)—(3.54) into

Upir = Hi(up,v,) = au, — auy|au, + v,| — 1 (auy, + v,)|au, + vy,
Unp1 = Ho(uy,vy) = vy + aug|au, + v,| + - E : (auy + vp)|au, + vy,
(3.55)
by
Ty = AUy + Uy, Yp = Uy + Uy, . (3.56)

In our work we use the notation H = (H;, H,)T : R? — R?. Note that since the
function G is a homeomorphism in a neighborhood of the origin (what we proved in
Section 3.2) the function obtained from G by the regular linear change of coordinates
(3.56), will be a homeomorphism in a neighborhood of the origin. Therefore we
can work with the diagonal system near the origin and then apply the result to the
function G.

Theorem 7. Leta > 1, b > 0. There exists some € > 0 such that the following holds
true: If M(e) = {(u,v) € R : % + 02 =2} and N(¢) = {(u,v) € R? : % + 0% < 2},
then for every (u,v) € M(g):
Hl (U, U)2
a2

In addition, N(¢) C H(N(g)).

+ Hy(u,v)? > &2

Proof. Let (uy,v,) satisfies a difference system (3.55) and denote

2

R(u,v) = % + o2, (3.57)

To capture crucial features of our problem, let us transform (u,v) into the coordinates
(€,0) by

u = ae cos b, v=c¢esinf.
Substituting these coordinates into the system (3.55) we obtain
H,(u(s,0),v(,0)) = a*scosf — a’c? cos f|a® cos O + sin 0|
b
——152((12 cos @ + sin ) |a” cos  + sin 6],

a—
Hy(u(e,0),v(e,0)) = esind + a’c*cosfla® cos  + sin 6|

b
+ 182((12 cos 0 +sin ) |a® cos @ +sinf|.  (3.58)

a —
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In terms of ¢ and 6, the first statement of the theorem transforms into the following
form: There exists some ¢ € R" such that if R(u,v) = ¢* then R(H(u,v)) > &* for
every 6 € [0, 27].

Now we determine the value of R(H (u,v)) as a function of ¢, 6:

R(H(u,0)) = D@ED 0G0y o) e )

a?

= a’c®cos’ 0 + &*sin® 0 + h(e, 0)
g2 + (a* — 1)e%cos® O + h(e, ), (3.59)
where h(e,0) = 3K (0) +e*L(0), and

2b
K@) = 2d°C(S— O)|a®C + S| + E(S — C)(a*C + S)|a*C + S|, (3.60)

Lo) = <1+%>

with C' = cosf, S = sinf. When investigating whether R(H (u,v)) is greater then
g2, the sum of the second and the third term of (3.59) plays an important role. Note
that the second term of (3.59) is nonegative for every (g, 6). In addition, it is positive
for cos?6 # 0. In the case when cos®6 = 0, the term h(e, ) and particularly K (6)
plays a crucial role. The following equation and inequalities hold true:

h(e, 0)

2
a'C?*(a*C + S)* + (%) (a*’C+ S)*|, (3.61)

lim (g = 0 Pr0# S (3.62)
K(+3)=x£(-2) > o (3.63)
L(+2)=1(-2) > o (3.64)

The validity of (3.62) is implied by the fact that the second term of (3.59) has lower
order of ¢ than h(e,0) and K and L are bounded. To prove it, observe that

K| =

2
202C(S — C)|a*C + S| + a—_b1(5 — C)(a?C + S)|a2C + S|‘

< 2a2C(S - O)||a*C + S| + 2—bl|s — C|(a*C + S)?
o

4b
1 (a* +1)* = M,

< 4a*(a®+1) +

with M > 0 and similarly

1
1

S a2(a2+1)3+_<

’

2
a'C?*(a’C + S)* + (%) (a*C + 5)*

a? \a—-1

2
) (a® +1)° = My,
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where My, > 0. If § # £7 then the absolute value of the limit in (3.62) is

_ h(e, ) . 3K (0) +&*L(0)

lim = |lim

e—0 (a? — 1)e2 cos? 0 e=0 (a? — 1)e% cos? 0
R <) I 110)]
~ =0 (a?—1)cos? -0 (a®? — 1) cos?d

MK . ML . 2

< — 1 —1
- (a2—1)cos29e51£6€+ (a2—1)cos2981£%6
= 0.

Therefore the limit itself is equal to 0. The validity of inequalities (3.63) and (3.64)
may be verified by computing them directly from the system (3.58), simplified for
=4I ie.

27

g2, v=de+ 2. (3.65)

u=TF

a—1 a—1

It is easy to see that

K <+g) - K (—g) - a2—bl >0, (3.66)

L (+g) . (—g) - <1+ %) <afl>2 > 0. (3.67)

Therefore there has to exist some 62 > 0 such that for  from the open neighborhoods
Iy = {0 € [0,27] : cos®0 < &%} of £2 the inequalities K(0) > -2 > 0 and L(0) >
2(1+ %5)(z5)? > 0 hold true. For § € I; and £ > 0 one has

R(H(u,v)) = &+ (a®> —1)e?cos0? +*K(0) +<*L(0)
> 24+ 2K(0) +<'L(0)
> 2+ 8K(0) > & (3.68)

Now we inspect the remaining interval for 6, which is [0, 27] \ I5 or equivalently
{0 € [0,27] : cos?f > 6*}. From (3.62) we know, that there exists sufficiently small
gg > 0, such that

1
- 3.69
<3 (3.69)

h(So, 9)
(a? — 1)ed cos? 6

for every ¢ < gg9. This condition may be also written as follows

(e, 0)| < %(aQ —1)e? cos? 6. (3.70)
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If h(e, ) is nonegative, then
R(H(u,v)) =%+ (a®> — 1)e” cos® @ + h(e, 0) > &>, (3.71)

In the other case h(e, 6) satisfies
1
hie,0) > —§(a2 — 1)e* cos? 6, (3.72)

and consequently

R(H(u,v)) = &>+ (a® —1)e*cos’ + h(e, )

1
> &2+ (a® — 1)e®cos? 0 — §(a —1)e?cos* 0

1

2 2(a —1)e?cos? > 2. (3.73)

_= 5+

The inequalities (3.68), (3.71) and (3.73) complete the first part of the proof.

In the second part we prove that N(¢) C H(N(e)). Applying the first part of the
theorem we obtain a set N(¢) (we can take ¢ < a) such that 0H(N(g)) N N(e) = 0.
Since M (e) is an ellipse, it is homeomorphic to a circle. Therefore, from the Jordan
Theorem, it partitions R? \ M () into two different components with their common
border M (). N(e) is the component, which contains the origin and hence, it is
bounded. Similarly, 0H(N(g)) contains the origin and is bounded. Since H is a
homeomorphism on N(¢) (because N(¢) C {(z,y) € R* : |z| < 1}) and N(e) is
compact, bounded and connected, also H(N(g)) is compact, bounded and connected.
The condition dH (N ()) N N(g) = 0 gives us the result that N(¢) C H(N(e)). O

Theorem 8 (Limit Sequence). For G defined by (3.1)-(53.2) there ezists a se-
quence K; C R?, where K; ;1 = G(K;), such that for every i € N, the set K; is
connected and compact and satisfies

(1) K, is homeomorphic to a circle,
(2) aKz N 8KZ~+1 — @,
(3) Kz C Kﬂ_l,

as long as K; C {(z,y) € R* : |z| < 1}

Proof. We prove this theorem using the induction argument. Since we assume K; C
{(z,y) € R? : |z| < 1}, we consider mapping f instead of G (on this set they are
equivalent). In the first step of the induction we find the initial set (= Kj) with a
border homeomorphic to a circle, which is both compact and connected and satisfies
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conditions Ko C f(Ky) and 0K, N df(Ky) = 0. We apply the result of Theorem 7
about the mapping H, obtained from f by the linear change of coordinates (3.56).
Let us take the set N'(¢) defined as

N'(e) = {(au +v,u+v) € R®: (u,v) € N(¢)},

where N(e) is the set from Theorem 7 and € > 0. The Theorem 7 states that there
exists some &’ > 0 such that for every (u,v) € IN(g')

Hl(uav)Q
a2
what implies the fact that ON(¢') N OH(N(e')) = () and therefore also IN'(e') N

OH(N'(¢")) = 0. The Theorem 7 also states that N(¢') € H(N(¢')), what implies
N'(g") C f(N'(e')). If Ky is set as Ky = N'(¢'), it fulfills all (1), (2) and (3).

+ Hy(u,v)* > ('), (3.74)

Now if K, C {(z,y) € R? : |z| < 1} (f is a homeomorphism on this set) and K,, ,
satisfies (1), (2), (3) of Theorem 8 (induction assumption) we prove that then also
K, satisfies them. Using properties of homeomorphism (2) and (3) of Theorem 4 we
obtain that the image of K, is connected and compact. In addition, properties (4)
and (5) of Theorem 4 imply that F' (or F~!) maps the interior of K,, (K,1) into the
interior of K, 1 (K,) and the boundary of K, (K,;) into the boundary of K, 1,
(K,). Since F'is a homeomorphism on K,,, 0K, is homeomorphic to a circle and item
(1) is proven. We have to note here that the origin is contained in every K, because
it is a fixed point of f.

Now we prove (2) in the following form: If K,, C {(z,y) € R? : |z| < 1} (what
means that f is a homeomorphism) and the induction assumption holds true then

0K, NOK, 1 = 0. (3.75)

To prove this let us suppose the contrary, i.e., there exists some X € 0K, NOK 1.
Since F' is a homeomorphism, there is exactly one Y € K, _; such that f(Y) = X
(X € K,,). Also there exists exactly one Z € K,_; satisfying f?(Z) = X (because X
was in K,.1). The following holds true

X=2)=fY) &  [(f(Z)=f1) (3.76)
We also know that f is one to one, therefore
f[(Z)=Y, (3.77)

what means that Y € K,,. On the other hand K,,_; satisfies the induction assumption
0K,_1 NOK, = (. But as we proved both Y € dK,_; and Y € 0K, hold true,
therefore also Y € 0K, N 0K, # (). Thus we arrive at a contradiction and (3.75)
holds true.
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Now we know that K, N 0K, = (). We also know that the set dK,_; is
homeomorphic to a circle. We prove that (3) is also true. By applying the Jordan
theorem 3 to the set K, C R? we obtain that K, partitions the space R* \ 9K,
into two parts, one of which is bounded and the other one is unbounded (the set K,
is the bounded one). From (3.75) it follows that there are only two possibilities of a
relation between 0K, and 0K, ;. These possibilities are

0K, C Ky C K, \ 0K, (3.78)
or
0K, C K, C K11\ 0K1. (3.79)

As we will show only (3.79) is possible because (3.78) leads to a contradiction. To
prove this let us suppose that K,y C K, \0K, and the induction assumption K, _; C
K, \ 0K, holds true. To every y € K, there exists exactly one x € K,,_; \ 0K,
such that f(z) = y. This is because f is one to one and y lies in the image of K,, 1,
which is K,,, without its border (if there was also some point in the border of K, 1,
it would contradict the assumption 0K, 1 NIK,, = (). We obtain the following

K, C Ky 1\ 0K, 1 C K,_1 C K, \ 0K, CK,, (3.80)

what is a contradiction and completes the proof. O

Taking together the boundeness of trajectories with Theorem 8, we obtain that
for @ = 1.1 and b = 1.3 trajectories of points, lying in the area P (see Lemma 1)
converge to some bounded set in R?. Moreover, this set is a limit (understood as
boundary) of closed curves, homeomorphic to a circle.

3.6 Properties of an invariant set

Consider a planar map G : R? — R?, satisfying (3.1)—(3.2). We now define the
positive orbit v+ of a point 2o € R? as a sequence of images of ¢ under the succesive
compositions of G:

’Y+(l'()) = {l‘o,G(l‘O),...,GH(ZEO),...}. (38]_)

If G is invertible, we use the notation G™" to denote the n-fold composition of G~1
with itself. Define the negative orbit v~ of xy to be

v (w0) = {0, G (o), ..., G "(20),- -} (3.82)

Definition 3. A point y is called an w-limit point of the positive orbit v (xy) of xg
if there is a sequence of positive integers n; such that n; — +oc and G™(x,) — y
as i — +00. The w-limit set w(xg) of Y™ (xg) is the set of all w-limit points. In the
case G is invertible, the a-limit set of v~ (xq) is defined similarly by taking n; to be
negative integers.
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Note that the set

0K = 0 (G Kn> : (3.83)

n=0

which we call invariant set is in fact the w-limit set of some small area around the
origin (we can take Ky as the area mentioned), with regards to the mapping G. The
important question which arises in this context is how 0K looks like. We already
call the set as the invariant set, although we have no theoretical evidence that 0K is
invariant. Therefore we present a theorem, stated in Robinson (1995) [14], pp. 23.

Theorem 9. Let G : R? — R? be a continuous map on R%. For any x, w(x) is closed
and invariant, if (i) v (x) is contained in some compact subset of X or (ii) G is one
to one.

Since we proved in Section 3.4 that 0K C P, where P is a compact subset of R?,
we can conclude that 0K is invariant under G (all assumptions of the theorem are
satisfied since G is continuous).

In Section 3.1 we observed similar properties between the mapping G, restricted
to the invariant set, and homeomorphisms on circle. Therefore we can also inspect
whether GG is an orientation preserving homeomorphism but this issue is by no means
obvious and we only can guess the answer. On the other side, numerical simulations,
presented in Section 3.1 led us to a conjecture that G is an orientation preserving
map.

3.7 Summary

The following theorem summarize the whole section on an invariant set.

Theorem 10 (Invariant Set). Let a = 1.1, b = 1.3. There ezists ¢ > 0 such that
the following holds true. If xy, yo are the initial values for a difference system given
by (2.1) and (2.2), satisfying |xo| + |yo| < ¢ then the trajectory of (2.1) and (2.2),
satisfying the initial condition is bounded and converges to the invariant set K, which
is an object in R* with property G(K) = K.



4 CONCLUSIONS

In this thesis we study the second order recurrent equation in the form
T = T + a(Ty — T 1) (1 = |20]) T = by lzal, (4.1)

and its equivalent forms as a two-dimensional first order difference recurrent equation.
The model, despite its simplicity shows complicated dynamics patterns.

We explore asymptotic stability of the only fixed point — the origin using the center
manifold reduction. For a > 1 the origin is unstable whereas for a < 1 the origin is
asymptotically stable. The case a = 1 remains an open question and provides the
area for the further investigation.

Particularly interesting are explorations in the case when the origin is unstable.
The crucial role is played by numerical simulations, uncovering the boundeness of the
w-limit set. For special values of parameters we found a compact area mapped into
itself proved its existence by the rigorous computer assisted proof. On the other hand,
the existence of a compact set lying in its own image, with a boundary homeomorphic
to a circle, was proven using local properties of mapping in a neighborhood of the
origin. These two results imply the existence of a monotone sequence of closed curves,
homeomorphic to a circle, “converging” to the w-limit set. This set is proved to be
invariant due to the boundeness of trajectories.

The simulations of the invariant w-limit set reveal rather surprising phenomena.
The invariant set, given by (3.83), splits into only a several points (6, 8, 12 or even
more) for special values of parameter a. Occurrence of these points, representing the
periodic orbits of different periods, suggests similarities between the restriction of the
mapping to the invariant set and homeomorphisms of circles. With respect to the
theory concerning rotation number, the graph of the rotation number, depended on
the parameter a is evaluated. This graph resembles the so called Devil’s Staircase, a
property of diffeomorphisms of circle. So far there are only suggestions and empirical
evidence of the w-limit set being homeomorphic to the circle, but perhaps in the
future this puzzle will be solved.

From the economical point of view, the proposed model is too simple to explain
truly the movements of the real exchange rate, therefore the analysis of the real
data is not provided in the paper. The model shows that the convergence of the
real exchange rate transforms into the presence of persistent fluctuations when the
elasticity of agents on the market a crosses the threshold value 1 and according to
the simulations, it diverges to the infinity when this elasticity is too high.



APPENDIX

The rotation number and the Devil’s Staircase

In this section we outline the theory of orientation preserving homeomorphisms of a
circle. Their dynamics can be described in terms of a single number. This number,
called the rotation number measures the asymptotic average angle a point rotates per
iterate of the homeomorphism. The theory about the rotation number and the devil’s
staircase is presented in Robinson (1995) [14], pp. 49-57 and Hale, J. and Kogak, H.
(1991) [9], pp. 155-165.

We denote by S the unit circle. We can represent S! as a function of a parameter
t such that ¢(t) = €. Assume that f : S' — S! is an orientation preserving
homeomorphism. Then there is a (nonunique) map F : R — R which is called a lift
of f such that ¢ o F = f o ¢. A lift satisfies

e (i) F' is monotonically increasing and

e (ii) F(t+1)=F(t)+1 for all ¢.

Definition 4. Let f and F be defined as above. Denote

o () —t
po(F,t) = JLI{:O % . (4.2)
The number

15 called the rotation number of a mapping f.

As a justification of the previous definition serves the next theorem.

Theorem 11. Let f : S' — S be an orientation preserving homeomorphism with
lift F. Then

(1) fort € R the limit defining po(F,t) erists and is independent of t,
(2) if p(f) = po(F,t) mod 1, then it is independent of the lift F', and

(3) p(f) depends continuously on f.



The rotation number is an invariant of a mapping, which characterizes much of
the qualitative features of orientation preserving homeomorphism of the circle. The
crucial fact is that the rotation number can be used to determine whether the mapping
has any periodic points or not.

Theorem 12. The rotation number p(f) is rational if and only if f has a periodic
point. In fact, p(f) = p/q if and only if f has a point of period q. (Here p/q is
assumed to be in a reduced form with p and q integers and q positive.)

In addition, if f is a continuous orientation preserving homeomorphism and p(f)
is irrational, the following properties of the omega limit set of f can be proven:

(1) w(z) is independent of z,
(2) w(x) is a minimal set, and
(3) w(x) is either (7) all of S* of (4i) a Cantor subset of S’
Let now f be a function of two variables x, a and for any fixed « is an orientation

preserving homeomorphism of the circle. Denote p(a) = p(f(-,a)). If f is C?, then
p(+) has typically the following properties:

e p is continuous with finite variation but not absolutely continuous,

e for each rational number p/q there is an interval [/, with nonempty interior
such that for a € I,), we have p(a,b) = p/q, and

e if p(«) is irrational then p is monotonic but not constant in the neighborhood
of a.

A function with these properties is an example of a Cantor function and is commonly
called “Dewil’s Staircase”.
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