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1 Introduction 

The decisions that investors and portfolio managers constantly have to make in the 

course of their work revolve around and are determined by two factors:  return and 

risk.  On the one hand, the investor will want to attain the highest possible return on 

their investment; on the other hand, they will want to minimise the risk of loss 

associated with the investment.

Unfortunately for the investor, risk and return are usually directly proportionate – 

higher return is accompanied by higher risk, while lower risk leads to lower returns. 

The investor’s ambitions to achieve high return at low risk thus contradict each other, 

and the investor has to settle on an acceptable compromise.

What is acceptable will, of course, depend on each particular investor’s preferences. 

For some investors, the prospect of a high return on their investment is worth taking a 

greater risk.  For more conservative investors, e.g. pension fund managers, the 

primary concern is to eliminate or at least minimise as much as possible the risk of a 

significant decrease of the value of their portfolio, with the long-term character of 

their investments being relied upon to provide a reasonable level of return. 

It is a variant of the latter approach that we will adopt in this thesis.  First, we will 

obtain investment funds by selling stock options.  Subsequently, we will create a 

portfolio consisting of cash (invested in a risk-free account) and stock, which will be 

periodically readjusted so as to minimise the risk of loss at the end of the investment

horizon – the time of option expiry.  Thus, the task at hand will be to maximise the 

value of the portfolio to the investor in the presence of a risk constraint. 
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2 Utility function

Notice that in the previous paragraph, portfolio value to the investor was mentioned,

rather than portfolio value as such.  The reason for this is that any given change in the 

value of the portfolio will be perceived differently by the investor depending on 

specific circumstances.  Generally, the investor’s utility can be described by the 

following premises.  Firstly, greater wealth has more value to the investor than lesser 

wealth.  In other words, having more is better than having less.  Secondly, a negative 

change of wealth will be perceived as more dramatic than an equally large positive 

change.  (In terms of utility function properties, the second premise is equivalent to 

saying that e.g. a $500 change in the value of a portfolio worth $1,000 is more

significant than the same change in a portfolio worth $100,000.) 

Figure 2.1 [1]:  The change in utility caused by a decrease in wealth is greater than that caused by an

equally large increase in wealth. 

Mathematically, the first premise implies that the utility function must be strictly 

increasing, and the second premise implies that the function must be concave.  There 
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are several classes of functions that satisfy these two conditions, e.g. exponential 

functions, logarithmic functions, or n-th root functions. 

However, since we will be interested in comparing the terminal level of wealth 

relative to the initial level of wealth , we will impose one additional requirement

on the utility function, namely that the function looks the same regardless of the 

actual value of .  In mathematical notation, this may be written as 

Tw

0w

0w

0
0

U w
f w w

U w
 (2.1) 

where f  is the utility function we seek.  According to [1], only the exponential utility 

function satisfies this condition.  The utility function that we will use will thus take 

the form

AwU w e ,  (2.2) 0A

It can be easily shown that function (2.2) satisfies all three conditions: 
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The utility function (2.2) is called the constant absolute risk aversion (CARA) utility

(‘constant’ because it’s invariant in , and ‘absolute’ because it reacts to changes in 

absolute wealth), and coefficient  is called the coefficient of absolute risk aversion.

The latter varies from one investor to another, and characterises the investor’s attitude 

towards risk.  Although investors are not consciously aware of their risk aversion 

coefficient, its value may be determined by examining their investment decisions, 

whether it be real (preferably) or hypothetical ones.  The utility function can thus be 

calibrated to fit each investor’s attitude towards risk. 

0w

A

Now that we have a suitable utility function, we may move on to precise 

mathematical formulation the problem that will be examined and solved in this thesis. 
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3 Formulation of the problem 

The problem that we will attempt to solve stems from the following scenario.  An 

investor with a negative exponential utility function and a given level of initial wealth 

sells a specified number of European call options.  Subsequently, the investor creates 

a portfolio consisting of the options’ underlying stock, and of a cash account that may

be freely invested into or borrowed from at a single, fixed risk-free interest rate.

The task at hand is to determine the optimal quantity of stock that should be held in 

the portfolio at each time period before option expiry, so that the investor’s utility of 

the net value of the portfolio (portfolio value less the debt represented by total option 

value at expiry) at the time of option expiry is maximised.  The mathematical

formulation of this problem is 

0 1 1, ,...,
max

T
TU V HT  (3.1) 

expU x Ax  (3.2) 

where V  is portfolio value at time T (the time of option expiry),  is the value of

the option at time T ,

T TH

 is the number of options sold, t  is the quantity of stock held 

at time t , and  is the investor’s coefficient of absolute risk aversion. 0A

An important restriction placed upon the hedging process t  is that it must depend 

only on information that is already available at time t ; in our case, that information is 

the evolution of the stock price, discussed below.  (Obviously, if the optimal value of 

t  depended on future stock prices, which, due to their stochastic character, are not 

known, the entire model would be useless to the investor.)  The stock price process 

generates a sequence of algebras tF .  As the number of possible stock price 

paths increases in time, each algebra in this sequence is “richer” than the previous 

one, i.e. .  The latter property means that the sequence 0 1 ...F F TF tF  is a 

filtration, and the restriction mentioned at the start of this paragraph means that the 

process t  has to be adapted to this filtration, generated by the stock price process. 
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The next step is to specify a portfolio valuation formula.  Because we will be working 

with discrete time, the value of the portfolio will be given by the first-order difference

equation

1 1 1t f t t t t t tV R V S X S 1t  (3.3) 

where fR  is the risk-free appreciation factor of the cash account (i.e. the risk-free 

interest rate + 1),  is the price of the stock, S X  is the excess return of the stock (i.e. 

the difference between the actual return of the stock and the risk-free rate), and  is 

the coefficient that determines what proportion of the transaction volume will be paid 

as transaction costs. 

Since stock price plays a major role in the given problem, we must also create a 

realistic model of stock returns.  In the classical model of Black and Scholes, a 

lognormal distribution of stock returns is assumed.  However, this assumption does 

not hold true in real markets.  In reality, stock return distributions have been found to 

exhibit fat tails, negative skewness, self-scaling, leverage and even some correlations 

in the increments of return [3].  Therefore, we will use the stock-return model

described and used in [2], which is based on empirical observations, specifically on 

the weekly returns of the FTSE 100 index between years 1984 and 2001, and assume

that these returns are independently distributed. 

The construction of the log-return histogram is fairly simple.  We take the historical 

data and divide the log-returns into a number of categories, depending on how 

branched-out we want the resulting tree to be.  To get a trinomial tree, three categories 

would be needed.  In our case, we shall use a slightly denser tree – one where each 

node at time t  branches out to seven nodes at time t 1, hence we will use seven 

categories.  One thing that is important to remember is that in order to get a 

recombinant tree, the log-returns must be spaced out regularly. 

With that in mind, we’ll divide the log-returns into those of –5% or less, those 

between –5% and –3%, and continuing in this manner until the last category of log-

returns of more than 5%.  This will give us the desired histogram, from which we can 

calculate the objective probabilities of the underlying asset returns. 
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Figure 3.1 [2]:  Histogram of weekly log returns on the FTSE 100 index

The advantage of this method of stock-price model construction is threefold.  Firstly, 

as has been mentioned already, the method is simple in that it comprises some basic 

processing of historical data.  Secondly, since we are dealing with real data, we can 

assume that the resulting model will be quite realistic in that it will describe 

reasonably well the probability distributions exhibited by real-world financial

markets.  No extra calibration is needed to achieve this.  Finally, this method is very 

general.  Provided that we’re dealing with developed markets (i.e. sufficiently long 

time series are available), the investor can use the historical data of that index, which 

they think will best approximate the behaviour of the underlying asset’s price.  This 

method also makes it possible (once again, given a sufficient quantity of data) to 

create a model for daily or monthly returns (depending on the investor’s preferred 

hedging frequency), and to use any number of log-return categories (for example, we 

could use a tree with 11 branches from each node, and this would not qualitatively 

change the character of the model).
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4 Dynamic optimisation

Looking at the maximisation problem (3.1)-(3.3), we can see that the optimal value of 

t  will be influenced by several factors.  The most obvious one is the stock price –

the value of the sold options, i.e. the debt, directly depends on this variable.  Then 

there’s the value of the portfolio, V .  Finally, the transaction costs come into play. 

Since the overall cost of the transaction will be directly proportional to the change in 

stock holdings between times  and , the optimal value of 

S

t

1t t t  will also depend on 

1t .  The magnitude of the latter effect will be determined by the value of .  The 

higher this constant, the greater the role of 1t  in determining the optimal t .

To solve our optimisation problem, we will apply the principles of dynamic

programming.  Instead of trying to compute the optimal values of t  for all times at 

once, we will reduce the problem to a set of one-period optimisation tasks, starting at 

the terminal time T  and working backwards to t 0 .  Not only is this approach 

effective and relatively easy to implement, but it also provides the added benefit of 

being able to react to deviations from the optimal sequence of control variables.  If, 

for example, the investor were to stray from the optimal path of t  values, the 

algorithm given by dynamic programming will adapt to this fact and will provide 

results that are optimal with regard to the new situation. 

For clarity’s sake, we shall denote the two sets of terms in equation (3.3) as follows: 

1t f t t tV R V S X 1t  (4.1) 

1 1t t tC 1tS

1t

 (4.2) 

to get 

1 1t tV V C (4.3)

While this shorter notation doesn’t bring anything new in saying that the value of the 

portfolio is given by the difference of the value of the assets held and the transaction 

cost associated with rehedging, it does motivate us to examine the special case of C ,

i.e. the transaction costs at time T .

T
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The formula for C  essentially describes how the debt, in the form of European call 

options in short position, is repaid.  There are several possibilities: 

T

Repayment in kind, i.e. if the options end up in-the-money, the investor must

hand over an appropriate number of stocks.  In this case,

T (4.4)

(the number of options sold).  If the options are not exercised, the investor 

converts the stock to cash, i.e.

 0T (4.5)

The transaction costs formula is then 

1T TC ST ,  (4.6) TS K

1T TC ST , TS K  (4.7) 

Repayment in cash, where all stock is converted to cash regardless of whether 

the option ends up in-the-money or out-of-money.  Thus the formula for  isTC

1T TC ST , TS  (4.8) 

Other, more theoretical cases, for example

1T T (4.9)

 0TC (4.10)

In all of these variants, the terminal transaction costs are a function of only 1T  and 

.  Generally, we can write TS

1,T T T TC C S  (4.11) 

We know that 1T TS S , where fX R  is a random variable with a known 

probability distribution given by our model of stock price returns.  We can rewrite 

1 1,T T T TC C S  (4.12) 

Hence at time T 1, we have all necessary knowledge to compute the terminal

transaction costs.  This will prove to be important in that it will help provide an 

‘anchor’ for the recursive set of problems described below.

Now we can continue by rewriting the original optimisation problem (3.1) as a 

recursive set of more simple, one-period optimisation problems.  We will start with 
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the last period , find the one-period solution, and use it to calculate the solution 

for period t T .  Then we’ll use the solution from period 

t T

1 1t T  to obtain the 

solution for t T .  Following this pattern, we’ll find the solutions for all periods 

down to .  According to Bellman’s principle of optimality, when we take 

together all the solutions of the partial problems, we get the optimal solution of the 

original multi-period problem (see [4]).

2

0t

The first step is to write down the value function .  This function will be identical 

to the function we are trying to maximise:

TJ

T TJ U V HT  (4.13) 

By substituting the utility function (3.2) into the value function (4.13) and normalising

the coefficient of absolute risk aversion 1A , we obtain 

expT TJ V TH  (4.14) 

Moving on to period t T , we’ll get the first of recursive one-period optimisation

problems

1

1
1 1max

T
T TJ E TJ  (4.15) 

Substituting (4.14) into (4.15), simplifying the inner term of the exponential function 

and applying the equivalence of optimisation problems max minf f , we can 

write

1
1 1min exp

T
T T TJ E H TV  (4.16) 

Using the recursive portfolio value formulae (3.3) and (4.3), we can rearrange 

1 1 1T T T T T T f T T T TH V H V C H R V S X CT  (4.17) 

and expressing this in terms of V 1T  we get 

1 1 1 1T T T f T T T T TH V H R V C S X CT  (4.18) 

Just like the terminal transaction cost, the unit debt  is also a function only of 

quantities that are known at time

TH

1t T .  Indeed, the value  of a call option with 

strike price  is given by the formula

TH

K

max ,0T TH S K  (4.19) 

where once again 1T TS S , so we can write 
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1 ,T T TH H S K  (4.20) 

Substituting (4.18) into (4.16), we get

 (4.21) 
1

1 1 1 1 1 1min exp
T

T T T f T f T T T TJ E H R V R C S X CT

Because the term 1f TR V  is both deterministic and at the same time is not a function

of 1T , we can take it out of both the expected value operator 1TE  and the 

minimisation operator  and write 
1

min
T

1
1 1 1 1 1 1exp min exp

T
T f T T T f T T T TJ R V E H R C S X TC  (4.22) 

Finally, we will take into account the function arguments given by (4.2), (4.12) and 

(4.20) to obtain a simplified notation of the expected value term in (4.22) 

1
1 1 1 1 2exp min , ,

T
T f T T T TJ R V g 1TS  (4.23) 

From this result it is apparent that the optimal value of 1T  does not depend on the 

value of V , which will make the calculation less complicated.1T

Now let’s move to the next period, t T 2 .  Analogically as in (4.15), the value 

function  will be calculated as2TJ

2
2 2min

T
T TJ E 1TJ  (4.24) 

In compliance with what has been mentioned earlier in this chapter, the solution of

problem (4.15) is needed to find the solution of problem (4.24).  We will therefore

assume that the former is known at this point, and denote *
1T  the value of 1T  at 

which the minimal value * *
1 1 2 1, ,T T T Tg S  of function 1T1 1 2, ,T T Tg S  is 

obtained.  Hence,

2

* *
2 2 1 1 1 2min exp , ,

T
T T f T T T T TJ E R V g S 1  (4.25) 

By applying (4.1), then (4.3) to (4.25), we get an expression of 2TJ  first as a function

of V  and subsequently of V2T 2T

1 2 2 2f T f f T T T TR V R R V S X 1

1
2

2 2 2 2f T T f T T TR V C R S X  (4.26) 
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Once again, the term 2
2f TR V  is neither stochastic nor a function of 2T , and can be 

taken out of the expected value and minimisation operators to obtain 

2

2 2
2 2 2 2 2 2 1exp min exp

T
T f T T f T f T T TJ R V E R C R S X *

1Tg  (4.27) 

where * * *
1 1 1 2, ,T T T T Tg g S 1 .  We can see that the E  term in (4.27) is a 

function of 2T 3T,  (because of the 2TC  term) and 2TS .  Therefore we can write 

2

2
2 2 2 2 3exp min , ,

T
T f T T T TJ R V g 2TS  (4.28) 

Similarly, we can derive 

3

3 3 2
3 3 3 3 3 3 2exp min exp

T
T f T T f T f T T TJ R V E R C R S X *

2Tg  (4.29) 

where * * *
2 2 2 3, ,T T T T Tg g S 2 .

Comparing formulae (4.27) and (4.29), it is obvious that the value functions  follow

a pattern.  This is good news, because we don’t have to manually derive the value 

function individually for each period.  Instead, we can use the general formula

tJ

1exp min , ,
T t

t
T t f T t T t T t T t T tJ R V g S  (4.30) 

1 * *
1 1 1exp , ,t t

T t T t f T t f T t T t T t T t T t T t T tg E R C R S X g S  (4.31) 

right down to time t , where the iterations will stop with the final value function0

0

1 * *
0 0 0 0 0 0 1 1 1 0exp min exp , ,T T T

f f fJ R V E R C R S X g S0  (4.32) 

where ,0 0 0 0, ,initC C S init  being a known initial quantity of stocks held in the 

portfolio.

The values of  will have to be computed numerically at each node of the three-

dimensional state-time grid (

tg

1t  and  are the state variables). tS
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5 Numerical implementation

Now that we have the necessary formulae, we can proceed with the numerical

implementation of the dynamic optimisation algorithm specified in the previous 

chapter.  We do not yet know whether the functions 1, ,t t t tg S  are convex, and 

therefore if the algorithms of convex programming can be applied to correctly solve 

the problem at hand. 

The first step in the numerical implementation will be to assign a specific value to all 

constants:  the transaction cost coefficient , the risk-free interest rate and hence the 

appreciation factor fR , the investment horizon T , the number of options sold , as 

well as the arbitrary values of the initial stock price  and the option strike price .

Once the initial stock price is set, we can construct the recombinant stock-price tree 

that will form two of the three dimensions of the state-time grid mentioned at the end 

of the previous chapter.  Finally, the function determining the terminal transaction 

costs has to be selected. 

0S K

Staying with the setup used in [2], let us assume that the risk-free interest rate is 4% 

per annum.  Because we will be working with a unit time period of one week, we 

need to transform this annual interest rate to a weekly interest rate.  The latter can be 

calculated as 1.04  per week.  Hence 1/52 1 0.075% 1.00075fR .

For simplicity’s sake, let us assume that we initially sell one option: 1.  To 

examine how the results change for different values of , and whether there happens 

to be a simple relationship between the latter and the results for 1, is a separate 

problem in itself and will be addressed at a later stage. 

For the other constants in our model, we will use the following values: T , i.e. the 

option will expire in 5 weeks’ time.  This number is not only fairly realistic, but also 

provides for a sufficient number of portfolio readjustments without making the whole 

computation unnecessarily long; 

5

0.01, i.e. the cost of rehedging the portfolio will 

be 1% of the overall transaction volume; 0 100S ; and 0K S , i.e. the option will 

begin at-the-money.
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As per what has been written in chapter 3, we will construct a stock price tree using 

the equidistant log-returns -0.06, -0.04, …, 0.06.  Hence we can write 
0.06 0.04 0.02 0.00 0.02 0.04 0.06

1 , , , , , ,t tS e e e e e e e S  (5.1) 

and the resulting stock price tree is depicted in Figure 5.1 below. 

Figure 5.1:  The stock price tree.

As for the terminal transaction cost function, we shall use repayment in kind.  The 

reason behind this choice is that it will be quite easy and intuitive to judge whether the 

obtained results make sense.  Obviously, if the option ends up in-the-money, we will 

need the portfolio to contain one unit of stock at time T .  If the option ends up out-of- 

money, we will theoretically need zero units of stock (‘theoretically’ because due to 

the transaction costs, it may well turn out to be disadvantageous to reduce the quantity 

of stock held to zero). 

We now have all the information necessary to start examining the convexity of 

4 4 3 4, ,g S  as a function of 4 .  While it is not feasible to examine the shape of the 
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function for all possible combinations of 3 4, S , we can plot the graphs for such 

combinations of values of  that will cover several out-of-money, at-the-

money and in-the-money stock price eventualities for several different values of  the 

state variable 

3 4, S

3 .  Specifically, these combinations will be 3 0,0.25,0.5,0.75,1

and 127.12 112.75,100.00 ,78.66S , ,88.69 .  Several ‘random’ sets of 

values will also be examined.

3 4, S

0,1

*
4

4g

3,

The resulting graphs (Figure 5.2) show that the function is convex, and attains a 

minimum within the interval  (this is the interval of possible quantities of stock 

needed to hedge a single stock option).  This makes it possible to use Mathematica’s

built-in function FindMinimum, which is relatively fast and accurate.  When

FindMinimum returns a definite value, this value is guaranteed to correspond to at 

least a local minimum of the function being examined1.  Because we are dealing with 

a convex function, the optimal values  yielded by FindMinimum that minimise the

value of  correspond to global minima.

Below are some examples of what the function  looks like.  The two numbers

above each graph correspond to the values of 

4g

S4  for which the graph had been 

plotted.

1 See [6].  It should also be noted that the FindMinimum function can use both gradient and non-
gradient methods, so smoothness of the optimised function is not a requirement.

18



Figure 5.2:  Some examples of function 4 4 3 4, ,g S .

Unfortunately, it turns out that functions , …,  do not behave as ‘nicely’ as 

(see Figures 5.3, 5.4), and therefore the optimisation function FindMinimum cannot

be generally relied upon to find the correct minimum in the appropriate interval.  We

will therefore at this point implement a brute force algorithm that will search for the 

global minimum within the interval 

3g 0g 4g

0,1 .  The algorithm will evaluate the functional

values at a given set of equidistant points, and pick the point in which the functional

value is the lowest.  This very simple algorithm is guaranteed to find the minimum

with arbitrary precision; the downside of the algorithm is its slow speed of

convergence to the optimal solution, and the fact that the optimum is identified only 

after the algorithm has run through the entire interval 0,1 , i.e. many calculations are 

conducted even though theoretically they are no longer necessary. 
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Figure 5.3:  Examples of function 3 3 2 3, ,g S

Figure 5.4:  Function 0 0 , 0initg

20



6 Results for  = 1 

Using the algorithm and constant values described in the previous chapter, we have 

acquired a set of results from which an optimal hedging strategy can be determined.

At this point, writing down specific strategies would not be very meaningful, because 

the strategy will depend on the specific path followed by the stock price.  Instead, in 

the tables below we will illustrate two important attributes of the calculated strategies.

The first one is that the results yielded by the algorithm satisfy the obvious fact that as 

the stock price increases into-the-money, the quantity of stocks held increases, up to 

the value of 1 in nodes where the option is bound to end up in-the-money.

Analogically, for out-of-money stock prices, the strategy yields smaller values of .

The reason why this result is important is that it suggests that the calculations have 

been conducted correctly and that the results are reasonable.  Obviously, if the 

strategies didn’t behave this way, it would be an indication that an error had occurred 

somewhere in the process (whether in the mathematical model or the numerical

implementation).

The second important result shown in the tables is that the optimal quantity of stocks 

held in the portfolio changes for different values of the previous quantity of the same.

In other words, transaction costs do indeed come into play in determining the optimal

hedging strategy.  This once again indicates that the results are qualitatively correct 

and that attempting to calculate an optimal strategy in the presence of transaction 

costs is a meaningful task. 

In the tables below, the optimal values of t  are given for specific stock prices (in 

rows; “n up” and “n down” means a node n levels above and below the at-the-money

level, respectively) and for selected values of 1t  (in columns) at each time .  The 

values are given for ,

t

0 100S 100K , 1, 0.01, 1.00075fR .  Because we 

have assumed the initial value of held stocks to be zero ( 0init ), there is no 

comparison of 0  for different values of init , and thus the tables start at time t .

The optimal value of 

1

0  is .*
0 0.51
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t=1 0 0,25 0,51 0,75 1
3 down 0,14 0,25 0,28 0,28 0,28

0,26 0,26 0,39 0,39 0,39
0,38 0,38 0,5 0,5 0,5

even 0,5 0,5 0,51 0,62 0,62
0,62 0,62 0,62 0,73 0,73
0,72 0,72 0,72 0,75 0,84

3 up 0,82 0,82 0,82 0,82 0,94

Table 6.1:  Selected optimal values of 1

t=2 0 0,28 0,4 0,82 1
6 down 0 0,05 0,05 0,05 0,05

0 0,08 0,08 0,08 0,08
0 0,14 0,14 0,14 0,14

3 down 0,09 0,24 0,24 0,24 0,24
0,22 0,28 0,35 0,35 0,35
0,35 0,35 0,48 0,48 0,48

even 0,5 0,5 0,51 0,61 0,61
0,63 0,63 0,63 0,74 0,74
0,74 0,74 0,74 0,82 0,87

3 up 0,85 0,85 0,85 0,85 0,97
0,93 0,93 0,93 0,93 0,99
0,98 0,98 0,98 0,98 0,99

6 up 0,99 0,99 0,99 0,99 0,99

Table 6.2:  Selected optimal values of 2

t=3 0 0,24 0,4 0,74 1
9 down 0 0,04 0,04 0,04 0,04

0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04

6 down 0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04
0 0,08 0,08 0,08 0,08

3 down 0,01 0,16 0,16 0,16 0,16
0,15 0,24 0,29 0,29 0,29
0,32 0,32 0,45 0,45 0,45

even 0,49 0,49 0,51 0,6 0,6
0,64 0,64 0,64 0,74 0,76
0,78 0,78 0,78 0,78 0,91

3 up 0,89 0,89 0,89 0,89 0,99
0,97 0,97 0,97 0,97 0,99
0,99 0,99 0,99 0,99 0,99

6 up 0,99 0,99 0,99 0,99 0,99
0,99 0,99 0,99 0,99 0,99
0,99 0,99 0,99 0,99 0,99

9 up 0,99 0,99 0,99 0,99 0,99

Table 6.3:  Selected optimal values of 3
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t=4 0 0,29 0,4 0,78 1
12 down 0 0,04 0,04 0,04 0,04

0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04

9 down 0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04

6 down 0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04
0 0,04 0,04 0,04 0,04

3 down 0 0,04 0,04 0,04 0,04
0 0,16 0,16 0,16 0,16

0,24 0,29 0,36 0,36 0,36
even 0,47 0,47 0,51 0,58 0,58

0,68 0,68 0,68 0,78 0,8
0,86 0,86 0,86 0,86 1

3 up 0,99 0,99 0,99 0,99 1
1 1 1 1 1
1 1 1 1 1

6 up 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

9 up 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

12 up 1 1 1 1 1

Table 6.4:  Selected optimal values of 4

Apart from , we have also run the algorithm for other starting values of the 

initial stock price, with interesting results.  For 

0 100S

0 10S , the differences between *
t  at 

various values of 1t  are noticeably larger than in the case of .  For 

, such differences appear to be virtually non-existent. 

0 100S

0 1000S

There may be several related reasons as to why this is happening.  One is a numerical

reason and it is that the differences are there, but do not manifest themselves within 

the first two decimal places.  Another reason, an economical one, may be that the 

investor is much more conservative when dealing with greater wealth, and is willing 

to bear the price of the transaction costs in return for the certainty of having a fully

hedged portfolio.  This latter hypothesis is also supported by the fact that we are using 

a utility function with absolute risk aversion, which means that the strategy is bound 

to differ when the stock price (and subsequently the portfolio price and the overall 

wealth) is in the tens and when it is in the thousands.
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This also suggests that the method will yield different results when dealing, for 

example, in British pounds and Japanese yen.  While some may view such a lack of 

unit invariance as a significant shortcoming of the method, it should be stressed that 

both the root and the solution of this apparent problem lie with the utility function.

Remember that we are using a very specific utility function, exp x

0

U x .  In 

general, the constant absolute risk aversion utility function may be parameterised,

, and the parameters  can be tailored to reflect the 

particular scenario that needs to be addressed.  In other words, by setting these 

parameters according to a specific investor’s situation (which needs to be done 

because of the very individual factor of attitude to risk), both the issue of currency and 

of personal risk aversion are dealt with.

expU x b ax ,a b

24



7 General values of 

Now that we have the results for the simplified case of 1, it is time to examine

how the strategy changes for other values of .  Since real-life investors deal in fairly 

large quantities of stocks and options at a time, it is quite important to find a way to 

calculate the optimal hedging strategy for any given value of .

In complete markets (i.e. markets where it is possible to use available assets to 

perfectly replicate future states), the calculation of the optimal hedging strategy in the 

case of multiple options, given the optimal hedging strategy for a single-option case, 

is extremely simple and straightforward.  All that is needed is to multiply the values 

of the single-option hedge by the appropriate number of options. 

The scenario examined in this thesis does not feature a complete market.  We

therefore cannot take for granted that the elegant solution described above will work 

in our case; yet if the appropriate multiples of the single-option optimal hedging 

strategy turned out to be reasonably close to the true multiple-option optimal hedging 

strategy, we could consider the multiplication method as a viable way of generalizing 

the available results.

The reason why we would want to do this as opposed to doing a whole set of 

calculations with the given higher value of  is because of the increased extent of the 

calculations.  When calculating to two decimal places with an increment of 0.01, the 

number of calculations at each node of the state-space grid is 10.000 (function value 

at t = 0, 0.01, …, 1 for each 1t  = 0, 0.01, …, 1) for 1, but increases to 

1.000.000 ( t  = 0, 0.01, …, 10 for each 1t  = 0, 0.01, …, 10) for 10 .  For 

100  the number of cycles per node would reach 100.000.000, etc.  Such a rapid 

increase in the number of calculation cycles per node must necessarily lead to 

extremely long processing times which would render the entire method inefficient for 

practical application. 

However, in order to compare the results yielded by the multiplication method to 

those of the proper calculation, at least several test runs had to be made with increased 

values of .  Specifically, the optimal hedging strategy for 2 , 5 , and 10

have been calculated.  Even though 10 is still nowhere near the realistic number of 
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stocks and options that are traded at a time, we had to stop at this value because the 

presumption of rapidly increasing calculation times had, unsurprisingly, turned out to 

be very true.  On a computer equipped with a 1GHz Duron processor, with 100% of 

the processing power dedicated to the task at hand, the time needed to complete the 

calculation increased from a matter of minutes for 1, through over 2 hours for 

5 , up to 8 hours for 10 .  Even if we allowed for greater processing power, 

computations for higher values of would simply not be feasible, even more so if

these higher values were coupled with even more realistic (i.e. more branched-out) 

stock-price trees and more frequent hedging times / longer investment horizons (all 

leading to a higher number of nodes). 

err

S

1.04

1

To gauge the difference between the true optimal multiple-option hedge and the 

appropriate multiple of the optimal single-option hedge, we calculated the relative 

errors of the latter, as 

* *
1

*  (7.1) 

where *  is the optimal value of  for the given value of , and *
1  is the optimal

value of  for 1.  These err  values are shown in Table 7.1 below.  As before, the 

rows indicate which node of the state-space grid we are in, and the columns give the 

value of 1t .  Values of ‘n/a’ indicate division by zero. 100 , 2 .

It should be noted that the error values can be viewed in more than one way.  If we 

assume that the investor always stays with the optimal hedge, then obviously some

groups of the error values can be dismissed as having resulted from unattainable 

situations.  For example, given that the value of , the entire 0, 0.5, 1.5, and 2 

columns in Table 7.1 ( t ), are irrelevant to our purpose (notice that this effectively 

removes the by far largest of the errors, 0.364).

*
0

However, an important attribute of dynamic programming is that even if we stray off 

the optimal track, the algorithm will adapt to the new situation and yield results that 

are optimal with regard to the new conditions.  From this point of view, it makes

sense to consider all error values, not only the ones attainable by always remaining on 

the optimal path. 

26



t=1 0 0,5 1,02 1,5 2
3 down 0,364 0,000 0,000 0,000 0,000

0,175 0,175 0,054 0,054 0,054
0,084 0,084 0,075 0,075 0,075

even 0,038 0,038 0,019 0,097 0,097
0,008 0,008 0,008 0,098 0,098
0,014 0,014 0,014 0,000 0,105

3 up 0,038 0,038 0,038 0,038 0,112

t=2 0 0,56 1,02 1,64 2
6 down n/a 0,111 0,111 0,111 0,111

1,000 0,111 0,111 0,111 0,111
1,000 0,125 0,125 0,125 0,125

3 down 0,514 0,040 0,040 0,040 0,040
0,241 0,034 0,014 0,014 0,014
0,125 0,125 0,067 0,067 0,067

even 0,029 0,029 0,010 0,089 0,089
0,008 0,008 0,008 0,104 0,104
0,021 0,021 0,021 0,065 0,130

3 up 0,049 0,049 0,049 0,037 0,121
0,051 0,051 0,051 0,051 0,042
0,037 0,037 0,037 0,037 0,005

6 up 0,005 0,005 0,005 0,005 0,005

t=3 0 0,48 1,02 1,48 2
9 down n/a 1,000 1,000 1,000 1,000

n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000

6 down n/a 1,000 1,000 1,000 1,000
n/a 0,143 0,143 0,143 0,143

1,000 0,158 0,158 0,158 0,158
3 down 0,926 0,158 0,158 0,158 0,158

0,412 0,059 0,049 0,049 0,049
0,158 0,158 0,059 0,059 0,059

even 0,039 0,039 0,000 0,091 0,091
0,008 0,008 0,008 0,088 0,118
0,047 0,047 0,047 0,047 0,145

3 up 0,047 0,047 0,047 0,047 0,100
0,037 0,037 0,037 0,037 0,005
0,000 0,000 0,000 0,000 0,005

6 up 0,005 0,005 0,005 0,005 0,005
0,005 0,005 0,005 0,005 0,005
0,005 0,005 0,005 0,005 0,005

9 up 0,005 0,005 0,005 0,005 0,005
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t=4 0 0,58 1,02 1,56 2
12 down n/a 1,000 1,000 1,000 1,000

n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000

9 down n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000

6 down n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000
n/a 1,000 1,000 1,000 1,000

3 down n/a 1,000 1,000 1,000 1,000
1,000 0,179 0,179 0,179 0,179
0,284 0,134 0,014 0,014 0,014

even 0,069 0,069 0,000 0,084 0,084
0,023 0,023 0,023 0,114 0,143
0,036 0,036 0,036 0,036 0,143

3 up 0,021 0,021 0,021 0,021 0,000
0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000

6 up 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000

9 up 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000

12 up 0,000 0,000 0,000 0,000 0,000

Table 7.1:  Errors of the hedge yielded by multiplying the single-option optimal hedge by relative to

the true multiple-option optimal hedge.

We will combine these two approaches; we will consider all possible states, keeping 

in mind that some are less probable than others, or to put it differently, that some

result only from extreme deviations from the continuously optimal hedging strategy. 

In Table 7.1, especially at times t 3  and t 4 , we can see that there are three 

distinct groups of errors.  These groups clearly correspond to three stock price ranges. 

In the nodes where it is already clear that the options will end up in-the-money, the 

relative error is close to zero ( ) or zero ( t3t 4).  Then there are such nodes that if 

they have been reached, the option is bound to finish out-of-money.  In these nodes, 

the error seems to be very large.  However, a closer inspection will reveal that this is 

simply because at these nodes, *
t  has the same value regardless of the value of .

Finally, there is the middle range of nodes in which the options can end up in-the-

money, at-the-money, or out-of-money.
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The zero-error nodes do not pose any problem.  In these nodes, *
t , which is 

obviously the correct result.  If the options are bound to finish in-the-money, the 

investor will need the same quantity of stocks as the number of outstanding options. 

The high-error nodes also don’t pose a problem, because an easy work-around 

solution exists.  In these nodes, we can simply define the multiple-option optimal

value as equal to the single-option optimal value.  If the investor has the certainty that 

the options will not be realised, then very little or no stock needs to be held in the 

portfolio, regardless of the number of options sold at the beginning of the investment.

The nodes around the at-the-money level are thus the only ones where the errors can 

be considered problematic, as they often reach percentage values in the tens (or even 

higher, in the less-probable circumstances mentioned earlier in this chapter).  This 

motivates us to try to find a different algorithm – one that would yield results with a 

lower relative error, while not leading to a significant increase in computing time.

In our existing algorithm, there is a very simple relationship between the precision at 

which the optimal hedge values are calculated and the total number of calculation 

cycles.  Because there is a trade-off between the number of cycles and the total time

required to calculate the results, we can decrease the calculation time by decreasing 

the absolute precision.  This translates into increasing the size of the increment used 

by the brute force algorithm.

The new algorithm will thus be obtained by adapting the size of the increment to the 

actual value of .  To keep the number of cycles (and hence the calculation time)

constant, the size of the increment should be directly tied to .  Specifically, when 

the increment for 1 is 0.01, the increment for 2  will be 0.02, etc.  In general, 

we shall use an increment of 0.01 .  While this causes a decrease of the absolute 

precision of the computations as  increases, the precision of the calculated optimal

value relative to the number of units the investor is dealing with remains constant. 

(Adapting the precision to a particular investor’s desires is quite straightforward:  the 

size of the increment can easily be changed for instance to 0.001 or 0.05 ,

depending on whether precision or speed is of greater essence.) 

Table 7.2 below gives the errors of the proportional-increment algorithm relative to 

the original fixed-increment algorithm.  In order to allow a direct comparison between 
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the values herein and those in Table 7.1 (multiple-option hedge as a multiple of the 

single-option optimal hedge), the input values have been kept the same.

Notice that in Table 7.2, no values are given for time t 4 .  The reason for this is that 

just like the original algorithm, by virtue of target function convexity at time  the 

new adjusted algorithm can use Mathematica’s built-in optimum-seeking function

FindMinimum, which yields results that can be considered exact for our purposes. 

The optimal hedge values at t  are thus the same in the original algorithm and the 

new algorithm (which means that the relative errors at all nodes are zero). 

4t

4

This latter characteristic of the new algorithm is very convenient.  Remember that 

 in our case corresponds to t T4t 1.  In a certain sense, portfolio readjustments

at this time play a crucial role, for this is the last chance to rehedge the portfolio.  The 

portfolio created at this point in time will be the portfolio the investor will have at the 

time of option expiry.  Having precise results at t 4  is therefore an advantage.

t=1 0 0,5 1,02 1,5 2
3 down 0,000 0,000 0,000 0,000 0,000

0,016 0,016 0,000 0,000 0,000
0,012 0,012 0,011 0,011 0,011

even 0,000 0,000 0,000 0,009 0,009
0,008 0,008 0,008 0,008 0,008
0,000 0,000 0,000 0,000 0,000

3 up 0,000 0,000 0,000 0,000 0,006

t=2 0 0,56 1,02 1,64 2
6 down n/a 0,111 0,111 0,111 0,111

0,333 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000

3 down 0,027 0,000 0,000 0,000 0,000
0,000 0,000 0,014 0,014 0,014
0,000 0,000 0,000 0,000 0,000

even 0,010 0,010 0,010 0,000 0,000
0,008 0,008 0,008 0,000 0,000
0,007 0,007 0,007 0,000 0,000

3 up 0,000 0,000 0,000 0,000 0,006
0,006 0,006 0,006 0,006 0,000
0,005 0,005 0,005 0,005 0,005

6 up 0,005 0,005 0,005 0,005 0,005
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t=3 0 0,48 1,02 1,48 2
9 down n/a 0,000 0,000 0,000 0,000

n/a 0,000 0,000 0,000 0,000
n/a 0,000 0,000 0,000 0,000

6 down n/a 0,000 0,000 0,000 0,000
n/a 0,143 0,143 0,143 0,143

0,000 0,053 0,053 0,053 0,053
3 down 0,037 0,000 0,000 0,000 0,000

0,020 0,020 0,016 0,016 0,016
0,000 0,000 0,012 0,012 0,012

even 0,000 0,000 0,000 0,000 0,000
0,008 0,008 0,008 0,000 0,000
0,007 0,007 0,007 0,007 0,006

3 up 0,000 0,000 0,000 0,000 0,000
0,005 0,005 0,005 0,005 0,005
0,000 0,000 0,000 0,000 0,005

6 up 0,005 0,005 0,005 0,005 0,005
0,005 0,005 0,005 0,005 0,005
0,005 0,005 0,005 0,005 0,005

9 up 0,005 0,005 0,005 0,005 0,005

Table 7.2:  Errors of the proportional-increment algorithm relative to the true multiple-option optimal

hedge.

A direct comparison of the values in Tables 7.1 and 7.2 will quickly show that the 

algorithm using increments proportional to  yields noticeably better results than the 

method of multiplying the single-option optimal hedge by , while not requiring 

extra computation time.

31



8 Comparison with the Black-Scholes delta hedge 

In order to judge the benefits of our hedging strategy and the taking into account of 

the transactions cost, we will compare it to the continuous Black-Scholes delta hedge. 

The latter can be calculated very easily as 

V
S

(8.1)

from the well-known option valuation formula

1
r T tV S d Ke d2  (8.2) 

where
2

1

log
2

S r T
K

d
T t

t
 (8.3) 

2 1d d T t  (8.4) 

(Note:  the V  in (8.1) and (8.2) is the value of the option, a quantity different from the 

portfolio value V .)  The value of the volatility t  can be calculated from the stock 

price return probability distribution as 

2

1i

i

SE
S

 (8.5) 

where  is the expected stock price return.  In our scenario, the historical volatility is 

0.0216709 .  The risk-free interest rate is 0.00075r , and the strike price is 

.  The resulting values of the Black-Scholes delta hedge are shown below in 

Table 8.2. 

0SK

The idea now is to take specific stock price walks, substitute the appropriate values of

 into formula (3.3), calculate the portfolio values for the optimal transaction costs 

hedge and those for the Black-Scholes delta hedge, and compare the results.  The 

Black-Scholes delta will be calculated without incorporating transaction costs, but the 

transaction costs will be included in the portfolio value calculations.  In other words, 

the delta values which do not assume the existence of transaction costs will be 

t
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substituted into a formula which does include transaction costs.  The reason behind 

this choice is to be able to evaluate the benefit of including the transaction costs in the 

calculations as opposed to ignoring them.

At first, we will take a look at several specific cases where the price of the underlying 

stock evolves in a straight-forward manner (e.g. the price remains constant, or 

increases or decreases monotonously).  Then, we will start examining the more

realistic cases where the stock price fluctuates up and down.  This can be done either 

by inspection of several model cases, or by performing a large number of Monte 

Carlo experiments and summing up the differences between the portfolio value for the 

transaction costs optimal hedge  and the Black-Scholes delta hedge. 

Table 8.2:  The continuous Black-Scholes delta hedge 

The Monte Carlo approach has better overall informational value, because for a 

sufficiently large number of runs it is likely to cover all possible paths, while 

incorporating their respective probabilities.  The reason why we choose to do the 

special monotonous stock-price evolution experiments separately is to discover any 

exceptional behaviours that could be taking place. 

At this point, the selling price of the option is assumed to be the Black-Scholes price 

according to formula (8.2), without any premium.
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The results for monotonous stock price evolution for 0 100S , 1 are given in 

Table 8.3.  We can see that in the cases where the option ended up in-the-money, the 

Black-Scholes delta hedge yields slightly better results than the transaction costs 

hedge.  This is not surprising:  the Black-Scholes delta hedge implies larger 

transactions earlier on while the stock is cheaper, whereas the transaction costs hedge 

leads to stock purchase at a later time.  Similarly, if the stock price monotonously

decreases to out-of-money values, the Black-Scholes delta hedge leads to more

favourable results, selling the stock earlier on, before its price falls.  Here the relative 

difference between the two hedges is greater, but the absolute values are much smaller

than when the stock price increases.  In other words, neither hedge allows the 

portfolio value to go too deeply into negative figures. 

Interestingly, if the stock price remains at the same level throughout the duration of 

the investment period, the transaction costs hedge gives a result that is about 10% 

better than the Black-Scholes hedge.  Another interesting attribute of these results is 

that the relative advantage of the Black-Scholes hedge over the transaction costs 

hedge decreases as the rate of stock price change increases.  When the stock price 

increases by 1 node at a time, the Black-Scholes hedge is the better by 8%; however, 

if the increase is 3 nodes at a time, the difference is only about 3%.  A similar effect 

(though with much higher percentages) can be observed when the stock price 

decreases.  The loss with the Black-Scholes hedge is only 57% of that of the 

transaction costs hedge when the stock price decreases by 1 node at a time, but this 

value rises to 66% when the stock price decreases by 3 nodes at a time.  In other 

words, the transaction costs hedge is more sensitive to greater changes in the stock 

price.

These results might look pessimistic in terms of the worth of the transaction costs 

hedging strategy we calculated, but let it be repeated that these are only seven stock 

price paths out of a possible 16807 ( = 75 ) and the probability of any of these special 

cases taking place is very low. 
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1/i iS S 5V  with
transaction costs 

hedge

5V  with Black-
Scholes hedge 

5

5

BS

TC

V
V

exp(0.06) 31.3791 32.4293 1.0335

exp(0.04) 19.3679 20.311 1.0487

exp(0.02) 8.7771 9.4755 1.0796

1 0.9368 0.8481 0.9053

exp(-0.02) -1.9950 -1.1412 0.5720

exp(-0.04) -3.1901 -1.9451 0.6097

exp(-0.06) -4.0623 -2.6648 0.6560

Table 8.3:  A comparison of portfolio values given constant changes in the stock price

A more informative view is offered by the results of Monte Carlo experiments,

summarised in Table 8.4.  For each given combination of  and 0S , 100.000 random

stock price paths were simulated and the corresponding hedging strategies and 

portfolio values calculated.  Portfolio values at time T  were added up separately for 

the transaction costs hedge and the continuous Black-Scholes delta hedge, and at the 

end of the experiment, the ratio of these two sums was computed.

As the table shows, the hedging strategy that incorporates transaction costs is clearly 

more favourable for the investor. 

0S  \ 1 10 100 1000

1 1.3105 1.2520 1.1605 1.1215

10 1.2279 1.1437 1.1147 1.1143

100 1.1574 1.1292 1.1257 1.1189

1000 1.1286 1.1314 1.1259 1.1281

Table 8.4:  The ratio of 5
TCV  to 5

BSV

We can see that the ratios range from 1.1143 to 1.3105, in other words that the ending 

value of the portfolio hedged using the transaction costs hedge was 11% to 31% 

higher than the value of the benchmark portfolio.  It can also be seen from the table 

that these values are not random, but seem to depend on the overall volume of the 

transaction.  Notice that the numbers in the diagonals running from bottom-left to top-

right tend to be very similar.  This is very convenient, because if we wanted to 
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calculate similar values for higher transaction volumes, a single combination of 

and

0S

 should give us sufficient information about all other combinations of these two 

values that together give the appropriate volume.

Another important finding is that even though initially the relative advantage of the 

transaction costs hedge decreases from 31% for volumes of 1 to 23%-25% for 

volumes of 10 and 14%-16% for volumes of 100, at higher volumes it seems to settle 

around values of 11%-13%. 

Because we are using the stock to hedge the option rather than as an investment, and 

because our scenario is that of an incomplete market which does not allow perfect 

replication of the mean value process, it is equally (if not more) important to 

determine and compare the hedging error of both the transaction costs hedge and the 

Black-Scholes delta hedge.  This can be done using the same Monte-Carlo procedure 

that was used to calculate the portfolio values at t T .

The average square hedging error will give us information about the overall 

magnitude of the difference between the portfolio values and the value of the debt 

(the value of options that will be exercised) at t

5H

T

22
5 5

1 V H
n

 (8.9) 

where  is the number of runs of the Monte Carlo experiment.n

However, the average square error does not discern between positive and negative 

errors, which are qualitatively different.  Obviously, V H5 5 0  is much better news 

for the investor than V H , even though both mean that the hedging wasn’t 

perfect.  We will therefore also evaluate the simple average error 

5 5 0

5 5
1 V H
n

 (8.10) 

which should give us an idea about how positive or negative an error can be expected.

The results of the experiment for several combinations of  and 0S  (this time

concentrating on volumes of 10.000 up to 1.000.000) are given in Table 8.5. 
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The values in the table reveal several things.  Firstly, both errors depend on volume

and not on the specific combination of  and 0S .  Secondly, the average error and 

the average square error increase linearly and quadratically, respectively, with the 

transaction volume.  Thirdly, the error ratios for the two hedging strategies remains

constant (what small differences there are can be attributed to the random nature of 

Monte Carlo experiments), with the transaction costs hedge coming out as the slightly 

better hedge both in terms of the expected profit V5 H5  and in how well it copies the 

ideal self-financing portfolio.

Volume Error Transaction costs hedge Black-Scholes hedge Ratio

1000S -112.897 -129.466 0.8720

10 2 22925.2 24604.3 0.9318

100S -113.714 -129.446 0.8785

100 2 23042.0 24596.5 0.9368

10S -114.520 -129.098 0.8871

1000 2 23007.5 24432.1 0.9417

1000S -1125.27 -1285.88 0.8751

100 2 2.2968x106 2.4275x106 0.9462

100S -1138.95 -1290.59 0.8825

1000 2 2.3051x106 2.4410x106 0.9443

1000S -11301.9 -12918.8 0.8748

1000 2 2.3062x108 2.4567x108 0.9387

Table 8.5:  Hedging errors of the transaction costs hedge and the continuous Black-Scholes delta hedge 

While the percentage that describes the relative advantage of the transaction costs 

hedge over the Black-Scholes hedge may seem optimistic (the expected loss of the 

former is only about 87% that of the latter), the fact of the matter is that in the current 

scenario, both hedging strategies generate loss.  This can be put down to the fact that 

the Black-Scholes price at which we sell the options does not assume the existence of 

transaction costs, and the options are thus undervalued – the investor sells them at a 

price that is less than fair.
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To counterbalance the negative impact of transaction costs, a premium over the 

Black-Scholes price has to be charged when selling the options.  The relationship of 

this premium and the optimal quantity of options sold, and its subsequent effect on the 

investor’s utility, will be examined in the next chapter. 
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9 Optimisation of investor’s utility 

As has been mentioned at the end of the preceding chapter, the Black-Scholes option 

valuation formula has yielded prices at which the option was undervalued and the 

entire deal generated loss.  In this chapter, we will examine what happens when we 

increase the selling price of the option (charge a premium over the Black-Scholes 

price), and the effect of the selling price on the number of options the investor should 

sell to maximise their utility. 

The first step is to find a benchmark level of utility that will allow us to judge whether 

a specific selling strategy is advantageous for the investor or not.  In our scenario, we 

have one risk-free asset (the bank account with a weekly interest of 0.00075%) and 

one risky asset (the stock).  The obvious alternative to investing in the risky asset 

(selling an option and hedging it with stock) is to invest all funds in the risk-free asset, 

i.e. not to sell any options at all.  The benchmark utility will then be 

5
0 exp fU w w R0  (9.1) 

where  is the initial wealth of the investor.  Because the value of  has no effect 

on the dynamically optimal hedging strategy, we have in all our calculations let initial 

wealth be zero, i.e. the only funds available to the investor are those gained from

selling options.  We will adhere to this assumption.  With no initial wealth and no 

option sales, the investor’s wealth remains zero throughout the investment period, and 

the resulting utility is 

0w 0w

0 exp 0 1U .  Thus, if the expected utility of a 

particular selling strategy turned out to be lower than –1, we know that that strategy is 

to be avoided – the investor would be better off ‘not doing anything’.  If the expected 

utility of a selling strategy is greater than –1, we will consider that strategy an 

acceptable (but not yet optimal) one. 

Our approach to finding optimal combinations of  (the number of options sold) and 

the premium charged per option will be to construct a matrix of expected utilities with 

increasing volume 0S  (with the initial stock price fixed at 0 100S 1) in one 

1 This is just an arbitrary value; relevant information for any stock price can be acquired from the
matrix. As the results in chapter 8 have shown, it is the volume 0S  that is important, not the specific
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dimension, and increasing premium in the other dimension.  This will allow us to 

determine the minimum premium needed for a given  to lead to a utility greater 

than –1, as well as the optimal  for a given premium.

The expected utilities will be calculated from Monte Carlo experiments, with the 

number of runs set to 10.000 to facilitate the speed of the computations.

0S \ h
0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.39 -1,0034 -1,0017 -1,0000 -0,9983 -0,9965

0.78 -1,0072 -1,0037 -1,0005 -0,9970 -0,9931

1.56 -1,0156 -1,0085 -1,0016 -0,9940 -0,9875

3.13 -1,0316 -1,0168 -1,0026 -0,9892 -0,9751

6.25 -1,0665 -1,0388 -1,0086 -0,9803 -0,9548

12.50 -1,1454 -1,0820 -1,0224 -0,9696 -0,9148

25.00 -1,3388 -1,1956 -1,0667 -0,9556 -0,8543 -0,7675 -0,6865

50.00 -1,8985 -1,5249 -1,2228 -0,9701 -0,7879 -0,6229 -0,4957

100.00 -4,6235 -2,9064 -1,8706 -1,2068 -0,7574 -0,4893 -0,3175

200.00 -45,0633 -19,5364 -8,6793 -3,2548 -1,3368 -0,5298 -0,2053

400.00 -7,59E+02 -80,9752 -15,7818 -3,2575 -0,4706

800.00 -4,94E+04 -8,74E+03 -81,6281

Table 9.1:  Expected utility from the transaction costs hedge2 at various volumes and premiums

To increase the selling price of the option, we will gradually increase the implied

volatility  in formulae 8.3 and 8.4.  The historical volatility, calculated from the 

distribution of stock returns, is 0.0216709h .  For the first set of calculations, we 

will increase this value in steps of 0.005. This leads to relatively large increases in 

option price:  the base Black-Scholes price in our scenario is 2.12, while the price 

with the historical volatility increased by 0.005 is 2.57, which corresponds to a 21% 

increase.  These large increases are needed to quickly determine the price range in 

which the selling strategy turns profitable (in terms of utility); once that information is 

available, a finer examination will follow.

combination of these two values.  Hence, if the stock price is 100 and the optimal volume turns out to
be 100, the optimal number of options to be sold is 1; if the stock price is 50 and the optimal volume is
100, two options should be sold, etc.
2 In order to compare even more thoroughly the advantage of the transaction costs hedge over the
continuous Black-Scholes delta hedge, we have also calculated the expected utility of the latter.  In all 
cases, the transaction costs hedge yielded a better utility than the Black-Scholes hedge.
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The data in Table 9.1 reveal several facts.  Firstly, if we sell the option at the Black-

Scholes price, the expected utility increases as  decreases, but it does not exceed –1 

(see Figure 9.1).  This indicates that the optimal selling strategy is not to sell any 

options at all – the investor can expect to be better off doing nothing.  The minimal

premium required to make the investment worth it starts between 0.010h  (the 

corresponding selling price is 3.01P ) and 0.015h  ( P 3.45 ), and increases 

with the volume 0S  (see also Table 9.2).

Expected Utility at P = 2.12

-5,0000

-4,5000

-4,0000

-3,5000

-3,0000

-2,5000

-2,0000

-1,5000

-1,0000

0,39 0,78 1,56 3,13 6,25 12,50 25 50 100 200 400 800

Figure 9.1:  Expected utility for different volumes at option selling price P = 2.12 (corresponding to the 

Black-Scholes price) 

Secondly, when we move to prices at which the risky investment becomes

worthwhile, many different volumes lead to profit, but some more so than others. 

The volume that maximises the utility increases with the premium (see Figures 9.2 

and 9.3).  The optimal volumes for each premium are summarised in Table 9.3. 

Volume 0.39 0.78 1.56 3.13 6.25 12.50 25.00 50.00 100.00

Minimal premium h+ 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.015 0.017

Corresponding price 3.10 3.10 3.10 3.19 3.19 3.19 3.28 3.45 3.63

Increase over B-S price 46% 46% 46% 50% 50% 50% 55% 63% 71%

Table 9.2:  Minimal premium needed to make given investment worthwhile
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Expected Utility at P = 3.45

-1,3000

-1,2500

-1,2000

-1,1500

-1,1000

-1,0500

-1,0000

-0,9500

-0,9000

0,39 0,78 1,56 3,13 6,25 12,50 25 50 100 200 400 800

Figure 9.2:  Expected utility for different volumes at option selling price P = 3.45 (Black-Scholes price

with historical volatility increased by 0.015).  The optimal volume is 25. 

Expected Utility at P = 3.90

-1,5000

-1,4000

-1,3000

-1,2000

-1,1000

-1,0000

-0,9000

-0,8000

-0,7000

-0,6000

0,39 0,78 1,56 3,13 6,25 12,50 25 50 100 200 400 800

Figure 9.3:  Expected utility for different volumes at option selling price P = 3.90 (Black-Scholes price

with historical volatility increased by 0.020).  The optimal volume is 100. 

Premium 0 0.005 0.010 0.015 0.020 0.025 0.030

Optimal volume 0 0 0 25 100 100 200

Table 9.3:  Optimal volumes for given premiums
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The values in Table 9.3 are obviously only approximate in terms of optimality.  For 

example, if the implied volatility were 0.015h , the volume of 25 gives better 

results than any of the other volumes we examined, but the real optimal volume at 

that premium can be practically anywhere between 12.5 and 50.  This, however, is not 

a problem:  once we know the price (and hence the premium) that we can sell the 

option for on the market, we can run a number of calculations that would allow us to 

determine with much greater accuracy3 the interval wherein the optimal volume lies. 

In addition to evaluating the value of the investment in terms of utility, we will also 

look at another tool, the Sharpe ratio, which investors use to decide whether or not an 

investment is favourable.  The two quantities used in the Sharpe ratio are return and 

risk of the investment, represented by expected return and its standard deviation, 

respectively.  The formula is 

E X
SR

Var X
(9.2)

In chapter 8, we calculated the average error (equation 8.10) and the average square 

error (equation (8.9)) of the two hedging strategies being compared.  In the Monte 

Carlo experiments that gave us the data shown in Table 9.1, we also calculated these 

two errors, and this information can be directly used to calculate the Sharpe ratios: 

22
SR  (9.3) 

The results, presented in the same volume-premium matrix as the expected utility, are 

shown in Table 9.4. 

Unlike the expected utilities, the Sharpe ratio does not seem to give an immediate

insight into which investments are good and which should be avoided.  For example,

those investments that have a negative Sharpe ratio correspond to investments with a 

utility of less than –1; but there are also some investments that fulfil the latter, yet 

their Sharpe ratio is positive.

3 The increased accuracy can come from a higher number of examined volumes, as well as from a 
higher number of runs in the Monte Carlo simulations used to calculate the expected utility.
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However, when we fix the premium and take a look at the Sharpe ratios at different 

volumes, the values exhibit an interesting behaviour – the volumes at which the 

Sharpe ratio is the highest correspond to the volumes at which expected utility is the 

highest.  An example of this is shown below in Figure 9.4. 

Expected utility and the Sharpe ratio at P = 3.45
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Figure 9.4:  Expected utility and the Sharpe ratio

0S \ h
0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.39 -0,3496 -0,1621 0,0100 0,1830 0,3859

0.78 -0,2936 -0,1538 -0,0134 0,1492 0,3075

1.56 -0,3427 -0,1821 -0,0165 0,1603 0,3166

3.13 -0,4995 -0,2621 -0,0157 0,2180 0,4629

6.25 -0,7097 -0,4049 -0,0555 0,2760 0,5852

12.50 -0,8506 -0,4621 -0,0752 0,2830 0,6842

25.00 -1,0041 -0,5633 -0,1178 0,3075 0,7374 1,1583 1,5885

50.00 -1,1093 -0,6419 -0,1810 0,3039 0,7407 1,2393 1,7204

100.00 -1,1818 -0,6971 -0,2246 0,2543 0,7584 1,2404 1,7158

200.00 -1,2390 -0,7506 -0,2620 0,2316 0,7088 1,2040 1,6995

400.00 -0,2704 0,2209 0,6842 1,1522 1,6315

800.00 0,6681 1,1186 1,5745

Table 9.4:  Sharpe ratios
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Now that we have found that relatively large option price premiums are required to 

make the investment pay off, it would be interesting to gauge what part in those 

premiums is played by the transaction costs.  In all the computations presented in this 

chapter, the transaction costs coefficient was set to 0.01.  To measure the effect 

of the transaction costs, we will carry out the same set of computations with ,

and compare the results. 

0.00

In Table 9.5 a matrix similar to Table 9.1 is shown4.  In anticipation of much faster

shifts from non-favourable utilities (less than –1) to favourable ones, we decided to 

test premiums corresponding to implied volatility increments of 0.001.  The number

of runs in the Monte Carlo simulations was once again 10.000.  In line with 

expectations, the results show that much lower premiums are needed to make the 

investments worthwhile when 0.00  as compared to the case of 0.01.

The smaller and medium volumes (0.39 up to 12.50) are good even if no premium is 

charged – the Black-Scholes price in this case can be considered fair enough (see 

Figure 9.5).  For further volumes up to 100, the required volatility premium stays 

below 0.004 (compared to 0.017 when 0.01).  Volumes higher than 100 can be 

considered very high in terms of the premium required to make the investment

favourable, and we have not pursued the calculations into higher implied volatility 

values.  Nevertheless, even if we do not know the exact point at which the expected 

utility from these investments exceeds –1, we could compare the premiums needed to 

achieve certain sub-optimal utility values5.

The results are summarised in Table 9.6, which also offers a direct comparison with 

the values given in Table 9.2. 

4 As before, the calculations were made for both the transaction costs hedge and the Black-Scholes 
delta hedge. While the transaction costs hedge once again always led to better utility than the Black-
Scholes hedge, it was interesting to see that for volumes of 400 and 800, the expected profit of the
latter was higher than that of the transaction costs hedge.
5 For example, with no transaction costs, a volume of 200 will lead to a utility of –3.66 at zero 
premium.  With transaction costs, similar utility can be observed slightly below a premium of 0.015. 
The extra volatility premium required by the transaction costs for this investment volume would thus
be approximately 0.015. 

45



0S
\

h
0.

00
0

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
39

-0
,9

95
8

-0
,9

96
0

-0
,9

94
2

-0
,9

95
5

-0
,9

94
0

-0
,9

94
9

-0
,9

94
0

-0
,9

95
0

-0
,9

93
8

0.
78

-0
,9

95
4

-0
,9

93
6

-0
,9

93
9

-0
,9

93
1

-0
,9

92
7

-0
,9

91
2

-0
,9

91
5

-0
,9

90
4

-0
,9

89
6

1.
56

-0
,9

92
9

-0
,9

90
7

-0
,9

92
0

-0
,9

89
5

-0
,9

89
2

-0
,9

86
5

-0
,9

83
8

-0
,9

83
0

-0
,9

83
6

3.
13

-0
,9

89
2

-0
,9

86
2

-0
,9

85
4

-0
,9

81
0

-0
,9

79
0

-0
,9

76
3

-0
,9

74
0

-0
,9

72
1

-0
,9

70
0

6.
25

-0
,9

88
5

-0
,9

78
8

-0
,9

77
1

-0
,9

72
4

-0
,9

67
0

-0
,9

59
5

-0
,9

54
9

-0
,9

49
8

-0
,9

44
3

12
.5

0
-0

,9
86

6
-0

,9
74

7
-0

,9
68

7
-0

,9
55

2
-0

,9
45

7
-0

,9
37

4
-0

,9
23

6
-0

,9
16

7
-0

,9
04

9

25
.0

0
-1

,0
00

7
-0

,9
78

1
-0

,9
61

6
-0

,9
38

3
-0

,9
17

4
-0

,8
95

9
-0

,8
73

5
-0

,8
59

5
-0

,8
40

4

50
.0

0
-1

,0
50

8
-1

,0
04

5
-0

,9
70

0
-0

,9
23

8
-0

,8
90

7
-0

,8
50

9
-0

,8
12

6
-0

,7
65

3
-0

,7
39

7

10
0.

00
-1

,3
50

2
-1

,2
34

7
-1

,1
16

4
-1

,0
20

7
-0

,9
32

8
-0

,8
57

7
-0

,7
84

5
-0

,7
21

6
-0

,6
54

0

20
0.

00
-3

,6
59

4
-2

,7
37

9
-2

,5
02

0
-2

,0
57

7
-1

,7
41

0
-1

,4
77

9
-1

,2
23

8
-0

,9
63

2
-0

,8
05

2

40
0.

00
-1

,3
9E

+0
2

-7
2,

69
74

-4
9,

88
50

-3
9,

23
96

-2
7,

71
59

-1
9,

68
19

-1
2,

24
37

-8
,4

52
2

-5
,5

13
2

80
0.

00
-1

,2
2E

+0
6

-1
,6

6E
+0

6
-9

,1
7E

+0
5

-2
,6

9E
+0

5
-1

,4
4E

+0
5

-7
,6

2E
+0

4
-8

,9
4E

+0
4

-1
,7

9E
+0

4
-1

,9
6E

+0
4

46

Ta
bl

e 
9.

5:
  E

xp
ec

te
d 

ut
ili

ty
 w

ith
 z

er
o 

tra
ns

ac
tio

n 
co

st
s



Volume 0.39 0.78 1.56 3.13 6.25 12.50 25.00 50.00 100.00

Min. premium ( )0.01 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.015 0.017

Min. premium ( )0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004

Difference 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.013 0.013

Price ( )0.01 3.10 3.10 3.10 3.19 3.19 3.19 3.28 3.45 3.63

Price ( )0.00 2.12 2.12 2.12 2.12 2.12 2.12 2.21 2.30 2.48

Difference 0.98 0.98 0.98 1.07 1.07 1.07 1.07 1.15 1.15

Increase over B-S price 
( )0.01

46% 46% 46% 50% 50% 50% 55% 63% 71%

Increase over B-S price 
( )0.00

0% 0% 0% 0% 0% 0% 4% 8% 17%

Difference 46% 46% 46% 50% 50% 50% 51% 55% 54%

Table 9.6:  The effect of transaction costs on the required option price premium

Expected Utility at P = 2.12
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Figure 9.5:  Expected utility for different volumes at option selling price P = 2.12 (corresponding to the 

Black-Scholes price) with no transaction costs 

Another method which we can utilise to measure the effect of transaction costs is to 

compare the premiums at which a given volume becomes optimal.  For instance, in 

the case without transaction costs, a volume of 25 is optimal when the implied

volatility is 0.002h ; with transaction costs, the corresponding implied volatility is 

0.015h  (possibly slightly less).  The difference would thus be approximately
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0.013.  Similarly, a volume of 100 is optimal at premiums of 0.006 and 0.020 with 

and without transaction costs, respectively, suggesting a difference of about 0.014. 

Finally, we can try to estimate the extra premium required by the transaction costs via 

the Sharpe ratio.  By fixing the volume and plotting the Sharpe ratios obtained at 

different levels of premium for both the transaction-costs case and the no-transaction-

costs case, as shown in Figures 9.6 and 9.76, the magnitude of the horizontal shift of

the two lines can give us some idea of the extra premium required for the transaction-

costs Sharpe ratios to reach the same level as the no-transaction-costs Sharpe ratios. 

Sharpe ratios:  volume = 0.39
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Figure 9.6:  A comparison of Sharpe ratios of investments with and without transaction costs

It is interesting to see that for the lowest volume, the no-transaction-costs Sharpe ratio 

as a function of premium is close to (but not quite) constant.  As the volume increases, 

the slope of this function increases as well, until it seems to settle at parallel to the 

transaction-costs Sharpe ratio line at volumes of 25 and higher.  This change of slope 

directly proportional to volume implies a phenomenon in line with the observations 

summarised in Table  9.6, namely that the premium required for smaller investment

volumes is smaller than that required in the case of larger volumes.  The plots also 

show that the horizontal shift generally falls within the 0.010 – 0.015 interval, which 

is consistent with both the minimal premium shifts and the optimal volume shifts.

6 The trendline give for the transaction-costs case is a polynomial function of degree 3, calculated by
MS Excel.  While there may exist other regression types that are more suitable, the polynomial
trendline used here appears quite reasonable for our purposes. 
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Sharpe ratios: volume = 25
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Figure 9.7:  A comparison of Sharpe ratios of investments with and without transaction costs
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10 Relationship between the generalised Sharpe ratio, 

transaction costs and the option price premium 

In this chapter, we will try to extend and refine the results presented in chapter 9.  The 

objective is to find the relationship between the transaction costs (represented by the 

coefficient ), the price (represented by the premium expressed as the difference 

between implied volatility and historical volatility) at which the investor is able to sell 

the option on the market, and the benefit of the investment to the investor (represented 

by the generalised Sharpe ratio).

The model we use and the approach we have adopted to solve the dynamic

optimisation problem carries with it three separate sources of risk: 

The discrete stock price changes of the multinomial tree make it impossible to 

hedge the option perfectly, even with no transaction costs. 

The transaction costs increase the price of the hedging portfolio, as well as the 

hedging error1.

The numerical implementation of the optimisation algorithm required that the 

continuous interval 0, of possible values of t  be reduced to a finite set of 

values at which the target function was evaluated.  This means that the 

hedging strategy used may in fact be slightly sub-optimal.

The first of the risks is very much model-dependent.  To mitigate this risk, we could, 

for example, change the heptanomial tree to one with a greater number of branches, 

resulting in lower jumps in stock price.  The risk would naturally still be there, but it 

would be lower.  It is of interest that while decreasing the hedging interval should 

intuitively lead to smaller stock price jumps (because the price is given less time to 

change, as it were), available data suggest that as the hedging interval approaches 

zero, these jumps cannot be avoided if a viable stock return distribution is to be 

obtained.

1 The negative effect of transaction costs could be directly seen in Table 8.3 in that when the stock
price happens to increase or decrease monotonously, the presence of the transaction costs leads to
buying or selling stock later than would be optimal, implying lower utility at the end of the investment.
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Given enough processing power and/or time, the numerical risk could also be 

lowered, by expanding the set of t  values being examined.

This leaves the risk posed by transaction costs.  The transaction costs are determined

exogenously, and have to be accepted into the model as they are.  By examining the 

overall risk of the model as well as isolating the risk of the transaction costs, we will 

hopefully gain information that will enable the investor to act in a variety of market

conditions.

In chapter 9, we compared the situation where there were no transaction costs with the 

case where .  To find a reasonably general relationship between transaction 

costs, option price premium, and investor’s utility, we will have to carry out 

calculations for several other values of 

0.01

.  The cases we will examine will be ,

, , ,

0

0.001 0.005 0.01 0.02  and 0.05 .  These values can be 

expected to sufficiently cover the realistic range of transaction costs. 

In addition to the broader range of transaction cost coefficients, there will be two 

more differences as compared to the earlier calculations.  As the title of this chapter 

suggests, we will use a generalised form of the Sharpe ratio as opposed to the classic 

Sharpe ratio (9.2).  The generalised Sharpe ratio, discussed in greater detail in [1], in 

our case takes the form

2
1GSR E U  (10.1) 

One of the advantages of this indicator is that its calculation only requires the 

expected utility of the investment to be known. 

To explain the relationship between the classic Sharpe ratio and the generalised 

Sharpe ratio, we shall list several main properties of the latter, as given in [1].  In 

general, the generalised Sharpe ratio is defined as 

2
21 1

IP
SR  (10.2) 

where  is the risk aversion coefficient in hyperbolic absolute risk aversion (HARA)

utility (the CARA utility is obtained as a limit of the HARA utility with ) and 

IP  is the investment potential, a quantity that measures the percentual increase of the 
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investor’s wealth from the risky asset as compared to investing in a riskless asset. 

Four properties of the generalised Sharpe ratio follow: 

1.  is the classic Sharpe ratio 1SR

2.  for small risks 1SR SR

3. in the continuous-time Black-Scholes model, the SR  of the optimal trading 

strategy is the same for all 

4. for normally distributed returns, SR  with exponential utility is identical to 

.1SR

The second feature in which the upcoming calculations will differ from those in 

chapter 9 is that instead of Monte Carlo experiments, we will determine the expected 

utility using the recursive set of value functions , derived in chapter 4.  Looking 

back to equations (4.13), (4.15) and (4.24), it becomes obvious that the expected 

utility of the optimal investment is equal to the final value function (4.32) multiplied

by –1, so that 

tJ

* *
0 0 0 0 0exp , ,T

f iniE U V J R V g S0t

P

 (10.3) 

where T  and the initial portfolio value prior to subtracting transaction costs is 5

0V (10.4)

P
*
tg

 being the price at which the investor sells the option.  Because the optimal values 

 are, by necessity, calculated along with the optimal values *
t , the value of  is 

known, allowing the expected utility to be calculated by simple multiplication as a 

function of the number of options sold and the premium at which they are sold.  This 

method of calculating expected utility is therefore faster and more reliable than Monte 

Carlo experiments.

*
0g

The expected utilities and corresponding Sharpe ratios (generalised) calculated at 

different levels of volume and premium, and for the transaction cost coefficient values 

listed earlier, are given in Tables 10.1 – 10.6.  Sharpe ratios of “–0” indicate that the 

expected utility does not exceed –1 (this is the utility when the investor does not sell 

any options).  In Tables 10.5 and 10.6, the utilities for the highest volumes are not 
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given, as these volumes required very large premiums to pay off.  So far, the data in 

these tables are only an extension of those presented in chapter 9, allowing us to find 

the optimal  for a variety of premiums.

The data that will give us new insight into the effect of transaction costs on the 

optimal investment comes with the ability to compute with arbitrary precision the 

premium required to reach a given Sharpe ratio value.  We have chosen to look for 

these premiums in steps of 0.0001, i.e. the precision is one order of magnitude higher 

than in the calculations of chapter 9.  Additionally, if we fix the initial stock price at 

, a premium increase of 0.0001 roughly corresponds to a 0.01 increase in the 

Black-Scholes price of the option; this value is suitable in that it is the smallest

monetary fraction in most of the world’s leading currencies. 

0 100S

We have chosen to examine the minimal premiums required to achieve a Sharpe ratio 

of 0 and of 0.5.  The meaning of the former is obvious:  when the investment’s Sharpe 

ratio reaches 0, the investment becomes as good as ‘not doing anything’; it is the 

breaking point beyond which the investment becomes a worthwhile venture.  The 

value of 0.5 is an arbitrary one, reflecting some fictional requirement of the investor2.

Table 10.7 gives the premium values required for the described Sharpe ratios to be 

achieved.  We can see that even when 0 , the higher volumes require a certain 

premium for the investment to pay off.  Because the transaction costs in this case are 

absent and thus cannot pose any risk, the premiums in question are apparently caused 

by the other two risks discussed earlier in this chapter. 

2 In the real world, the investor could have several investment possibilities to choose from, and the 
choice would be made according to the Sharpe ratios of the investments; in order to exceed the Sharpe 
ratios of the other investments, the option sale would have to have a Sharpe ratio of 0.5. 
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By calculating the ratios of the 0  premiums and their appropriate counterparts 

with transaction costs, we can obtain information about what part of the overall risk is 

posed by the transaction costs and what part by is posed by the multinomial tree 

model and its numerical implementation.  The ratios are shown in Table 10.8 for 

volumes of 25 and higher (for lower volumes, the ratio is 0). 

0.001 0.005 0.01 0.02 0.05

25 0.06 0.01 0.00 0.00 0.00

50 0,46 0,16 0,09 0,05 0,02

100 0,69 0,32 0,19 0,11 0,05

200 0,83 0,49 0,33 0,20 0,10

400 0,90 0,64 0,47 0,31 0,16

800 0,93 0,73 0,58 0,42 0,23

1600 0,95 0,79 0,66 0,50 0,29

Table 10.8:  Ratio of premiums for 0  to those for 0

We can see that the contribution of the model risk to the total risk increases with 

investment volume and decreases as transaction costs become higher.  Both of these 

effects are logical and unsurprising. 

To calculate the transaction costs risk, we will assume that the model risk remains

constant at various levels of  (there does not appear to be any reason to assume

otherwise), and subtract the 0  premiums from the 0  ones.  The resulting 

transaction costs premiums are given in Table 10.9.  It is immediately apparent that 

the order of magnitude of the premiums approximately corresponds to that of the 

transaction cost coefficient.  While hoping to find a simple relationship along the lines 

of ‘  implies a transaction cost premium of 0.012’ would be overly 

optimistic, the data do provide motivation to explore the dynamics of the relationship. 

In other words, if we know the premium for a given level of transaction costs, and 

then double that level of transaction costs, how close to twice the original premium

will the new premium be? 

0.012
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0.001 0.005 0.01 0.02 0.05

0.39 0,0000 0,0044 0,0102 0,0167 0,0352

0.78 0,0000 0,0045 0,0104 0,0170 0,0359

1.56 0,0000 0,0048 0,0107 0,0177 0,0372

3.13 0,0000 0,0052 0,0112 0,0188 0,0397

6.25 0,0000 0,0057 0,0117 0,0209 0,0447

12.5 0,0007 0,0062 0,0122 0,0229 0,0520

20 0,0015 0,0069 0,0130 0,0245 0,0573

50 0,0015 0,0069 0,0132 0,0252 0,0601

100 0,0015 0,0071 0,0137 0,0264 0,0630

200 0,0015 0,0074 0,0144 0,0278 0,0664

0,0015 0,0076 0,0151 0,0294 0,0705

800 0,0017 0,0082 0,0161 0,0313 0,0741

1600 0,0016 0,0083 0,0162 0,0316 0,0746

400

Table 10.9:  Net transaction costs premiums

The above question and a partial answer are illustrated in Figure 10.1, showing 

premium versus volume plots at several transaction costs levels, along with theoretical 

premium levels calculated as multiples of real premium levels.  We can see that the 

premium at  is close to, but certainly not equal to, twice the premium at 

.  Similarly, the premium at 

0.01

0.005 0.02  is relatively close to twice the 

premium at .  While this matter would have to be investigated in greater 

detail before any final conclusions could be drawn, the data hint at the possible 

existence of the following rule of thumb:  in the absence of a better tool, if the 

transaction costs change, the investor can get the approximate values of the new 

minimal required premium by multiplying the old premium using the same factor by 

which the transaction costs changed. 

0.01

At this point, we are still looking at the dependence of premiums on both transaction 

costs and volume.  It is clear from the presented data as well as from Figure 10.1 that 

if we fix the transaction costs, higher volumes will require higher premiums.  We

could search for a more precise description of this relationship by plotting the 

premium against the logarithm of the volume and doing regression.  However, we 

shall not follow this problem further, because the investment volume is a reaction of 

the investor to the situation on the market rather than a determining factor (the 

investor will see what the transaction costs are and what price the options can be sold 
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at, and choose the optimal investment volume based on that).  Instead, we shall 

concentrate on finding the premium as a function of transaction costs, given a 

required Sharpe ratio value. 

Minimal required TC risk premium
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Figure 10.1:  Minimal required transaction costs premium as a function of volume, for different values

of (denoted in the graph legend as ‘k’). 

To find the premium required for 0GSR  as a function of transaction costs, we will 

take the premiums at 0 0.39S  (smallest required premium at each value of ) and 

0 1600S  (largest required premium), and plot them against .  Then, using 

regression, we can determine the ‘cone’ wherein the minimal required premium will 

fall (for volumes between 0.39 and 1600).  See Figure 10.2.  The range is relatively 

wide, but it does offer some idea as to what the working interval is.  The trendlines 

were obtained by 3rd-order polynomial regression, and the equations are 

 with 3 2 1.6799x40.299y x 5.7634 0.0312x 2 1R  for the top curve and 

 with  for the bottom curve. 

The top curve is practically linear, and we could simplify the equation to 

 with  (a very slight decrease).  In the case of the 

bottom curve, linear regression leads to 

3 2 1.4576x

2R

416.95y x

1.4893y x

35.279

0.0319

0.0016x

0.9993

2 0.9995

0.0014

R

y x0.6945  with .2R 0.9856
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Figure 10.2:  Total minimal required premium as a function of transaction costs

To obtain the relationship between transaction costs and the transaction costs 

premium (as opposed to the total premium), we will do a similar procedure, but this 

time subtracting the premiums at 0  from those at 0 .  The result is shown in 

Figure 10.3.  The cone wherein the required premium lies is noticeably narrower than 

in the previous case. 
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Figure 10.3:  Minimal required transaction costs premium as a function of transaction costs

The equations are 3 246.189 6.2045 1.6879 6 10y x x x 5  with 2 1R  (top 

curve) and the same equation as before for the bottom curve (the minimal required 

premium  at the smallest volume is 0, hence the bottom curve remains0

64



unchanged).  We could once again linearise the top curve, to get 1.4815 0.001y x

with .  All these regression results were obtained using MS Excel. 2 0.9994R

0.5

0

1.1602 0.0047y x

0.9987

Let us now examine what happens when we fix the required Sharpe ratio at 

.  In Table 10.7, we can see that for each value of GSR  the premium is a 

convex function of volume.  The optimal investment will correspond to the volume

where the premium is the lowest3.  We will plot the premiums corresponding to the 

optimal investment against the transaction costs to find the relationship between the 

two.  Both total required premium and premium related to transaction costs will be 

examined.  The latter will once again be determined by subtracting the premium at 

 from the premiums at .0
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Figure 10.4:  Total premium required to reach  as a function of transaction costs0.5GSR

Figure 10.4 shows the total premium.  The 2nd-order polynomial trendline equation 

and its R-squared value are  and 1, respectively.  If 

we used linear regression instead, the equation would be 

23.2151 1.3229 0.004y x x

 with 

.2R

3 All volume-premium combinations lead to the same Sharpe ratio and utility.  To be able to sell the
option on a competitive market, the investor will have to keep the price as low as possible – this can be
done by choosing the volume where the required premium is the lowest. Alternatively, the investor can
be looking for an investment with a Sharpe ratio of 0.5 or higher; if the market  price of the option is 
fixed at a certain level, choosing the investment with the lowest required premium to achieve a Sharpe 
ratio of 0.5 will give the investor the most extra premium, ultimately leading to a higher Sharpe ratio;
or, if the market price is lower than the premium required to achieve a Sharpe ratio of 0.5, choosing the
investment with the lowest required premium will lead as close to the originally desired Sharpe ratio as 
possible.
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Figure 10.5 shows the premium required by the presence of transaction costs.  The 

trendline equation is  with 22.9823 1.3086 0.0003y x x 2 1R .  Linear 

regression would lead to  with .1.1503 0.0012y x 2R 0.999
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Figure 10.5:  Transaction costs related premium required to reach  as a function of 

transaction costs 

0.5GSR

Up to this point, the basic time unit in our calculation was one week.  This is quite 

valid, and a natural consequence of using a weekly distribution of stock returns and 

rehedging the portfolio once a week.  In the real world, however, the convention is to 

quote returns, volatilities, etc. on a per annum basis.  This common basis allows the 

markets to quickly compare very different investments.  For this reason, we shall 

convert our results to a yearly base. 

In the case of implied volatility, the time unit conversion is very straightforward – the 

weekly volatility simply needs to be multiplied by a factor of 52  (if monthly data 

had been used, the factor would be 12 , etc.)4.

The per annum convention also applies to the Sharpe ratio.  Here the conversion is 

only slightly more complex than in the case of volatility.  Let GSR  be the 

generalised Sharpe ratio of an investment with time to expiry equal to , and let 1

correspond to one year.  Then, according to [1],
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2exp 1 1G GSR SR  (10.5) 

What we will do now is to decide what yearly Sharpe ratio that we want to achieve, 

and convert this value to the Sharpe ratio corresponding to our time to expiry by 

substituting 5 / 52  (i.e. five weeks) into (10.5). This value will then be used in 

calculating the required premium.

Table 10.10 shows the premium (in per annum units of volatility) required to achieve 

the given Sharpe ratio (per annum equivalent) at the given level of transaction costs, 

assuming optimal investment volumes.  Table 10.11 offers equivalent information,

except that the implied volatility rather than the premium is listed. 

GSR \ 0 0.001 0.005 0.01 0.02 0.05

0.25 0,0000 0,0000 0,0447 0,0880 0,1428 0,2834

0.50 0,0000 0,0130 0,0526 0,0959 0,1659 0,3180

1.00 0,0159 0,0274 0,0656 0,1096 0,1925 0,3844

Table 10.10:  Option price premium as a function of transaction costs and the generalised Sharpe ratio 

GSR \ 0 0.001 0.005 0.01 0.02 0.05

0.25 0,1564 0,1564 0,2011 0,2444 0,2992 0,4398

0.50 0,1564 0,1694 0,2091 0,2523 0,3223 0,4744

1.00 0,1723 0,1838 0,2220 0,2660 0,3490 0,5408

Table 10.11:  Implied volatility as a function of transaction costs and the generalised Sharpe ratio
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11 Conclusion 

The goal of this thesis was to derive and calculate a dynamically optimal portfolio 

hedging strategy leading to maximisation of a fictional investor’s utility in an 

incomplete market with three assets:  stock, stock options, and cash.  We have 

modelled the market using an empirically observed distribution of stock returns and 

volume-based transaction costs associated with buying and selling of stock. 

In chapters 2 and 3, we selected a realistic utility function describing the investor’s 

benefit from a given level of wealth, and formulated the optimisation problem as 

maximisation of the investor’s utility from the net value of their assets at the end of

the investment.

Chapter 4 is dedicated to finding a mathematical algorithm that would allow the 

optimal hedging strategy to be calculated.  The algorithm was derived using 

Bellman’s principle of optimality as a set of recursive one-period optimisation

problems the solution of which yields an optimal multi-period hedging strategy. 

The numerical implementation of the obtained optimisation algorithm is described in 

chapter 5.  Due to the fact that with the exception of a single period the target function 

was not convex, a simple brute-force algorithm was used to calculate the optimal

hedge.  The results yielded by this algorithm for the simplified case when the investor 

sells a single option ( 1) are given in chapter 6.  Subsequently in chapter 7 the 

algorithm is adjusted to effectively deal with larger quantities of options. 

In chapter 8, the transaction costs hedge is compared to the classic continuous-time

Black-Scholes hedge using Monte Carlo experiments.  The transaction costs hedge 

has been found to be the better of the two in terms of final portfolio value, expected 

profit and hedging error.  The expected profit and the hedging error are shown to 

depend on the volume 0S  rather than on the specific combination of  and ,

which has an important positive consequence on the usability of the optimal hedging 

algorithm.  It also becomes apparent that in the presence of transaction costs the 

Black-Scholes price of the option is lower than fair and that a premium has to be 

charged to make the investment pay off. 

0S
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In chapter 9, option price premiums are introduced and the optimal investment  is 

found for various values of the premium. The optimal investment is determined by 

comparing utility values as well as values of the Sharpe ratio, both of which are 

calculated with the help of Monte Carlo experiments.  An initial investigation of the 

effect of transaction costs on the required premium is carried out by comparing

minimal premiums needed for the investment to pay off, premiums needed for a given 

investment volume to become optimal, and Sharpe ratio values. 

The search for the relationship between transaction costs, option price premium and 

Sharpe ratio values is extended and finalised in chapter 10.  A new criterion of 

investment valuation, the generalised Sharpe ratio, is introduced and calculated at 

different levels of transaction costs and premiums.  The contribution of several 

sources of risk is identified, and several dependencies between transaction costs and 

premiums are inferred.  Finally, a table is given with information (in units compliant

with real-world conventions) about the premium that is required to obtain a given 

Sharpe ratio level at the given level of transaction costs. 
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