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1 Preface

In [5] a difference model with rational expectation for a current state of the economy is
introduced. Afterwards, a formula with unknown parameter is given, which individuals
use for forming their rational expectations at a given time. The individuals guess this pa-
rameter and revise it each time the new state of the economy is known. For this correction
they use a general learning system.

We pursue several aims. One of them is to fill all the details which were not straight-
forward and their explanations were omitted in [5]. These details are given in Subsection
4.1. The second one was to study the dynamics of the simplified versions of the learning
system proposed in [5], which describes how the individuals try to learn the parameter.
Subsections 4.3 and 4.4 deal with this most important goal, which is the core of this thesis.
The last goal is to show that the individuals can find also other values of the parameter
and not the one derived in [5] as locally stable. Numerical experiments are given too.

For these purposes, we shortly introduce the model in Section 2 and summarize the nec-
essary theory in Section 3. This basic theory consists of the theory of difference equations
in R2 in Subsection 3.1, a special case of difference equation in R in Subsection 3.2 and
the theory of rational expectations in Subsection 3.3. Afterwards the mentioned analysis
of the model is carried out.

The first reason why we have focused on this learning system is that in special cases
it performs a strange and interesting behavior. This behavior can be described as follows:
individuals state such rational expectations that before the final decrease of the deviation
from the stationary equilibrium, this deviation may increase for some time. Ultimately the
individuals state such rational expectations that the economy converges to its stationary
equilibrium. The analysis of the dynamics of this learning process is not carried out in
detail in [5] and the aim of Section 4 is to analyze this dynamics. The second reason is,
that in the models with rational expectation linear models are usually studied, because
then Certainty Equivalence holds and the perfect foresight orbit is the orbit under the
rational expectation up to small random fluctuation. This learning process is not linear
and therefore the dynamics is even more interesting.
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2 Short introduction of the model

Assume that the economy is characterized by a scalar variable xt. The current state is a
real number xt linked with the forecast of a next state xet+1 and with a previous state xt−1

through the following relation,

γxet+1 + xt + δxt−1 = 0. (2.1)

This equation stands for a first order approximation of a equilibrium dynamics in a small
neighborhood of a locally unique stationary state (x̄ = 0) [5], xt representing the deviation
from this stationary equilibrium x̄ = 0. We see that in this equation the current state
of the real variable xt is a weighted average of the previous state xt−1 and the forecast
of the next state xet+1, where γ and δ represents the relative weights of future and past
respectively. We suppose relative weights of the future to be different from zero γ 6= 0 to
be meaningful to talk about rational expectations.

Individuals suppose that the economy is developing according to the rule xt = βtxt−1

and they try to find the parameter β. When the expectation fullfils, i.e. xet+1 = xt+1,
(2.1) becomes a difference equation and we can compute the roots of its characteristic
polynomial λ1 and λ2. If |λ1| < 1 < |λ2|, then individuals try to find λ1, because the only
converging equilibrium path lies on the line defined by xt = λ1xt−1. In [5] the local stability
of λ1 is proved. We can ask a question: when the individuals will find this parameter? We
deal with the answer in Section 4.
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3 General theory

3.1 Difference equations

In this section we present a short summary of the basic theory of difference equations in
R2. These results can be found in many books, from which we have used mostly [8]. At
the very beginning the basic concepts of the theory are defined and then the important
cases depending on the moduli of eigenvalues of the linear systems are discussed. At last
we note the differences which arise, when the difference equation in R2 is nonlinear.

For a given function f : R2 → R2 a difference equation is given by

xn+1 = f(xn), (3.1)

i.e. as a recurrence relation generated by the map f . In its economic interpretation the
variable xn represents the state of the economy which is observed in equidistant times
{0, 1, 2, ...}.

The positive orbit γ+ of a point x0 in R2 is a sequence of images of x0 under the
successive iterates of the map f :

γ+(x0) = {x0, f(x0), ..., fn(x0), ...}.

If the map f is invertible, then the negative orbit γ− of the point x0 is:

γ−(x0) = {x0, f
−1(x0), ..., f−n(x0), ...},

where f−n denotes the n-th iterate of f−1. When the positive and negative orbits exist,
the orbit γ of x0 is defined by: γ(x0) = γ+(x0) ∪ γ−(x0). The negative orbit is the set of
past states and the positive orbit is the set of future states including the current one.

Now we provide the summary of the stability theory of fixed points, which plays an
important role in practice.

Definition 1 ([8],p.444) A point x̄ ∈ R2 is called a fixed point of f if f(x̄) = x̄. A fixed
point x̄ of f is said to be stable if, for any ε > 0, there is a δ > 0 such that, for every x0

for which ||x0 − x̄|| < δ, the iterates of x0 satisfy ||fn(x0)− x̄|| < ε for all n ≥ 0. A fixed
point x̄ is said to be unstable if it is not stable. A fixed point is said to be asymptotically
stable if it is stable and, in addition, there is an r > 0 such that f n(x0) → x̄ as n → +∞
for all x0 satisfying ||x0 − x̄|| < r.

Definition 2 ([8],p.445) A point x̄ ∈ R2 is called periodic of minimal period n if fn(x̄) = x̄
and n is the least such positive integer. The set of all iterates of a periodic point is called
a periodic orbit.
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Definition 3 ([8],p.445) A set M in R2 is said to be invariant under the map f if f(M) =
M , that is, for any x ∈M we have f(x) ∈M and there is a point y ∈M such that f(y) = x.

A special case of difference equations are linear equations which are given by a recur-
rence equation

xn+1 = Axn, (3.2)

for some 2 x 2 matrix A. If I − A is regular then the only fixed point of this system is

x̄ =

(
0
0

)
. Computation of orbits of linear equation can be greatly simplified using the

normal form of the matrix A. If Λ denotes the Jordan Normal Form of the matrix A, i.e.
A = PΛP−1, then An = (PΛP−1)

n
= PΛnP−1. Using the transformation x = Py (e.g.

[4]) we can rewrite the equation (3.2):

Pyn+1 = PΛyn

and after the multiplication by regular P−1 from the left

yn+1 = Λyn. (3.3)

For two distinct eigenvalues λ1, λ2 of the matrix A the Jordan Normal Form of the matrix

A is Λ =

(
λ1 0
0 λ2

)
([3], p.284).

Theorem 1 ([8], p.451) The fixed point x̄ =

(
0
0

)
of the linear equation (3.2) is asymp-

totically stable if and only if the eigenvalues of A have moduli less than one. If at least one
eigenvalue of A has modulus greater than one then the fixed point is unstable.

Definition 4 ([8], p.451) A linear planar map is called hyperbolic if the eigenvalues of A
have moduli different than one.

Below, we characterize hyperbolic planar maps. For two distinct eigenvalues λ1 6= λ2

(3.3) is equivalent to:
y1
n+1 = λ1y

1
n

y2
n+1 = λ2y

2
n.

From this system we see that for yn

y1
n = λn1y

1
0

y2
n = λn2y

2
0,

(3.4)

holds.

A Hyperbolic sink:
If both |λ1| < 1 and |λ2| < 1, we can see, that both components of the vector y approach
zero as n→∞. Asymptotical stability can be proved as follows.
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x0
x1

x2

Figure 1: A single positive orbit of a hyperbolic sink (both eigenvalues are positive).

x0
x1

x2

Figure 2: A single positive orbit of a hyper-
bolic sink when one eigenvalue is negative.

Figure 3: Phase portrait of a hyperbolic sink
.

Proof: If we denote ||.|| as the norm in R2 and λ̄ is the maximum from |λ1| and |λ2|,
for the transformed system yn = Λny0 one has that ||yn|| ≤ λ̄n||y0||. Furthermore from
the properties of the norm we know that ||xn|| ≤ ||P ||||yn|| and ‖y0‖ ≤ ‖P−1‖ ‖x0‖. Al-
together this allows us to write ‖xn‖ ≤ ‖P‖ ‖yn‖ ≤ λ̄n ‖P‖ ‖y0‖ ≤ λ̄n ‖P‖ ‖P−1‖ ‖x0‖.
Because |λ̄| < 1, the origin is asymptotically stable (figure 1). �
In case that at least one of the eigenvalues is negative, the single orbit jumps back and

forth across the axes, see figure 2. It is important to be aware that the orbit is a sequence
of discrete points and not a connected curve. The phase portrait of a sink can be seen in
the figure 3.

A Hyperbolic source:
On the contrary, from (3.4) we see that when both |λ1| > 1 and |λ2| > 1, both y1 and y2

tend to infinity as n → ∞ and the origin is an unstable fixed point. Phase portrait is in
the figure 4.
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Figure 4: Phase portrait of a hyperbolic
source.

Figure 5: Phase portrait of a hyperbolic sad-
dle.

Figure 6: A single positive orbit of a lin-
ear map with complex eigenvalues for which√
α2 + β2 < 1 holds.

Figure 7: A single positive orbit of a lin-
ear map with complex eigenvalues for which√
α2 + β2 > 1 holds.

A Hyperbolic saddle:
This is the case, when |λ2| > 1 > |λ1|. The component y1 tends to zero and the second
component y2 tends to infinity (figure 5). The origin is unstable. Only orbits of initial
points with y2

0 = 0 approach zero and these orbits interest us in this paper.

Linear maps with complex eigenvalues:
Let α± iβ be the eigenvalues of matrix A. In their polar representation they are rewritten

as α =
√
α2 + β2 cosω and β =

√
α2 + β2 sinω for some ω ∈ (−π, π〉. The matrix A then

becomes

A =
√
α2 + β2

(
cosω sinω
− sinω cosω

)
.

Multiplying of a vector x by matrix A rotates x by the angle ω and multiplies its modulus
by
√
α2 + β2. Depending on the value

√
α2 + β2, the components of x will decrease and

converge to 0 or diverge. For
√
α2 + β2 < 1 is the origin asymptotically stable (see figure

6) and for
√
α2 + β2 > 1 it is unstable (see figure 7) ([8], p. 451). If

√
α2 + β2 = 1
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Figure 8: A single positive orbit of a linear map with complex eigenvalues for which√
α2 + β2 = 1 holds.

Figure 9: A phase portrait of a nonhyperbolic
map with one eigenvalue 1.

x1
x0

x2

Figure 10: A single positive orbit of a nonhy-
perbolic map with one eigenvalue −1.

this becomes a nonhyperbolic map and the orbit of x0 lies on the circle with radius ||x0||
centered at the origin (figure 8). If ω

2π
is rational then this orbit is periodic, otherwise it is

dense ([8], p. 451).

Although we are not interested in nonhyperbolic planar maps in this paper, we dis-
cussed them in short, because we want to provide the survey of all the possibilities.

A Nonhyperbolic linear maps:
Nonhyperbolic linear maps are maps with an eigenvalue 1 or −1. At first we focus at the

eigenvalue 1. If λ1 = 1, from (3.4) we see that y1
n stays the same and y2

n converges to the
origin or diverges depending upon the modulus of the second eigenvalue. We can observe
that in addition to the origin also each point at the y1 axis is a fixed point (see figure 9).

The eigenvalue λ1 = −1 causes the reflection of y1, therefore only the origin is the fixed
point, and every point at y1 axis is a periodic orbit of period 2 (figure 10). Again the
stability of the origin depends on the modulus of the second eigenvalue.

We shall continue with the nonlinear system (3.1). Stability is determined on the basis
of linearization defined in the following definition.
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Definition 5 If x̄ is a fixed point of a C1 map (3.1) then the linear map

xn+1 = Df(x̄)xn, (3.5)

where Df(x̄) is the Jacobian matrix
(

∂f1

∂x1
(x̄) ∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄) ∂f2

∂x2
(x̄)

)
,

is called the linearization of the map f at the fixed point x̄.

Definition 6 A fixed point x̄ of (3.1) is said to be hyperbolic if the linear map (3.5) is
hyperbolic, that is, if the Jacobian matrix Df(x̄) at x̄ has no eigenvalues with modulus one.

Because (3.5) is only an approximation derived from the Taylor series of f around x̄, for
the stability of x̄ a stronger condition is necessary than for a linear map (e.g. eigenvalues
λ1 = 1 and |λ2| < 1 does not suffice for stability of x̄ for nonlinear map, but suffice for a
linear map). The stability is stated in the following theorem.

Theorem 2 Let f be a C1 function with a fixed point x̄.
(i) If all the eigenvalues of the Jacobian matrix Df(x̄) have moduli less than one, then the
fixed point x̄ is asymptotically stable.
(ii) If at least one of the eigenvalues of Df(x̄) has modulus greater than one, then x̄ is
unstable.

3.2 Logistic equation

Thus we have stated the basics of difference equation in R2 and now we introduce an
important special case of difference equation in R, which is the logistic equation. As we
will see later, one of our learning system will turn out to be the logistic equation and
therefore we introduce the known analysis of this equation (these results are adopted from
[4]). The logistic map is defined by:

xn+1 = fµ(xn), (3.6)

where fµ(x) = µx(1− x). If 0 ≤ µ ≤ 4, then for x0 ∈ 〈0, 1〉 fµ maps 〈0, 1〉 into itself. This
follows from the fact, that for such µ the maximum of fµ(x) is from 〈0, 1〉.

max f = f(1/2) = µ/4 ≤ 1

Now we continue by locating fixed points and studying their stability for various µ.
Solutions of the following equation for fixed points

x̄ = µx̄(1− x̄)

are x̄1 = 0 and for µ > 1 also x̄2 = 1− 1/µ. Thus we can prove the following property of
the logistic equation.
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Lemma 1 ([8], p.93)
Suppose that µ > 1. If x0 < 0 or x0 > 1, then fnµ (x0)→ −∞ as n→∞.

Proof: If x0 < 0 or x0 > 1, then fµ(x0) < x0. Thus fnµ (x0) is a decreasing sequence. This
sequence cannot converge because f has no negative fixed points. �

To determine the stability of the two fixed points we find the derivative of fµ:

f ′µ(x) = µ− 2µx.

Since f ′µ(0) = µ, x̄1 is asymptotically stable for µ ∈ 〈0, 1) and unstable for µ > 1. Further
for x̄2 the derivative is f ′µ(1 − 1/µ) = 2 − µ and therefore x̄2 is asymptotically stable for
1 < µ < 3 and for µ > 3 it is unstable. This model starts to be interesting when studying
what happens for µ = 3 ( x̄2 = 2

3
then). We will find that x̄2 becomes unstable and two

periodic points of period 2 appear. These periodic points are fixed points of f 2
µ and are

not fixed points of fµ.

f 2
µ(x) = µ [µx(1− x)] [1− µx(1− x)] = −µ3x4 + 2µ3x3 − (µ2 + µ3)x2 + µ2x.

For the fixed points of f 2
µ the following equation holds:

−µ3x4 + 2µ3x3 − (µ2 + µ3)x2 + µ2x− x = 0.

We know that the roots are also 0 and 1−1/µ, so we divide this equation by µx(x−1+1/µ)
and we obtain:

−µ2x2 + (µ2 + µ)x− µ− 1 = 0.

We can consider x as given implicitly by g(x, µ) = 0, where g(x, µ) = µ2x2−(µ2+µ)x+µ+1.
Because

∂g

∂x

∣∣∣( 2
3
,3) = 2µ2x− µ2 − µ|( 2

3
,3) = 0 (3.7)

we have to find another way how to find the solutions and analyze them. g(x, µ) and ∂g
∂µ

are continuous and ∂g
∂µ

∣∣∣( 2
3
,3) 6= 0 holds. According to the implicit function theorem we

see that in the neighborhood of 2/3 there exists a unique function µ = φ(x) such that in
this neighborhood it is continuous and g(x, φ(x)) = 0. This function φ(x) can be found
approximately utilizing the Taylor Series. Partial derivatives of g(x, µ) are continuous and
∂g
∂µ
6= 0 in this neighborhood of the point 2/3. Thus the first derivative in 2/3 exists and

equals

Φ′
(

2

3

)
= −

∂g
∂x

∣∣∣( 2
3
,3)

∂g
∂µ

∣∣∣( 2
3
,3)

= 0,

because of (3.7). The second derivative is

∂2Φ

∂x2

∣∣∣( 2
3) = −

∂2g
∂x2 · ∂g

∂mu
− ∂g

∂x
· ∂2g
∂mu2(

∂g
∂mu

)2

∣∣∣( 2
3
,3) = −

∂2g
∂x2

∂g
∂mu

∣∣∣( 2
3
,3) =

−2µ2

2µx2 − (2µ+ 1)x + 1

∣∣∣( 2
3
,3) = 18.
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Locally in a neighborhood of
(

2
3
, 3
)

then

µ = φ(x) = 3 + 9

(
x− 2

3

)2

+ o

(
x− 2

3

)2

(3.8)

holds. It is a parabolic shaped curve open toward the direction of µ. It can be shown that
this periodic orbit of period two is asymptotically stable in the following way.
Proof: We denote h(x) =

(
f 2
µ

)′
(x)
∣∣
µ=φ(x) and prove that −1 < h(x) < 1 for x 6= 2

3
in

some neighborhood of 2
3
. Therefore we compute following derivatives and their values in

x = 2
3

(from (3.8) µ = φ
(

2
3

)
= 3):

h

(
2

3

)
|µ=3 = −4µ3x3 + 6µ3x2 − 2

(
µ2 + µ3

)
x + µ2

∣∣∣x= 2
3
,µ=3 = 1,

h′
(

2

3

)
|µ=3 = −12µ3x2 + 12µ3x− 2

(
µ2 + µ3

) ∣∣∣x= 2
3
,µ=3 = 0,

h′′
(

2

3

)
|µ=3 = −24µ3x + 12µ3

∣∣∣x= 2
3
,µ=3 = −108.

Thus we see that in 2
3

is a local maximum of the function h(x), i.e. h(x) < 1 for x 6= 2
3

in
some neighborhood of 2

3
. In some neighborhood of 2

3
also −1 < h(x) holds. That means

|
(
f 2
µ

)′
(x)
∣∣
µ=φ(x) | < 1 for x 6= 2

3
near 2

3
, or in other words, the cycle of period two is

asymptotically stable for x close to 2
3
. �

The value of the parameter µ for which asymptotically stable fixed point loses its stabil-
ity, which is transferred to an another fixed point (or periodic orbit) is called a bifurcation
value. The value µ = 3 is an example of such bifurcation value.

[8] provides the following survey of this bifurcation analysis of the logistic map. For
3 < µ < 1 +

√
6 there exists the asymptotically stable periodic orbit of minimal period

two. For 3.449 < µ < 3.544 this periodic orbit loses its stability and an asymptotically
stable orbit of minimal period four occurs. For 3.544 < µ < 3.564 another asymptotically
stable orbit of minimal period eight appears. For 3.570 < µ there is no asymptotically
stable orbit, but for µ great enough which is suficiently close to 4 there exists an orbit of
minimal period three.

To continue we need to introduce Sharkovskii ordering of positive integers defined as
follows:

3 < 5 < 7 < . . . < 2 · 3 < 2 · 5 < . . . < 2k · 3 < 2k · 5 < . . . < 23 < 22 < 2 < 1

Theorem 3 (Sharkovskii,[8] p. 99) Let f : R → R be a continuous map. Suppose that f
has a periodic point of minimal period m. If m < n in the Sharkovskii ordering, then f
also has a periodic point of minimal period n.
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Figure 11: Bifurcation diagram of logistic equation. At the horizontal axis are the values
of parameter µ and at the vertical axis are the values of fixed points.

If there exists a periodic orbit of period three, then there exists a periodic orbit of arbitrary
period and moreover the system demonstrates a chaotic behavior. For our need we only
mention one property of such behavior. There exists ε > 0, that if x0 and y0 are two initial
points such that 0 < |x0 − y0| < ε, then there exists K for which |xK − yK| > ε. This
means that the system is highly sensitive to initial conditions.

3.3 Rational expectations

In this part we present the basics of rational expectation theory. We start with the rational
expectations, where we will presume perfect certainty at first, and then we admit uncer-
tainty. This theory is adopted from [1], where it is perfectly explained. We also present
this theory in the special case of our model (2.1).

The most important assumption of rational expectation is that individuals should not
make systematic errors in expectation formation, otherwise there exists an incentive to
diagnose the source of mistakes and amend the forecasting rule ([1], p. 12). Individuals do
not have to form accurate forecasts, but their guesses should be correct in average. The
hypothesis of rational expectations asserts that the unobservable subjective expectations
of individuals are exactly the true mathematical conditional expectations implied by the
model itself. Individuals act as if they know the model and form expectations accordingly
([1], p. 30).
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Perfect foresight equilibrium orbit

When there is not any uncertainty and information is complete, then the rational ex-
pectations reduce to the special case of perfect foresight. In this case the forecasts of
individuals are accurate and the same. The forecast fulfils. This approach to the study of
rational expectations is useful mainly when systematic factors are much more important
than random factors, because then we have a deterministic model and its study is more
simple and the standard questions of existence, uniqueness and stability may be analyzed
most easily.

Forward looking individuals use past values of variables and solve the model over all
future time. Thus the convergence is not only the property of the model but a part of the
process of expectation formation itself.

Consider now the system (2.1). Given a point x0, by its equilibrium orbit we understand
the orbit of the point (x−1, x0) which converges to the stationary equilibrium x̄ = 0. Sup-
pose further that x̄ = 0 is stable. The economy will converge to this stationary equilibrium
no matter what the expectations are. But in this case, the expectation formation is very
difficult ([1], p. 36), because an infinity of perfect foresight equilibrium orbits converge to
this stationary equilibrium. When the individuals choose the starting point (in our model
if the individuals know the value xt−1, they have to state their expectations xt) and the
economy has proceeded along this chosen orbit for some time, afterwards the individuals
let bygones be bygones and consider the new situation as before, choosing the new initial
point (there is a new xt′−1 and they determine a new xet′+1 = xt′+1). Thus the economy can
jump to another equilibrium orbit. So when the stationary equilibrium is globally stable
there does not exist a unique equilibrium orbit when expectations are forward looking. If
there exist infinitely many perfect foresight equilibrium orbits all converging asymptoti-
cally, we say that the stationary equilibrium is indeterminate.

If the stationary equilibrium of the model is globally unstable, there is no equilibrium
orbit to this stationary equilibrium, unless the economy occurs by chance in the stationary
equilibrium. We say that a perfect foresight equilibrium orbit does not exist for any initial
point. After some time the individuals would find out that the orbit is explosive and at
some stage the structure of the model would change, for example by an intervention of the
government ([1], p.39).

The saddle point is often found in economy models and its important feature is that for
a given value of predetermined variable (in our model the value xt−1) there exists a unique
equilibrium orbit to the steady state. In the world without uncertainty, the economy would
be on this equilibrium orbit only by chance. However the individuals have the chance to
locate the economy on this equilibrium orbit choosing the appropriate level of free variable
(in our model it is xt). If for example the economy starts at the explosive orbit, at some
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time the individuals will consider the situation as intolerable and they will adjust the free
variable to move the economy to the equilibrium orbit.

Now we can generalize this to a system of n variables, s of which are predetermined.
Suppose that convergent subspace has dimension s and is in a general position, that is it
projects to the space of determined variables surjectively along the space of free variables.
Then there is a unique equilibrium orbit.1 If the dimension is greater then s, the perfect
foresight equilibrium orbit is not unique. If the dimension is less then s, then a perfect
foresight equilibrium orbit does not exist in general.

As long as the information remains the same, the economy follows the perfect foresight
equilibrium orbit. When a new information occurs, individuals revise their expectations
and the immediate response is a jump to a new equilibrium orbit. The economy stays on
this orbit until the time that some further information becomes available ([1], p. 49).

Rational expectation equilibrium orbit

Under the rational expectation hypothesis the individuals’ expectations are precisely
the mathematical expectations formed by using the model and conditional on available
information at the date expectations are formed. Behavior in one period depends in part
on the behavior expected in subsequent periods. Expectation can be obtain by solving the
model over all future time to derive consistent or self-fulfilling set of expectations. When
the solution of a stochastic model differs from the solution of a deterministic or non-random
model only in the trivial respect that actual values of future variables are replaced by the
current expectations of these future variables, we say that the random model exhibits Cer-
tainty Equivalence([1], p.52). The functional form and parameter values of the solutions
to the two models are the same. Analysis of the model as if under perfect foresight will
then display the essential structure of the solution to the analogous stochastic model under
rational expectations. Admitting uncertainty leads merely to random fluctuations around
the perfect foresight path. The condition under which certainty equivalence will be ob-
tained is that the equations are linear and contain additive random disturbance with a
mean zero ([1], p. 51,52). The expectation of non-linear function is becoming considerably
more complicated.

Let It denote the information set available at time t. This set has three parts: knowledge
of the structure of the model, knowledge of government policies in operation and knowledge
of past values of economic variables. The rational expectation at time t of the variable x
at time t + k can be denoted as tx

e
t+k or as E(xt+k |It ). Now we will rather use the latter

to emphasize the condition on the information set. But often, and except of this theory
section we use it in this paper, for k = 1 this can be shorten to xet+1 which means the

1The possibility when it does not project surjectively is not treated both in [1] and [2]. Further
explanation of this possibility is given in Subsection 4.1 and in figure 12.
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rational expectation of the variable x at time t+ 1 formed one period sooner, i.e. at time
t. There are four basic properties ([1], p.72,73) of the rational expectations models:

Property 1 E {[E(xt+i+j |It+i )] |It } = E(xt+i+j |It ).

This property asserts that individuals can not predict how they will change their expecta-
tions therefore their best guess about the value of xt+i+j at time t + i, if they are at time
t, is the guess they are forming at time t about the value at time t+ i + j.

Property 2 E {[xt+i − E(xt+i |It )] |St } = 0,

where St is some subset at time t of the full information set It used by individuals at
time t. This property states, that forecasting error is uncorrelated with each and every
component St of the information set It. It asserts that there is no information that may
be used systematically to improve forecasting errors if expectations are rational.

Property 3 {xt+1 − E(xt+1 |It )} is serially uncorrelated with mean zero.

This is a special case of (2), where St contains data on previous forecasting errors.

Property 4 In linear models Chain Rule of Forecasting holds.

This can be explained on an example of the expectation formation used in our model.
Suppose that it is known that

xt = βxt−1 + ut

where the constant parameter β is a positive fraction and ut is a random disturbance which
is serially uncorrelated with mean zero. It comprises past values of ut and of xt, but they
are of no use for predicting of the current value ut. At the beginning of time t, before ut
is known, the Rational Expectation of xt is given by

E (xt|It) = E (βxt−1 + ut|It) = βxt−1

At the same date, the Rational Expectation of xt+1 may be formed as:

E (xt+1|It) = E (βxt + ut+1|It) = βE (xt|It) = β2xt−1

By analogy we can compute the expectation of xet+2, and we would obtain β3xt−1 as
the solution. This iterating of computation of the expectation of future values of xet′ ,
t′ = {t+ 1, t+ 2...} is called Chain Rule of Forecasting.
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4 Model analysis

4.1 Description of the model

We remind the form of the model. The current state of the economy is determined from the
equation (2.1), where xt characterizes the economy at time t and depends on the previous
state and on rational expectation of the future state. Our first aim is to describe the local
perfect foresight dynamics around x̄ = 0 in cases of distinct real roots of the characteristic
polynomial. Several properties of these orbits will be discussed. Then we will decompose
the plane of γ and δ into regions, where x̄ = 0 is stable or unstable and (2.1) is the dif-
ference equation with complex eigenvalues and regions where x̄ = 0 sink, source or saddle
and (2.1) is the difference equation with real eigenvalues.

The perfect foresight dynamics is the dynamics when each foresight fulfills, i.e. xet+1 =
xt+1. Then (2.1) becomes a difference equation:

γxt+1 + xt + δxt−1 = 0, (4.1)

and its characteristic polynomial is

γλ2 + λ+ δ = 0. (4.2)

We are interested in the case when (4.2) has two distinct real roots λ1 = −1+
√

1−4γδ
2γ

and

λ2 = −1−√1−4γδ
2γ

. For them |λ1| < |λ2| holds. This follows from the fact that | − 1 +√
1− 4γδ| < | − 1 − √1− 4γδ|. Eigenvectors can be computed from the matrix form of

(4.1) which is: (
xt
xt+1

)
=

(
0 1
−δ
γ

−1
γ

)
·
(
xt−1

xt

)
(4.3)

From the equation for the eigenvector of the matrix in (4.3) v2 = λv1 we can compute that
eigenvectors are (1, λ1) and (1, λ2) generating the lines

xt+1 = λ1xt, (4.4)

and
xt+1 = λ2xt. (4.5)

The stationary equilibrium x̄ = 0 is a source if |λ1| > 1 (i.e. |λ2| > |λ1| > 1). x̄ is then
unstable, i.e. all the orbits diverges unless the economy was in the stationary equilibrium
at the beginning.

If |λ1| < 1 < |λ2|, x̄ = 0 is a saddle and from the theory of rational expectations
we know that if one basic condition holds, then there exists a unique convergent orbit.
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xt-1

xt

x-1

x0

Figure 12: Determinacy in the case of a saddle.

Precisely this condition is that the convergent line defined by (4.4) projects to the axis of
given variable xt−1 surjectively along the axis of the free variable xt. The existence of the
unique convergent orbit follows from the fact (see figure 12) that line determined by (4.4)
and axis xt−1 are not perpendicular (scalar product of (1, λ1) and (1, 0) is 1). Therefore
if we know x−1 there is a unique x0 = λ1x−1, which gives a unique sequence converging
to x̄ = 0 satisfying (4.1). It is interesting that the second eigenvector is not perpendicular
to (1, 0) as well, and also both eigenvectors are not perpendicular to the second axis (0, 1)
apart from the specific case when δ = 0 (i.e. the current state does not depend on the past
states), when scalar products equal −1±1

2γ
.

At last, if |λ1| < |λ2| < 1 then x̄ = 0 is a sink and is indeterminate, so for any
initial condition x−1 near x̄, there exist infinitely many perfect foresight equilibrium orbits
staying in V (x̄) for all t > 0. Further we can show that if we look for the orbit in the form

xt = c1λ
t
1 +c2λ

t
2, then either c2 6= 0 and xt+1 = (λ2 + ω (t, xt))xt, where ω (t, λ1, λ2)

t→∞−−−→ 0
or c2 = 0 and xt+1 = λ1xt (i.e. the equilibrium orbit lays on the line determined by (4.4) ).

Proof: The case c2 6= 0 can be proved in this way:

xt+1

xt
=
c1λ

t+1
1 + c2λ

t+1
2

c1λt1 + c2λt2
= λ2 +

c1λ
t+1
1 + c2λ

t+1
2 − c1λ

t
1λ2 − c2λ

t+1
2

c1λt1 + c2λt2
=

= λ2 + c1(λ1 − λ2)
λt1

c1λ
t
1 + c2λ

t
2

= λ2 + c1(λ1 − λ2)
1

c1 + c2

(
λ2

λ1

)t = λ2 + ω (t, λ1, λ2) ,

where ω (t, λ1, λ2)
t→∞−−−→ 0. The case c2 = 0 is obvious. �

Interpretation of this property is that either the orbit lies whole on the eigenvector
determined by λ1 (i.e. the initial point lies on this line) or for other initial points the orbit
becomes ”attached” to the second eigenvector corresponding to λ2.

We are interested in such combinations of γ and δ, that x̄ = 0 will be a saddle, because
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Figure 13: Saddle (the darkest region), source (the middle dark region) and sink (the light-
est region) depending on the combinations of γ and δ. The region with vertical (horizontal)
lines denotes such γ and δ that the linear map (4.1) has two complex eigenvalues and x̄ = 0
is asymptotically stable (unstable).

then a unique equilibrium orbit which converges to this stationary equilibrium exists. In
the sink case there are infinitely many converging orbits. The source case is not interest-
ing, because in that case economy explodes and there is no converging orbit. We therefore
decompose the plane of parameters (γ, δ) into regions with different types of equilibrium
orbits, i.e find conditions on γ and δ under which x̄ = 0 is a sink, a saddle or a source
(figure 13).

For real roots of (4.2), discriminant 1− 4γδ must be nonnegative. To have two distinct
eigenvalues, even positive. The equation δ = 1

4γ
is the boundary, which partitions the plane

R2 into three areas (see figure 14), two giving complex eigenvalues and one between them
with real eigenvalues.

Regions with zero, one or two real eigenvalues of modulus different from 1 are separated
by the set of points (γ, δ) for which one eigenvalue is 1 or −1. Denote M the set where at
least one eigenvalue has modulus 1. For the two roots of (4.2) λ1 and λ2 following Vièta’s
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Figure 14: Three areas of R2, two of complex eigenvalues and one of real eigenvalues.

formulas:

λ1 + λ2 =
−1

γ
(4.6)

λ1λ2 =
δ

γ
(4.7)

hold. If λ1 = 1 then Vièta’s formulas give:

1 + λ2 =
−1

γ
(4.8)

λ2 =
δ

γ
(4.9)

and after solving of (4.8), (4.9) we obtain the set of γ and δ such that 1 + γ + δ = 0
holds, the eigenvalues being −1− 1

γ
and 1. This case is interesting also from another point

of view. The system (2.1) with condition 1 + γ + δ = 0 has arbitrary x̄ as a stationary
equilibrium. Moreover the relative weights of the future and past give together the weight
1. By analogy we can rewrite the formulas for the eigenvalue −1:

−1 + λ2 =
−1

γ
(4.10)

−λ2 =
δ

γ
(4.11)

and obtain the equation −1 + γ + δ = 0. This describes the case when the sum of the rel-
ative weights of future and past equals −1. The eigenvalues are −1 and −1

γ
+ 1. Therefore

M = {(γ, δ); 1 + γ + δ = 0 ∨ −1 + γ + δ = 0}.

Thus M contains all (γ, δ) for which x̄ = 0 is nonhyperbolic and the eigenvalues are
real. Conditions on γ and δ for which λ1, λ2 are real and x̄ = 0 is hyperbolic are stated
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in the following lemma in points (i), (ii), (iii). And conditions that the eigenvalues λ1, λ2

are complex numbers and x̄ = 0 is again hyperbolic are in the points (iv), (v).

Lemma 2 The stationary equilibrium x̄ = 0 of the difference equation (4.1) is:
(i) saddle, if δ ∈ (−1− γ, 1− γ) and γ ∈ R,
(ii) sink, if δ ∈ ( 1

4γ
,−1− γ) and γ ∈ (−∞, −1

2
) or if δ ∈ (1− γ, 1

4γ
) and γ ∈ (1

2
,∞),

(iii) source, if δ ∈ (1− γ,∞) and γ ∈ (−∞, 1
2
) or if δ ∈ (−∞,−1− γ) and γ ∈ (−1

2
,∞).

(iv) asymptotically stable and eigenvalues are complex, if γ < −1
2

and δ ∈ (γ, 1
4γ

), or γ > 1
2

and δ ∈ ( 1
4γ
, γ)

(v) unstable and eigenvalues are complex, if γ < 0 and δ ∈ (−∞, γ), or if γ > 0 and
δ ∈ (γ,∞).

Proof: First we concentrate on the real eigenvalues. We will utilize the following interpre-
tation of points (i), (ii), (iii). Equivalent of (i) is to say that the points (γ, δ) lies between
the lines −1 + γ + δ = 0 and 1 + γ + δ = 0. Equally (ii) can be interpreted as 1. (γ, δ) lies
above the line −1 + γ + δ = 0 and γ > 1

2
or 2. (γ, δ) lies below 1 + γ + δ = 0 and γ < −1

2
.

And at last (iii) is in other words such (γ, δ) that 1. this point lies above −1 + γ + δ = 0
and γ < 1

2
or 2. it lies below 1 + γ + δ = 0 and γ > −1

2
.

We first show radial symmetry in absolute values of the eigenvalues with respect to the
point (0, 0), i.e. the eigenvalues change their sign, when we exchange γ for −γ and δ for
−δ. If the parameters in (4.6) and (4.7) are −γ and −δ instead of γ and δ, the following
formulas hold for the roots of the equation (4.2):

λ̄1 + λ̄2 =
1

γ
, (4.12)

λ̄1λ̄2 =
δ

γ
. (4.13)

Comparing (4.6) with (4.12) and (4.7) with (4.13), we see that λ̄1 = −λ1 and λ̄2 = −λ2

solve (4.12) and (4.13). The sink, saddle or source are determined upon the absolute values
and thus thank to the symmetry in absolute value it is sufficient to prove the lemma for
γ > 0. For such γ the two eigenvalues λ1,2 = −1±√1−4γδ

2γ
are continuous functions of γ and δ.

The set M partitions the half plane γ > 0 into four regions 1,2,3 and 4 which are depicted
in the figure (15), since moduli do not change their position with respect to ±1 within
these regions. Now it is sufficient to pick one point from each area and compute the roots
to find out the moduli of eigenvalues. Or, we can alternatively compute the derivatives of
the eigenvalues for the points from M . λ is given implicitly by F (δ, λ) = γλ2 + λ+ δ = 0,
so its derivative with respect to δ is:

∂λ

∂δ
= −

∂F
∂δ
∂F
∂λ

=
−1

2γλ+ 1
.

When we substitute the definitions of λ1,2 we see that λ1 is decreasing and λ2 is increasing
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Figure 15: Regions of sink, saddle and source.

with respect to δ:
∂λ1

∂δ
=

−1

2γ−1+
√

1−4γδ
2γ

+ 1
=

−1√
1− 4γδ

< 0,

∂λ2

∂δ
=

−1

2γ−1−√1−4γδ
2γ

+ 1
=

1√
1− 4γδ

> 0.

We repeat the known facts:
1. If γ + δ + 1 = 0 then λ1 = 1, λ2 = −1− 1

γ
.

2. If γ + δ − 1 = 0 and 0 < γ < 1
2
, then λ1 = −1 and λ2 = 1− 1

γ
.

3. If γ + δ − 1 = 0 and γ > 1
2
, then λ2 = −1 and λ1 = 1− 1

γ
.

Thus for 0 < γ < 1
2
, λ2 is always smaller than −1, i.e. |λ2| > 1. For such γ λ1 decreases

with increasing δ and equals 1 on the line γ + δ + 1 = 0 and −1 on the line γ + δ − 1 = 0.
Therefore below γ + δ + 1 = 0 and above the line γ + δ − 1 = 0 is |λ1| > 1, between them
it is |λ1| < 1. For 0 < γ < 1

2
are (i), (ii), (iii) proved.

We continue with γ > 1
2
. Below γ+ δ+ 1 = 0 λ1 > 1 holds and above this line |λ1| < 1,

because eigenvalues are continuous and change their moduli only for (γ, δ) ∈M . Similarly
λ2 is increasing and on γ + δ − 1 = 0 equals −1. Altogether for γ > 1

2
and points below

γ + δ+ 1 = 0 |λ1| > 1 and |λ2| > 1 hold, between the lines γ + δ+ 1 = 0 and γ+ δ− 1 = 0
|λ1| < 1 and |λ2| > 1 hold and finally above γ + δ − 1 = 0 |λ1| < 1 and |λ2| > 1 hold. The
proof is for real eigenvalues finished.

The eigenvalues of (4.1) are complex when γ < 0 and δ < 1
4γ

or γ > 0 and δ > 1
4γ

. The

eigenvalues are −1±i√4γδ−1
2γ

with the real part −1
2γ

and the complex part ±
√

4γδ−1
2γ

. Thus we



4 MODEL ANALYSIS 21

determine the stability upon the value of:
√(−1

2γ

)2

+

(√
4γδ − 1

2γ

)2

=

√
δ

γ
. (4.14)

If |δ| > |γ| then
√

δ
γ
> 1 and x̄ = 0 is unstable. If |δ| < |γ| then

√
δ
γ
< 1 and x̄ = 0 is

asymptotically stable. Hereby the proof is finished also for the complex eigenvalues. �

We have analyzed all the points (γ, δ) in the plane, so we know which γ and δ are such
that x̄ = 0 will be a saddle stationary equilibrium.

4.2 Introduction of the learning system

We now include the expectation formation in the model and introduce the general learning
system for finding the parameter as it was done in [5]. From now on, we consider the
saddle case. Then the unique convergent orbit under the perfect foresight can be described
as follows:

xt = βxt−1 (4.15)

for every xt−1 in neighborhood of x̄ = 0 and every t ≥ 0 and the growth rate β equals
λ1 (|λ1| < 1) for the saddle case. For both λ1 and λ2 is (4.15) the invariant line in the
(xt−1, xt)-space. If the initial point lies on the line xt = λ1xt−1 then dynamics evolve along
the eigenvector and converges to the stationary equilibrium x̄ = 0. Individuals form their
expectations by iterating twice (Property 4 in Subsection 3.3) at time t, therefore their
expectation is xet+1 = β2xt−1. The economy is governed by (2.1), therefore the current
state is

xt = −(γβ2 + δ)xt−1, (4.16)

where we have substituted their expectation xet+1 = β2xt−1 into (2.1). When β equals λ1

or λ2 from (4.2) −(γβ2 + δ) = λi, i = 1, 2. Hereby the expectation will fulfill.

To maintain the economy on the equilibrium orbit in the saddle case, the agents have
to know the parameter λ1. When the individuals do not know the model and rules how the
economy develops, they try to find the parameter λ1 by a learning process. They form their
expectation about xt+1, estimating the parameter βt at time t and revise this parameter
at the beginning of the period t+ 1 according to the observed error xt − βtxt−1. In [5] the
following class of learning algorithms is considered:

xt = −
(
γβ2

t + δ
)
xt−1, (4.17)

βt+1 = βt + αth(t)xt−1(xt − βtxt−1), (4.18)

where αt > tends toward 0 as t becomes large, and h(t) is a function of past history of the
state variable. In [5] it is argued that h(t) > 0 because if the individuals overestimate the
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actual growth rate xt < βtxt−1 they should set βt+1 < βt in (4.18). Here we note, that the
argument is right, but the reason is insufficient. For example, if xt, xt−1 are negative and
βt is positive then h(t) should be positive too (β will increase (4.18)) but the inequality
xt < βtxt−1 should be called underestimation now.

We will use the simplified learning process of the latter (4.17), (4.18) and study its
dynamics. We substitute (4.17) into (4.18) and obtain the equation for βt+1:

βt+1 = βt + αth(t)xt−1[−
(
γβ2

t + δ
)
xt−1 − βtxt−1] (4.19)

or
βt+1 = βt + αth(t)x2

t−1(−γβ2
t − βt − δ). (4.20)

In [5] the following particular case of this system is described: αt = γt/t and h(t) =
t/(γtx

2
t−1 + . . . + γ0x

2
−1) with forgetting factors γs ≥ 0 for s = 0, . . . , t. If we use h(t) =

t/|xt−1|, αt = α/t with a parameter α ∈ (0, 1) and the substitution bt = βt+1, we will
obtain the following system:

xt = −
(
γb2

t−1 + δ
)
xt−1, (4.21)

bt = bt−1 + α|xt−1|(−γb2
t−1 − bt−1 − δ). (4.22)

If we use h(t) = t/x2
t−1 the system becomes:

xt = −
(
γb2

t−1 + δ
)
xt−1, (4.23)

bt = bt−1 + α(−γb2
t−1 − bt−1 − δ). (4.24)

Both h(t) are positive.

At first we study the fixed points and their stability of the first learning system (4.21)
and (4.22), We compute the stationary equilibria:

x̄ = −(γb̄2 + δ)x̄,

b̄ = b̄ + α|x̄|(−γb̄2 − b̄− δ).

They are (0, b̄) for arbitrary b̄. For the linearization we need to compute the derivative
with respect to x of v(x) = b+α|x|(−γb2−b−δ) in x = 0. Because the derivative does not
exist, we can avoid this problem by using the derivative from the left anf from the right.
Then the linearization in (x, b) in x < 0 subspace is:

(
−γb2 − δ −2γbx

α(γb2 + b+ δ) 1 + αx(2γb+ 1)

)

and in the point (0, b̄) it is: (
−γb̄2 − δ 0

α(γb̄2 + b̄ + δ) 1

)
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The eigenvalues can be computed from the equation

(−γb̄2 − δ − λ̄)(1− λ̄) = 0.

The eigenvalues in the stationary equilibria (0, b̄) are 1 and −γb̄2 − δ. The eigenvectors

are

(
0
1

)
for the eigenvalue 1 and

(
1 + γb̄2 + δ

−α(γb̄2 + b̄ + δ)

)
for −γb̄2 − δ. By analogy we

can compute the linearization in x > 0 subspace and obrtain the same eigenvalues and

aigenvectors

(
0
1

)
for the eigenvalue 1 and

(
1 + γb̄2 + δ

α(γb̄2 + b̄ + δ)

)
for −γb̄2− δ. We see that

for b̄, such that | − γb̄2 − δ| > 1, these stationary equilibria (0, b̄) are unstable. For other b̄
we cannot claim anything about the stability.

Now we return to the second system (4.23) and (4.24), which is a little bit easier. We
compute the stationary equilibria by analogy from the equations:

x̄ = −(γb̄2 + δ)x̄,

b̄ = b̄ + α(−γb̄2 − b̄− δ),

which are two points (0, λ1) and (0, λ2). The linearization

(
−γb2 − δ −2γbx

0 1 + α(−2γb− 1)

)

in these stationary equilibria is:
(
−γλ2

i − δ 0
0 1 + α(−2γλi − 1)

)

for i = 1, 2. Before computing the eigenvalues of this system, we simplify this linearization
using the properties of λ1 and λ2. First we know that −γλ2

i − δ = λi because λ1 and λ2 are

the roots of (4.2) and further we know that λ1,2 = −1±√1−4γδ
2γ

therefore 1 +α(−2γλi− 1) =

1 + α(1 ∓ √1− 4γδ − 1) = 1 ∓ α
√

1− 4γδ. Now the eigenvalues of the linearization
are evident and they are λ1 and 1 − α√1− 4γδ in the point (0, λ1) and similarly λ2 and
1 + α

√
1− 4γδ in (0, λ2). Thus we can see that (0, λ2) is always unstable stationary

equilibrium and (0, λ1) is a sink for a sufficiently small parameter α < 2√
1−4γδ

, otherwise it

is a saddle. The eigenvectors are in both stationary equilibria the same and they are (1, 0)
and (0, 1).

4.3 Analysis of the dynamics of the first learning system

The dynamics of the learning system (4.21) and (4.22) is interesting also because its lin-
earization in fixed points has eigenvalue 1. First we depict the orbits of the numerical
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Figure 16: An example of the dynamics with
parameters: γ = −5

3
, δ = 91

60
, α = 0.2, b0 =

1.18, x0 = 2.

Figure 17: An example of the dynamics with
parameters: γ = 5

3
, δ = −91

60
, α = 0.2, b0 =

−0.94, x0 = 2.

simulations of the dynamics in figures 16 and 17. In the figure 16 the eigenvalues of (4.1)
are 1.3 and −0.7. In this dynamics xt converges to numerical zero and bt to −0.700027
in 300 iterations. In the second figure 17 the eigenvalues has opposite signs, i.e. they are
−1.3 and 0.7, and in the last iteration xt was also numerical zero and bt was 0.700003.
We consider the dynamics in these figures as an interesting example on how the economy
moves to a stationary equilibrium (0, b̄) (|xt| decreases) and it turns out that the economy
moves off from this stationary equilibrium (|xt| increases) for some time to converge later
to another stationary equilibrium (0, b′).

Firstly we are interested in the points where xt is changing its monotonicity in absolute
value, from decreasing to increasing and vice versa. For this reason we specify several cru-
cial values of bt and prove their order. So look at such bt that xt = xt−1. From (4.21) for bt

−γb2
t − δ = 1, i.e. bt = ±

√
−1−δ
γ

, must hold. We denote B1 =
√
−1−δ
γ

and B2 = −
√
−1−δ
γ

.

Assume γ is positive. If B2 < bt < B1, then −γb2
t − δ > 1, therefore from (4.21) we

see that |xt| is increasing for such bt. For B̃2 < bt < B2 < 0 and B̃1 > bt > B2 > 0

−1 < −γb2
t − δ < 1 holds, where B̃1 =

√
1−δ
γ

and B̃2 = −
√

1−δ
γ

and therefore for these bt

|xt| is decreasing. Finally if bt is greater than B̃1 or smaller than B̃2, then |xt| is increasing
for −γb2

t − δ < −1. This analysis of monotonicity of |xt| is depicted in figure 18. As a
supplement to the figure 18, we note that, when −γb2

t − δ = 0, then xt+1 changes its sign,

i.e. for bt = ±
√
−δ
γ

. Altogether, now it is interesting to see, in which order are the values

of all these points.

For positive γ and such (γ, δ) that B1, B2, B̃1, B̃2,
√
−δ
γ

and
√
−δ
γ

exist the following

order holds:

B̃1 >

√
−δ
γ

> λ1 > B1 > B2 > −
√
−δ
γ

> B̃2 > λ2. (4.25)

For this order we can depict the eigenvectors as follows in figure 19.
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Figure 18: Monotonicity of x according to the bt for γ positive.

Proof: Most of the inequalities in (4.25) are trivial, only these three inequalities are
not evident:

B̃2 > λ2, (4.26)
√
−δ
γ

> λ1, (4.27)

λ1 > B1. (4.28)

It can be shown in several ways. For example we can utilize the function g(bt) = γb2
t + δ

which is decreasing for bt negative. The values of this function in B̃2 and λ2 are:

g(B̃2) = γ
1− δ
γ

+ δ = 1,

g(λ2) = −λ2,

where for computation of the value in λ2 we used (4.2). We know that |λ2| > 1 > |λ1|.
For positive γ is λ2 negative what arises from its definition (λ2 = −1−√1−4γδ

2γ
). Therefore

g(λ2) > g(B̃2) and B̃2 > λ2.
By analogy we can prove the inequalities of (4.27) and (4.28). For positive bt this

function is increasing. Values of g(bt) in
√
−δ
γ

, λ1 and B1 are following:

g

(√
−δ
γ

)
= 0,

g(λ1) = −λ1,

g(B1) = −1,

the value in λ1 follows from (4.2) as before. For proving the inequality (4.27) we utilize the

fact that δ is negative to make
√
−δ
γ

real. Further holds, that for negative δ and positive γ
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Figure 19: Eigenvalue −γb2 − δ and its corresponding eigenvector for γ > 0. Eigenvalue 1
has corresponding eigenvector (0, 1)
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is −1 +
√

1− 4γδ positive, therefore λ1 is positive. Finally for such λ1 g
(√

−δ
γ

)
> g(λ1)

holds, so
√
−δ
γ
> λ1. The last inequality (4.28) follows from the property |λ1| < 1 < |λ2|,

therefore λ1 > B1. Thus for positive γ the order is proved. �

This study of monotonicity of |xt| can be repeated for negative γ. For bt such that
bt > B1 or bt < B2 the expression −γb2

t − δ is smaller than −1 and therefore |xt| is increas-
ing. For B1 > bt > B̃1 or B2 < bt < B̃2 the expression −γb2

t − δ is between −1 and 1 and
therefore |xt| is decreasing. And at last when B̃1 > bt > B̃2 then |xt| increases, because
−γb2

t − δ is greater than 1. The figure 18 represents also this case, but we would have to
switch B1 with B̃1 and B2 with B̃2.

For γ negative, there is another ordering, namely

λ2 > B1 >

√
−δ
γ

> B̃1 > 0 > B̃2 > λ1 > −
√
−δ
γ

> B2. (4.29)

Proof: Again we need to show the following inequalities:

λ2 > B1, (4.30)

B̃2 > λ1, (4.31)

λ1 > −
√
−δ
γ
. (4.32)

The validity of the inequality (4.30) can be shown through the function g(bt) too, but
we have to note that for negative γ the monotonicity changes (for negative values it is
increasing, for positive decreasing).

g(λ2) = −λ2

g(B1) = −1

λ2 is positive for negative γ and further we know |λ2| > 1. Therefore g(λ2) < g(B1), so we
have shown (4.30). We continue with the inequalities (4.31) and (4.32).

g(B̃2) = 1

g(λ1) = −λ1

g

(
−
√
−δ
γ

)
= 0

We presume positive δ to have real −
√
−δ
γ

, therefore −1+
√

1− 4γδ > 0 and λ1 is negative.

Moreover 0 < |λ1| < 1, so g(B̃2) > g(λ1) > g
(
−
√
−δ
γ

)
. Therefore B̃2 > λ1 > −

√
−δ
γ

.
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Thereby is the proof of the order for negative γ finished. �

To learn how the dynamics will move in one iteration we have to supplement a similar
study of bt. We concentrate on the quadratic function f(bt) = γb2

t + bt + δ. For the roots
of f(bt) = 0 (4.22), bt = bt−1 holds. These roots are the same as of the equation (4.2), i.e.
the eigenvalues λ1 and λ2 from which the individuals want to find λ1. If γ is positive and
bt is between λ1 and λ2, f(bt) < 0 and thus bt+1 > bt. If bt is not in this interval, it will
decrease. The contrary holds for γ negative.

It is useful now to draw a figure rather then to describe it further in words. In these
phase portraits (figures 20 and 21) is shown how the initial point from the area where b0

is between −
√
−δ/γ and B2 for positive γ may converge to (0, λ1) in a ”S”-shaped orbit.

The same case is for γ negative and initial b0 between
√
−δ/γ and B̃1.

We now study the case of positive γ and ask when the orbit will converge to some point
where bt < B2 and on the contrary when the orbit jump over B2 (will have the interesting
twice bent orbit). The jump over B2 in one step can be easily computed straight from the
model (4.22) giving the condition for example on the initial point b0 (if others parameters
are given). This same holds for the parameter α if we already know b0. We simply set
bt = B2 and compute the necessary b0 or α that the orbit will jump over B2 in one step.
But it is much more interesting whether it will jump over B2 and we do not ask about
the number of steps. This was done numerically and can be seen in the figure 22. The
initial points of two depicted orbits are (2,−0.95) (this orbit converge to (0,−0.749)) and
(2,−0.91) (this orbit converge to (0, 0.70003)).

The second interesting numerical simulation was computing of such (x0, b0) that they
will converge to some point (x′, b′), where x′ is close to zero and b′ ∈ (B1, λ1). This simula-
tion is in the figure 23. It is important now to emphasize that these numerical simulations
are sensitive to the parameter α which the individuals has set and which describes the
weight of the previous error. The smaller the parameter α is the greater x0 appear in the
area of initial points, which is depicted in figure 23, and vice versa. For parameters given
in figure 17 the simulations show that for arbitrary α ∈ (0, 1), the smallest b0 from this
area is bounded from below by approximately −0.026667. Thus for greater α, the depicted
area grows mostly in the x0 direction.

This shows the existence of such areas, that if the initial point is from one of these
areas then it converges to a point (0, b) where b 6= λ1. We know that if for the eigenvalue
| − γb2 − δ| > 1 holds, then (0, b) is unstable fixed point. The individuals will never learn
b from the following intervals (B1, B2), (B̃1,∞) and (−∞, B̃2). Therefore if the economy
converges, the individuals will learn the parameter b ∈ (B̃1, B1) or b ∈ (B2, B̃2). We have
shown in the numerical simulation depicted in figure 22 that there exist a curve q dividing
the area (x, b) for b ∈ (B2, B̃2). Orbits of all the initial points above the line q will converge
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Figure 20: Phase portrait for γ positive (where the sign of xt is changing, arrows were
replaced by the lines with a square at the end).

Figure 21: Phase portrait for γ negative (where the sign of xt is changing, arrows were
replaced by the lines with a square at the end).
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Figure 22: Initial points below the curve q
converge to (0, b), b < B2 < 0 (y0 orbit), and
those above this line has ”S”-shaped orbit

converging to (0, b′), where B1 < b′ <
√
−δ
γ

(x0 orbit). Parameters of this simulation are
the same as in the figure 17.

Figure 23: Initial points from the shaded area
converge to (0, b), B1 < b < λ1. Parameters
of this simulation are the same as in the figure
17.

to (0, b′), where B1 < b′ < B̃1 (i.e. possibly to λ1). If (x0, b0) will be below q, the orbits
will converge to xt = 0 sooner than bt will be over B2 and thus the individuals will never
learn the parameter λ1. But no matter what the parameter is, once x0 is zero, the economy
is in its stationary equilibrium. Secondly if the initial point is from the area depicted in
figure 23, individuals will not learn the parameter λ1, but b ∈ (B1, λ1) instead. But also in
this case, although the individuals has not set the economy on the equilibrium orbit, the
economy is at last in its stationary equilibrium. We have shown that the individuals do
not have to find the parameter λ1.

4.4 Analysis of the dynamics of the second learning system

We return to the learning system (4.23) and (4.24). We remind that stationary equilibrium
(0, λ2) is always a source and (0, λ1) is a sink for α < 2√

1−4γδ
and otherwise it is a saddle.

At the beginning we have done several simulations. In figure 24 the eigenvalues of (4.1)
are 1.3 and −0.7. In this dynamics xt converges to numerical zero and bt to −0.7 in 300
iterations. In the second figure 25 the eigenvalues have opposite signs, i.e. they are −1.3
and 0.7, and in the last iteration xt was also numerical zero and bt was 0.7. Note that the
interesting ”S-shaped” orbit occurs also if the individuals use this second learning system.

The analyses of one step move of difference equations (4.21) and (4.23) depending on
the different input values of bt are identical. Thus the figure 18 holds also for this learning
system. We remind, that this figure holds for positive γ and for negative γ there have to
be interchanged B1 with B̃1 and B2 with B̃2 .
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Figure 24: An example of the dynamics with
parameters: γ = −5

3
, δ = 91

60
, α = 0.2, b0 =

1.28, x0 = 2.

Figure 25: An example of the dynamics with
parameters: γ = 5

3
, δ = −91

60
, α = 0.2, b0 =

−0.91, x0 = 2.

In the equation for bt (4.24), there is no more xt−1 and the dynamics of bt can be studied
separately. Using the transformation bt = yt+1 + λ2, (4.24) becomes:

yt+1 + λ2 = yt + λ2 − α(γy2
t + 2γλ2yt + γλ2

2 + yt + λ2 + δ),

and because λ2 is the root of (4.2) we can simplify it to:

yt+1 = yt − α(γy2
t + 2γλ2yt + yt).

We know that λ2 = −1−√1−4γδ
2γ

, therefore it can be further rewritten as

yt+1 = −αγy2
t + yt(1 + α

√
1− 4γδ).

To transform it into the logistic equation, we use the substitution yt = µ
αγ
zt where µ =

1 + α
√

1− 4γδ and obtain:

µ

αγ
zt+1 = −αγ µ2

(αγ)2
z2
t + µ

µ

αγ
zt,

or after simplifying
zt+1 = µzt(1− zt). (4.33)

Our scalar parameter µ is always greater than 1. From Subsection 3.2 about the logistic
equation we know that for such µ there exist two stationary equilibria z̄1 = 0 and z̄2 =
1 − 1/µ. It can be verified by backward transformation that these points are λ2 and λ1

respectively. For 0 ≤ µ ≤ 4 one has zt ∈ 〈0, 1〉. If zt = 0 then bt = λ2. If zt = 1, then
yt = µ

αγ
and bt = λ1 + 1

αγ
. Thus, for positive γ, λ1 + 1

αγ
> λ1 and orbits of initial points

from the interval
〈
λ2, λ1 + 1

αγ

〉
stay in this interval. Orbits of initial points which do not

belong to this interval have a divergent orbit to −∞ (lemma 1, figure 26). For γ < 0 this

interval changes to
〈
λ1 + 1

αγ
, λ2

〉
. If we assume µ to be smaller than 4, in fact we assume
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Figure 26: Depicted (4.24) for γ > 0 and parameters as in figure 25.

that the parameter α, which weights the error, is bounded by

α ≤ 3√
1− 4γδ

(4.34)

for the parameters γ and δ given by economy. Thus if want to determine the stability,
from the part about logistic equation we see that z̄1 = 0 is unstable since µ > 1 and
z̄2 = 1− 1/µ is asymptotically stable for 0 < α < 2√

1−4γδ
(after transformation this corre-

sponds to 1 < µ < 3) and unstable for 2√
1−4γδ

< α ≤ 3√
1−4γδ

(this corresponds to µ > 3).

If the individuals set the parameter α from the interval
(

2√
1−4γδ

, 3√
1−4γδ

〉
λ1 becomes un-

stable as well as λ2. For these values of α there exists only periodic orbits or chaos.
1. If α ∈ ( 2√

1−4γδ
,
√

6√
1−4γδ

) (i.e. µ ∈ (3, 1+
√

6)), then for the parameters of our simulation in

figure 25 it is 0.6 < α < 3
√

6
10

. Therefore if α < 0.6, then λ1 = 0.7 is an asymptotically stable
and if α = 0.7, then there is asymptotically stable periodic orbit {0.0420641, 1.07222} .
2. If α ∈ (

√
6√

1−4γδ
, 2.544√

1−4γδ
) (this corresponds to µ ∈ (1 +

√
6, 3.544)), then it is 3

√
6

10
<

α < 0.7632 for values of our simulation. Simulations for α = 0.75 show a periodic orbit
{1.4999,−0.228105, 1.01543, 0.102476}.
3. If α ∈ ( 2.544√

1−4γδ
, 2.564√

1−4γδ
) (i.e. µ ∈ (3.544, 3.564)), then for our parameters it is 0.7632 <

α < 0.7692 and for example if α = 0.765 then the iterations converge to the periodic orbit
{−0.268895, 1.00487, 0.108943, 1.17072,−0.312125, 0.962688, 0.204853, 1.15489}.
4.If α > 2.570√

1−4γδ
(i.e. µ > 3.570), then chaos appears (in our simulation for α > 0.771).

From this analysis we can conclude that the dynamics depends greatly on the correcting
parameter α. For 0 < α < 2√

1−4γδ
there exist a unique asymptotically stable stationary

equilibrium, which the individuals will find unless the initial guess b0 was outside the inter-
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val (λ2, λ1 + 1
αγ

) (for γ positive and for γ negative this interval is (λ1 + 1
αγ
, λ2)). Therefore,

they will set the economy on the convergent orbit. For 2√
1−4γδ

< α < 3√
1−4γδ

, this becomes

more complicated because cycles occurs. If the periodic points are {p1, p2, . . . , pk}, from
(4.23) we see that xt+k−1 = (−1)k(γp1 + δ)(γp2 + δ) . . . (γpk + δ)xt−1 and thus convergence
depends on the moduli of the product (γp1 + δ)(γp2 + δ) . . . (γpk + δ). We do not know
whether the economy will converge to the stationary equilibrium x̄ = 0. There is also the
case that the dynamics of bt has the chaotic behavior and the dynamics of xt characterizing
the economy is questionable.

The simulations show the possibility of both, convergence and divergence. In our
example from figure 25 with the parameter α = 0.7 the asymtotically stable periodic
orbit is given in point 1. above. For these values |(γp1 + δ)(γp2 + δ)| < 1 holds and
therefore the economy converges to its stationary equilibrium. On the contrary if we set
γ = 2, δ = −2, α = 0.55, the asymtotically stable periodic orbit is {−1.14494,−0.173237},
and for these parameters |(γp1 +δ)(γp2 +δ)| > 1 holds. Thus the economy do not converge
to the stationary equilibrium x̄ = 0 in this case.

Finally if α > 3√
1−4γδ

, the orbit of b0 does not stay in the interval (λ2, λ1 + 1
αγ

), so there

is a time t′ for which b′t 6∈ (λ2, λ1 + 1
αγ

) and from time t′ the orbit diverges to −∞ (lemma

1). So the economy diverges too.
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5 Conclusion

A study of linear systems with rational expectations is rather known, because then Cer-
tainty Equivalence holds and the model is simplified into the difference system. The equi-
librium orbit under Rational expectations then differs only in small random fluctuations
from the solution of the difference system. In this master thesis we have tried to provide
the analysis of the learning system with rational expectations, which is nonlinear.

We have supposed a linear model for the state of the economy x, which is unknown
for the individuals. They form their rational expectations about the future by the formula
xt = βtxt−1. We have defined the values λ1 and λ2 and explained why we focus on the case
when |λ1| < 1 < |λ2|. We have found the conditions on γ and δ such that |λ1| < 1 < |λ2|
holds (lemma 2). We have shown that if the individuals set βt = λ1, they will form such ra-
tional expectations that the economy will move along the convergent orbit which is unique
under perfect foresight.

However the nonlinear learning system, which individuals use for finding the correct βt
and xt, does not have to provide these desirable values and the convergent orbit is rather
different from the perfect foresight orbit. Firstly, we have found that if the economy con-
verges (xt → 0), the individuals may not find βt → λ1. Secondly if they even find out that
xt → 0 and βt → λ1, sometimes it is for the price that |xt| was decreasing, then |xt| had to
increase for a certain time to finally converge to zero. In the real world this would cause
uncertainty about xt and therefore is not desirable. Thirdly if the initial guess b0 was in
specified intervals (b0 < B̃2 or b0 > B̃1 for γ > 0, b0 < B2 or b0 > B1 for γ < 0 ), then the
economy will not converge to its stationary equilibrium x̄ = 0.

Furthermore, the second learning system was sensitive to the revision parameter α. If
it was badly set, the periodic orbits of b0 occurs or even the orbit of b0 can have chaotic
behavior. The simulations show that the economy may converge to its stationary equi-
librium x̄ = 0 as well as may diverge from this stationary equilibrium. The proof of this
convergence or divergence for certain parameters would be interesting for further study of
this model.
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