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Abstract

HOLOS, Matúš: Mean-Variance Hedging for Exotic Options [Master thesis],

Comenius University Bratislava, Faculty of Mathematics, Physics and Informat-

ics, Department of Applied Mathematics and Statistics, Economic and Financial

Mathematics, supervisor: Prof. Aleš Černý, 2009, 43 p.

The task is to apply the standard mean-variance hedging theory to special

case of lookback options, considering both fixed and floating strike contracts. The

model for stock returns will be obtained by discretizing a Lévy process (that is we

will consider independent and identically distributed stock returns). In this model

we have to identify the relevant exogenous state variables, consider possible state

space reduction by change of numeraire, and implement the model numerically for

plausible parameter values.

Keywords: mean-variance hedging, lookback options, locally optimal strategy,

levy processes



Abstrakt

HOLOS, Matúš: Mean-Variance zaistenie pre exotické opcie [Diplomová práca],

Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky,

Katedra aplikovanej matematiky a štatistiky, Ekonomická a finančná matematika

školitel: prof. Ing. Aleš Černý, PhD., Bratislava, 2009, 43 s.

Práca si kladie za úlohu aplikovať štandardnú teóriu kvadratického zaistenia

na špeciálny pŕıpad lookback opcíı s pevnou a plávajúcou expiračnou cenou. Ako

model pre výnosy akcie voĺıme diskretizované Lévyho procesy (uvažujeme nezávisle

a identicky rozdelené výnosy akcie). V modeli muśıme identifikovať relevantné

exogénne stavové premenné, zvážǐt pŕıpadnú redukciu priestoru stavových pre-

menných zmenou numeraire a implementovať model pre hodnoverné hodnoty

parametrov.

Kľúčové slová: kvadratické zaistenie, lookback opcia, lokálne optimálna stratégia,

lévyho procesy
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Introduction

Purpose of this thesis is to implement results of the classical mean-variance

hedging theory for the special case of lookback options. This involves computation

of mean-value process, locally optimal hedge and the unconditional hedging er-

ror. First chapter reviews general theory and presents further auxiliary theoretical

results required for the implementation. Second chapter describes the implemen-

tation itself and demonstrates the necessity to increase efficiency by a change of

numeraire, also presented in this chapter. The choice of appropriate model for

stock returns is contained in the third chapter, where we introduce Itô and Lévy

processes. Finally, the fourth chapter provides results and analysis of convergence.

Program codes can be found on enclosed CD.
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Chapter 1

Mean-Variance Hedging

The most commonly used tool for pricing option contracts is the Black Scholes

model. One of its results is that under certain assumptions, it is possible to create

a perfect self-financing hedging strategy to replicate an option. This, of course,

does not guarantee elimination of risk for option issuer, since the model assumes

stock price to be a pure diffusion process and the possibility of continuous trading.

If we want to analyze hedging error, we need to step out of the Black Scholes model

into an environment that permits trading only at certain times and allows for price

jumps.

Our objective will be to minimize unconditional expected squared hedging error,

which is equivalent to choice of quadratic utility function. In order to formulate

this task mathematically, let us first introduce some notation.

1.1 Notation and Assumptions

We assume contingent claim H with time to maturity T ∈ N , set of trading dates

τ := {0, 1, ..., T}, a probability space (Ω, P,F) with a filtration F = {Ft}t∈τ , where

FT = F and F0 is trivial. Assume that contingent claim H is FT measurable and

H ∈ L2 (P ).

S represents discounted stock price process. We assume that S is adapted to

introduced filtration F and that it is locally square integrable:

Et
[
(∆St+1)2] <∞
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Mean-Variance Hedging for Exotic Options

for t < T , where ∆St+1 := St+1 − St and

Et [X] = E [X|Ft] . (1.1)

As we have stated above, our objective will be to minimize unconditional ex-

pected squared hedging error

min
ϑ
E
[
(v + ϑ • ST −H)2] , (1.2)

where v is an admissible initial endowment, ϑ is an admissible trading strategy and

ϑ • ST represents gains from trading in the time interval [0, T ].

Definition 1. We say that (v, ϑ) is an admissible endowment-strategy pair iff v

is F0 measurable, ϑ is predictable (meaning that ϑt is Ft−1 measurable for t ∈
{1, ..., T}) and

v + ϑ • ST := v +
T∑
t=1

ϑt∆St ∈ L2 (P ) .

Definition 2. We say that process S is arbitrage-free iff for all Ft−1 measurable

portfolios ϑt

P (ϑt∆St ≥ 0) = 1⇒ P (ϑt∆St = 0) = 1. (1.3)

Further on we assume S to be arbitrage-free. Denote

G
v,ϑ(v)
t := v + ϑ (v) • St (1.4)

a value of portfolio at time t with a self-financing property Gv,ξ
t+1 = Gv,ξ

t +ξt+1∆St+1.

Since now we have formulated the problem mathematically, we can analyze the

solution.

1.2 Globally optimal strategy

According to [2]
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Theorem 1.2.1. Under the assumptions of section 1.1 the process L given by

LT = 1,

Lt−1 = Et−1

[
Lt

(
1− Et−1 [Lt∆St]

>Et−1

[(
Lt∆St∆S

>
t

)−1
]

∆St

)]
,

is (0, 1]-valued and the opportunity-neutral measure P ∗,

dP ∗

dP
:=

T∏
t=1

Lt
Et−1 [Lt]

,

is well-defined. The processes λ̃∗, V ∗ and ξ∗ given by

λ̃∗t = Et−1 [Lt∆St]
>Et−1

(
Lt∆St∆S

>
t

)−1
(1.5)

= EP ∗

t−1 [∆St]
>EP ∗

t−1

(
∆St∆S

>
t

)−1
, (1.6)

V ∗t−1 = Et−1

[
1− λ̃∗t∆St
1−∆K̃∗t

V ∗t

]
, V ∗T = H, (1.7)

∆K̃∗t = EP ∗

t−1 [∆St]
>EP ∗

t−1

(
∆St∆S

>
t

)−1
EP ∗

t−1 [∆St] , (1.8)

ξ∗t = EP ∗

t−1

[(
V ∗t − V ∗t−1

)
∆St

]>
EP ∗

t−1

(
∆St∆S

>
t

)−1
(1.9)

are well-defined. For a fixed admissible initial endowment v ∈ R the strategy ϕ (v)

given by

ϕt (v) = ξ∗t + λ̃∗t

(
V ∗t−1 −G

v,ϕ(v)
t−1

)
, (1.10)

is admissible and minimizes the expected squared hedging error among all admissible

strategies with initial endowment v, while (V ∗0 , ϕ (V ∗0 )) is the optimal endowment-

strategy pair if the hedging error is minimized over the initial endowment as well.

Value of unconditional expected squared hedging error for (v, ϕ (v)) is

E

[(
G
v,ϕ(v)
T − V ∗T

)2
]

= L0 (v − V ∗0 )2 +
T∑
t=1

E [Ltψ
∗
t ], (1.11)

where ψ∗t = EP ∗
t−1

[(
V ∗t − ξ∗t ∆St − V ∗t−1

)2
]
.
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For proof see [2, Theorem 8.7].

Remark 3. Theorem presents globally optimal solution of a special case of 1.2

with a finite number of trading dates. General solution is presented in [1], where

assumptions are that S is a locally square-integrable semimartingale and there exist

some equivalent σ-martingale measure with square-integrable density, which in the

model of section 1.1 is implied by the no-arbitrage assumption, see [10]. Moreover,

[2] shows that the general notion of admissibility presented in [1] simplifies to that

of Definition 1 in a model with finite number of trading dates.

Further on, we consider S to have only one dimension. In this setting, V ∗t−1 is

the initial endowment and ξ∗t a trading strategy of a locally optimal hedge

{
V ∗t−1, ξ

∗
t

}
:= arg min

vt−1,ϑt∈L0(Ω,Ft−1,P )
Et−1

[
Lt (vt−1 + ϑt∆St − V ∗t )2] (1.12)

:= arg min
vt−1,ϑt

EP ∗

t−1

[
(vt−1 + ϑt∆St − V ∗t )2]. (1.13)

This problem is identical to finding coefficients of a linear regression with V ∗t being

explained variable and vt−1 and ϑt being coefficients of explanatory variables 1 and

∆St respectively. Standard approach yields

ξ∗t =
EP ∗
t−1 [V ∗t ∆St]

EP ∗
t−1

[
(∆St)

2] ,
V ∗t−1 = EP ∗

t−1 [V ∗t ]− ξ∗tEP ∗

t−1 [∆St] .

However, it is also possible to use Frisch-Waugh-Lovell theorem [5] to obtain

the estimate ξ1. This theorem suggests that if we rewrite a regression as

Y = X1β1 +X2β2 + ε

and define Y ∗ = M1Y and X∗2 = M1X2 as OLS residuals of regressing Y and X2 on

X1 where M1 is a idempotent projection matrix into the space orthogonal to the

space generated by columns of X1, we can obtain OLS estimate of β̂2 by regressing

Y ∗ on X∗2 . Furthermore, since we are interested only in β̂2, we can use idempotency

of matrix M1 and drop the transformation of Y . This implies that we will need

only one auxiliary regression. In our case, Y = V ∗t , X2 = 1 and X1 = ∆St.
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Let us create a univariate auxiliary regression of 1 on explanatory variable ∆St.

Thus we get an estimate

λ̃t
∗

:= arg min
ϑt

EP ∗

t−1

[
(ϑt∆St − 1)2] =

EP ∗
t−1 [∆St]

EP ∗
t−1

[
(∆St)

2] , (1.14)

and a sum of squares of residuals

1−∆K̃∗t := min
{ϑ1}

EP ∗

t−1

[
(ϑ1∆St − 1)2] = 1−

(
EP ∗
t−1 [∆St]

)2

EP ∗
t−1

[
(∆St)

2] . (1.15)

Residuals from this auxiliary regression are 1 − λ̃∗t∆St. Now we apply results of

Frisch-Waugh-Lovell theorem and express V ∗t−1 as a coefficient of regressing V ∗t on

1− λ̃∗t∆St.

V ∗t−1 = EP ∗

t−1

[
1− λ̃∗t∆St
1−∆K̃∗t

Vt

]
(1.16)

It is straightforward now to evaluate ξ∗t with known V ∗t−1. Regression 1.13

reduces to regression of V ∗t − V ∗t−1 on ∆St and therefore

ξ∗t =
EP ∗
t−1

[(
V ∗t − V ∗t−1

)
∆St

]
EP ∗
t−1

[
(∆St)

2] (1.17)

Denote residuals of this equation

e∗t = V ∗t−1 + ξ∗t ∆St − V ∗t .

Remark 4. Define probability measure Q∗ as

dQ∗

dP ∗
:=

T∏
t=1

1− λ̃∗t∆St
1−∆K̃∗t

. (1.18)

Then Q∗ is a risk neutral measure under P and we can write V ∗t−1 = EQ∗ [V ∗t ]

In order for Q∗ to be well defined it must have a mass of 1

EP ∗

t−1

[
1− λ̃∗t∆St
1−∆K̃∗t

]
=

1− λ̃∗tEP ∗
t−1 [∆St]

1−∆K̃∗t
= 1

8
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and it must price S correctly under P

EP ∗

t−1

[
1− λ̃∗t∆St
1−∆K̃∗t

∆St

]
= Et−1

[
Lt

Et−1 [Lt]

1− λ̃∗t∆St
1−∆K̃∗t

∆St

]

=
Et−1 [Lt∆St]− Et−1[Lt∆St]

Et−1[Lt(∆St)2]
Et−1

[
Lt (∆St)

2]
Et−1 [Lt]− (Et−1[Lt∆St])

2

Et−1[Lt(∆St)2]
= 0.

Remark 5. If stock returns Rt = St
St−1

are IID distributed, Lt is deterministic for

t ∈ τ and P and P ∗ are equivalent.

This follows from the property of process Lt. If stock returns are IID and Lt is

deterministic, then Lt−1 is also deterministic, since

(Et−1 [∆St])
2

Et−1

[
(∆St)

2]
is in the presence of IID stock returns deterministic. Lt is defined recursively from

LT = 1 and thus Lt is deterministic for all t. It follows that

dP ∗

dP
= 1,

so P and P ∗ are equivalent.

1.3 Locally optimal strategy

Locally optimal strategy aims to minimize local expected squared hedging error.

It means we search for processes V and ξ that satisfy

{Vt−1, ξt} := arg min
vt−1,ϑt∈L0(Ω,Ft−1,P )

Et−1

[
(vt−1 + ϑt∆St − Vt)2] (1.19)

VT := H. (1.20)

9
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where ϑ is admissible according to definition 1. Equation 1.19 is known from

Follmer and Schweizer [6], but in our setting we consider ξ to be a self-financing

strategy.

Assumptions introduced in section 1.1 are not sufficient to guarantee existence

and admissibility of strategy ξ.

Theorem 1.3.1. Assume

St :=
t∏
i=1

Ri for t = 1, ..., T, (1.21)

where S0 > 0 and {Rt}t∈τ is a collection of IID random variables with finite second

moment and P (Rt > 0) = 1.

Locally optimal strategy ξ is then well defined and admissible.

Proof. First of all, it is useful to notice that optimal ednowment V and optimal

trading strategy ξ are the same as V ∗ and ξ∗ in theorem 1.2.1 when P and P ∗ are

equivalent, which in this case holds true according to remark 5. Theorem 1.2.1

then claims, that both processes V and ξ are well defined.

As a consequence, we have that V0 < ∞, so E

[(
GV0,ξ

0

)2
]
< ∞. We continue

with mathematical induction. Assume that E

[(
GV0,ξ
t

)2
]
<∞. Then we have

E

[(
GV0,ξ
t+1

)2
]

= E

[(
GV0,ξ
t

)2
]

+ E
[
ξ2
t (∆St)

2]+ 2E
[
ξt∆StG

V0,ξ
t

]
. (1.22)

Observe that it is sufficient to prove E
[
ξ2
t (∆St)

2] <∞. According to the special

case of Holder’s inequality

E
[
ξt∆StG

V0,ξ
t

]
≤ E

[∣∣∣ξt∆StGV0,ξ
t

∣∣∣] ≤√E

[(
GV0,ξ
t

)2
]
E
[
ξ2
t (∆St)

2] <∞.
According to Lemma 4.4 in [1], process LV 2 is a submartingale, i.e. Lt−1V

2
t−1 ≤

Et−1 [LtV
2
t ]. According to remark 5, L is deterministic and we know from theorem

1.2.1 that it is (0, 1]-valued. Thus V 2
t−1 ≤ cEt−1 [V 2

t ] where c = Lt/Lt−1. We know

that VT = H ∈ L2 (P ). Assume Vt = H ∈ L2 (P ) and by mathematical induction

we have

10
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E
[
V 2
t−1

]
≤ cE

[
Et−1

[
V 2
t

]]
= cE

[
V 2
t

]
≤ ∞,

so Vt ∈ L2 (P ) for all t ∈ τ and also Vt ∈ L2 (P,Ft−1) for t = 1, ..., T . Then it

follows from the properties of linear regression 1.19

Et−1

[
(Vt−1 + ξt∆St)

2] ≤ Et−1

[
V 2
t

]
<∞

Observe that Et−1

[
(Vt−1 + ξt∆St)

2] is not only finite, but since

E
[
Et−1

[
V 2
t

]]
= E

[
V 2
t

]
<∞

it also has an integrable majorant. Therefore

E
[
(Vt−1 + ξt∆St)

2] = E
[
Et−1

[
(Vt−1 + ξt∆St)

2]] <∞
i.e. Vt−1 + ξt∆St ∈ L2 (P ). Since Vt−1 is also square integrable, it follows that

ξt∆St is square integrable. This proves the induction 1.22. Hence, locally optimal

strategy ξt is well defined and admissible.

�

This approach finds the perfectly replicable portfolio if it exists. However in

general its existence is not guaranteed. It is also worth mentioning that when

creating a self-financing hedging strategy, we are not allowed to determine initial

endowment in each step. Initial endowment is determined by past trading strategy,

so this strategy is not necessarily self-financing. Only the mean value of portfolio

value at time t equals Vt, the true value of portfolio may be higher or lower than

Vt. Therefore, trading strategy ξ is not globally optimal in general.

In order to investigate the unconditional squared hedging error, define a self-

financing strategy with initial endowment v and trading strategy {ξt} for t =

1, ..., T . Denote

et = Vt−1 + ξt∆St − Vt

as residuals of local optimization.

Then we have for fixed initial endowment v

11
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E

[(
Gv,ξ
T − VT

)2
]

= E

[
ET−1

[(
Gv,ξ
T − VT

)2
]]

= E

[
ET−1

[(
Gv,ξ
T−1 − VT−1 + VT−1 + ξT∆ST − VT

)2
]]

= E

[
ET−1

[(
Gv,ξ
T−1 − VT−1 + eT

)2
]]

= E

[
ET−1

[(
Gv,ξ
T−1 − VT−1

)2

+ e2
T + 2

(
Gv,ξ
T−1 − VT−1

)
(eT )

]]
= E

[(
Gv,ξ
T−1 − VT−1

)2

+ ET−1

[
e2
T

]]
.

The last equality follows from the property of least squares residuals. Since eT

represents residuals of 1.13, ET−1 [eT ] = 0.

Recursive application of this procedure yields

E

[(
Gv,ξ
T − VT

)2
]

= (v − V0)2 +
T∑
t=1

E [ψt] (1.23)

where ψt = Et−1 [e2
t ].

Since L is (0, 1]-valued, it follows from theorem 1.2.1 that ϕ (v) performs better

than ξ. However, in practice it produces similar unconditional expected squared

hedging errors as locally optimal hedging strategy ξ. Since the performance of ϕ (v)

does not compensate for the computational difficulty, we will use locally optimal

strategy.

1.4 Change of Numeraire

In the following chapter a change of numeraire is necessary. We prove correctness

of a special case of such a change.

Theorem 1.4.1. We make the same assumptions as in Theorem 1.3.1.

Minimization problem

min
ϑ
EP̂

(Gv,ϑ
T

ST
− HT

ST

)2
 (1.24)

12
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where we define

dP̂

dP
:=

T∏
t=1

S2
t

Et−1 [S2
t ]
.

has the same admissible, globally optimal endowment-strategy pair V0, ϕ (V0) as

problem 1.2.

Proof. Let us remark that assumptions imply St > 0 almost surely for all t ∈ τ .

Denote Θ (S, P ) set of admissible trading strategies, meaning that ϑ ∈ Θ (S, P ) iff

ϑ • ST ∈ L2 (P ). Also, denote Ŝ := 1/S and Ĝv,ϑ
t := v + ϑ • Ŝt.

We start by employing results of theorem 1.2.1 and showing that

min
ϑ
EP̂

[(
Ĝv,ϑ
t −

HT

ST

)2
]

(1.25)

has optimal and admissible trading strategy.

First, we show Ŝ is P̂ -locally square integrable

EP̂
t−1

[(
1

St
− 1

St−1

)2
]

=
Et−1

[
(1−Rt)

2]
Et−1 [S2

t ]
<∞,

since Rt has finite second moment and denominator is non-zero, which follows from

St > 0. Next, we show H
ST
∈ L2

(
P̂
)

.

EP̂

[(
H

ST

)2
]

=
E [H2]

E [S2
T ]
<∞

since we know that H ∈ L2 (P ) and denominator is again non-zero. It follows from

theorem 1.2.1 that 1.25 has optimal and admissible trading strategy.

Assume ϑ ∈ Θ (S, P ). Set ϑ̂t := Gt−1 − ϑtSt−1. We prove for all t ∈ τ

Ĝ
v/S0,ϑ̂
t =

Gv,ϑ
t

St
.

It is obvious that

Ĝ
v/S0,ϑ̂
0 =

v

S0

=
Gv,ϑ

0

S0

.

We proceed with mathematical induction. Assume

13
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Ĝ
v/S0,ϑ̂
t−1 =

Gv,ϑ
t−1

St−1

.

It follows that

Ĝ
v/S0,ϑ̂
t =

Gv,ϑ
t−1

St−1

+ (Gt−1 − ϑtSt−1)

(
1

St
− 1

St−1

)
=

Gv,ϑ
t−1

St−1

+
Gv,ϑ
t−1

St−1

(
R−1
t − 1

)
+ ϑt

St − St−1

St

=
Gv,ϑ
t−1 + ϑt∆St

St

=
Gv,ϑ
t

St

Employing this result we show that ϑ ∈ Θ (S, P ) ⇒ ϑ̂ ∈ Θ
(
Ŝ, P̂

)
. We know that

for arbitrary v ∈ R, ϑ ∈ Θ (S, P ) implies Gv,ϑ
T ∈ L2 (P ). Thus

EP̂

[(
Ĝ
v/S0,ϑ̂
t

)2
]

=

E

[(
Gv,ϑ
T

)2
]

E [S2
T ]

<∞,

which implies ϑ̂ ∈ Θ
(
Ŝ, P̂

)
. Moreover, we can show that spaces of admissible

strategies Θ
(
Ŝ, P̂

)
and Θ (S, P ) are identical, meaning that

ϑ ∈ Θ (S, P ) ⇔ ϑ̂ ∈ Θ
(
Ŝ, P̂

)
. (1.26)

We have already proved (⇒). Let us now assume ϑ̂ ∈ Θ
(
Ŝ, P̂

)
. Again, for

arbitrary v/S0 ∈ R, ϑ̂ ∈ Θ
(
Ŝ, P̂

)
implies Ĝ

v/S0,ϑ̂
t ∈ L2

(
P̂
)

. Thus

E

[(
Gv,ϑ
T

)2
]

= EP̂

[(
Ĝ
v/S0,ϑ̂
t

)2
]
E
[
S2
T

]
<∞,

which implies ϑ ∈ Θ (S, P ). It is useful to notice

E
[
(v + ϑ • ST −H)2] = E

[
S2
T

]
EP̂

[(
v + ϑ • ST

ST
− H

ST

)2
]

= E
[
S2
T

]
EP̂

[(
v/S0 + ϑ̂ • ŜT −

H

ST

)2
]
.

14
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Using this result and 1.26, we claim that when setting v̂ = v/S0 and ϑ̂t := Gv,ϑ
t−1 −

ϑtSt−1 it follows

min
ϑ̂∈Θ(Ŝ,P̂)

EP̂

[(
v̂ + ϑ̂ • ŜT −

H

ST

)2
]

= min
ϑ∈Θ(S,P )

EP̂

(Gv,ϑ
T

ST
− H

ST

)2


= min
ϑ∈Θ(S,P )

E

(Gv,ϑ
T

ST
− H

ST

)2
 1

E [S2
T ]

and since 1/E [S2
T ] is constant, finite and non-zero and 1.26 holds, it follows that

optimal and admissible endowment-strategy pair of 1.25 is V̂0 = V0/S0 and ϕ̂t =

Gv,ϕ
t−1−ϕtSt−1 and consequently optimal endowment-strategy pair of 1.24 is V0/S0,

ϕ.

�

15



Chapter 2

Implementation of Mean Variance

Hedging

Key task one has to solve when implementing procedures described above is the

efficiency of computations. Therefore, we introduce the following model for stock

price S.

Denote St a stock price at certain time t ∈ τ

St = e(Xt), (2.1)

where

∆Xt = Xt −Xt−1, t = 1, ..., T (2.2)

are iid discrete random variables with n possible values that are assigned certain

probabilities. Let us denote x ∈ Rn a vector of these values and P a vector of

probabilities assigned to these values. Furthermore we assume

• values of x are in descending order,

• xi − xi−1 equals a constant h for i = 2, ..., n,

While the first assumption is only for our convenience, the second one creates an

efficient lattice where the number of possible states of St increases linearly with

time. Figure 2.1 shows an example of such a lattice. Denote u number of elements

in x greater than 0 and d number of elements in x smaller than 0.
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t = 0 t = 1 t = 2 t = 3 t = 4

117.3511

115.0274

112.7497 112.7497

110.5171 110.5171

108.3287 108.3287 108.3287

106.1837 106.1837 106.1837

104.0811 104.0811 104.0811 104.0811

102.0201 102.0201 102.0201 102.0201

100 100 100 100 100

98.0199 98.0199 98.0199 98.0199

96.0789 96.0789 96.0789 96.0789

94.1765 94.1765 94.1765

92.3116 92.3116 92.3116

90.4837 90.4837

88.692 88.692

86.9358

85.2144

Figure 2.1: Efficient lattice

St ∈
{
eX0+kh; k ∈ Z,−td ≤ k ≤ tu

}
.

Since we do not want the efficient lattice to be dependent on risk free rate, we

do not use discounted values.

Denote Rf risk free rate over one hedging period. Self-financing property

changes to

Gv,ϑ
t = RfG

v,ϑ
t−1 + ϑt (St −RfSt−1) . (2.3)

We can now rewrite 1.13 as

{Vt−1, ξt} ≡ arg min
vt−1,ϑt

Et−1

(
(Rfvt−1 + ϑt (St −RfSt−1)− Vt)2) (2.4)

17
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To make better use of the iid characteristic of stock returns, let us denote excess

return R̃t as

St −RfSt−1 = St−1

(
e∆Xt −Rf

)
≡ St−1R̃t (2.5)

Following the same steps as in 1.2, we obtain

λ̃t =
E
[
R̃t

]
St−1E

[(
R̃t

)2
] , (2.6)

1−∆K̃t = 1−

(
E
[
R̃t

])2

E
[
R̃2
t

] , (2.7)

dQ

dP
=

T∏
t=1

1− λ̃tSt−1R̃t

1−∆K̃t

=
T∏
t=1

1− E[R̃t]
E
[
(R̃t)

2
]R̃t

1−∆K̃t

. (2.8)

We reformulate solution and residuals as

RfVt−1 = EQ [Vt] , (2.9)

ξt =
E
[
(Vt −RfVt−1) R̃t

]
St−1E

[(
R̃t

)2
] , (2.10)

et = RfVt−1 + ξtSt−1R̃t − Vt. (2.11)

Last equality leads to expected squared hedging error

E

[(
Gv,ξ
T − VT

)2
]

= R2T
f (v − V0)2 +

T∑
t=1

R
2(T−t)
f E [ψt]. (2.12)

An example of implementation for a european call option is shown in eurocall.m.

2.1 Lookback options

Lookback option is a path dependent option which allows the owner to review the

path of the stock price during the life of the option and use the most suitable stock

price. This definition implies that we are going to need the notions of maximum

18
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MSt ≡ max {Su : u ∈ 0, 1, ...t}

and minimum

mSt ≡ min {Su : u ∈ 0, 1, ...t}

of the stock price S during a period of time (0, t).

We distinquish between two main types of lookback options.

• Fixed strike price

Strike price of these options is agreed at the time of issuance but the option

is exercised in case of a put option at the minimum stock price and in case

of a call option at the maximum stock price during the life of the option.

• Floating strike price

Strike price of this option is determined at the time of maturity. In case of a

put option it depends on the maximum price and in case of a call option on

the minimum stock price during the life of the option.

Payoff of Fixed strike call option is HT = (MST −K)+ and of Floating strike

call option HT = (ST − λmST )+.

The problem we encounter here is that maximum of stock price is not a Markov

process, i.e. the distribution of MSt+1 does not depend only on MSt, but also on

the stock price St. For instance, if St is well below MSt it might happen that the

maximum stock price is not going to change in the next step no matter which path

does the stock price take from St. On the other hand, MSt is very likely to change

if St = MSt.

Therefore, various combinations of stock price and its maximum must be taken

into consideration. While in case of european call option we could imagine the

lattice as a sequence of vectors, we now have a sequence of matrices. The amount

of states is not going to increase linearly with time now, but quadratically.

This rises the need for an efficient lattice that would consider only plausible

combinations of St and MSt.

19



Mean-Variance Hedging for Exotic Options

2.2 Efficient lattice for lookbacks

Let us assume for simplification ∃j ∈ {1, ..., n} such that x (j) = 0. Even if this

assumption is not crucial and all the calculations are possible without it, it is not

too restrictive for small values of h and it facilitates computations.

It is more simple, in the process of determining the plausible combinations of St

and MSt, to work with logarithms of stock price Xt and maximum stock price MXt.

These are easier to work with when we know the initial stock price S0, difference

between price jumps h and time t.

The first obvious statement we can claim is that the maximum stock price will

always be above the stock price. For instance

Xt = X0 + sh⇒ MXt ∈
{
X0 +mh,m ∈ Z : s+ ≤ m ≤ tu

}
.

Value of the stock price may also impose a restriction on maximum stock price

from above. For instance if Xt = X0 − td, it is obvious that the maximum can not

be higher than MXt = X0.

In order to determine this upper bound of MXt, we will find a path of the stock

price beginning in X0 and ending in X0 + sh with the highest possible maximum.

We will let the stock price rise at rate of uh for t̃ periods, make a jump of ñh

and then fall at rate −dh for t− t̃− 1 periods. The upper bound for MXt will be(
t̃u+ ñ+

)
h.

We now have to solve equation

s = t̃u+ ñ+
(
t− t̃− 1

)
d (2.13)

for integers t̃ ∈ (0, t) and −d < ñ ≤ u. After rearranging this equation we get

s+ td− 1

n− 1
= t̃+

ñ+ d− 1

n− 1
(2.14)

where n = d+ 1 + u.

This form is very convenient. We can split the fraction on the left side into

a natural number and a remainder after division by n − 1 which can take values{
0

n−1
, 1
n−1

, ..., n−2
n−1

}
. Since the range of ñ+d−1 is (0, n− 2) we can set the fraction

on the right side to any of the values of the remainder on the left side. This allows
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Figure 2.2: Plausible states of ST and MST

us to set t̃ =
⌊
s+td−1
n−1

⌋
(floor of the fraction on the left side) and be sure that we

can find ñ that satisfies equation 2.14 and its own restrictions

ñ = s+ d (t− 1)− t̃ (n− 1) .

An example of an efficient lattice of possible states for

x = (−0.04,−0.02, 0, 0.02, 0.04)

S0 = 100

T = 3

is depicted on Fig 2.2. Numbers of states in individual columns create a sequence

of numbers starting with term 1 + td. Difference between terms of this sequence is

d and one term is repeating itself u times (with the exception of the first term).

This approach is implemented in lookback efficient lattice.m.

Now that we can find all the possible combinations of St and MSt it is obvious

that storing this information in a matrix would be very space inefficient. Since

we can create the sequence of numbers of elements in individual columns, we can

arrange all the necessary values in one vector and use this sequence to keep track of

which value is related to which stock price and maximum stock price. This approach
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enables us to work with higher dimensions of x and more hedging intervals, however,

it increases computational difficulty.

2.3 Dimension reduction

Another possibility we may consider in order to increase efficiency of computing is to

decrease the number of necessary state variables. We demonstrate this reduction on

a special case of floating strike put option. Let us remark that the same reduction

is easily achieved also for floating strike call options if we replace maximum for

minimum.

We have already stated that the problems we encountered when evaluating fixed

strike lookback options were due to process MXt not having the Markov property.

Furthermore, the payoff of a floating strike lookback option depends not only on

MXt, but also on Xt. Therefore, we have to find a process with Markov property

that would contain the necessary information to determine the option price at time

of maturity.

Let us define process

DX = MX−X, (2.15)

where DXt represents the distance of the stock price from the maximum stock price

at time t. It is obvious that DXt has the Markov property and it behaves just as

−Xt except when it is close to zero, since this difference can not be negative. If,

for instance, the distance from maximum DXt equals 0.2 and Xt in the next period

rises by 0.6, DXt+1 drops to zero and will remain zero until the stock price drops

again, creating a gap between the stock price and the maximum.

After introducing DXT into the payoff of floating price lookback option we get

(λMST − ST )+ =
(
λeMXT − eXT

)+
(2.16)

= ST
(
λeDXT − 1

)+
. (2.17)

We have obtained a Markov process, but clearly it does not contain enough infor-

mation to evaluate the option and we need ST also. It turns out that in the process
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of evaluating the option, it is more efficient to work with HT
ST

rather than HT . This

leads us to the idea of changing numeraire to stock price S.

Let us remark that this reduction is also possible for fixed strike lookback op-

tions. In this case however, we need to define new process X̄ as X̄t = XT−t −XT .

We can then rewrite MXT − X0 = MX̄T − X̄T = DX̄T . This leads to the form

of payoff (for call option)
(
eMXT −K

)+
= S0

(
eDX̄T − K

S0

)+

. Using process DX̄

again reduces the dimension.

2.4 Change of Numeraire

Our goal is to transform 2.4 to a form where we can use HT
ST

. We employ results of

theorem 1.4.1 and we write

{Vt−1, ξt} = arg min
vt−1,ϑt

Et−1

[
(Rfvt−1 + ϑt (St −RfSt−1)− Vt)2]

= arg min
vt−1,ϑt

Et−1

S2
t

(
Rfvt−1 + ϑtSt−1R̃t

St
− Vt
St

)2


= arg min
vt−1,ϑt

Et−1

[
S2
t

]
EP̃
t−1

(Rfvt−1 + ϑtSt−1R̃t

St
− Vt
St

)2


= arg min
vt−1,ϑt

EP̃
t−1

(Rfvt−1 + ϑtSt−1R̃t

St
− Vt
St

)2
,

where we define change of measure from P to P̂ as

dP̂

dP
:=

T∏
t=1

S2
t

Et−1 [S2
t ]
.

It follows from the IID property of stock returns that change of measure can be

rewritten as

dP̂

dP
:=

T∏
t=1

R2
t

Et−1 [R2
t ]
.

To simplify calculations we present auxiliary results
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St
St−1

= Rt,

Rfvt−1 + ϑtSt−1R̃t

St
= Rf

vt−1

St−1

R−1
t + ϑtR

−1
t R̃t.

This leads to

{
Vt−1

St−1

, ξt

}
= arg min

vt−1,ϑt
EP̂
t−1

[(
Rf

vt−1

St−1

R−1
t + ϑtR

−1
t R̃t −

Vt
St

)2
]
,

VT
ST

:=
HT

ST
.

Applying the same procedure with Frisch-Waugh-Lovell theorem as in section 1.2,

auxiliary regression yields

λ̂t = arg min
ϑt

EP̂
t−1

[(
R−1
t − ϑtR̃tR

−1
t

)2
]

=
EP̂
t−1

[
R̃tR

−2
t

]
EP̂
t−1

[
R̃2
tR
−2
t

]
and sum of squared residuals

1−∆K̂t = EP̂
t−1

[
R−2
t

]
− λ̂tEP̂

t−1

[
R̃tR

−2
t

]
.

Results of Frisch-Waugh-Lovell theorem imply

Rf
Vt−1

St−1

= EP̂
t−1

[
R−1
t − λ̂tR̃tR

−1
t

1−∆K̂t

Vt
St

]
, (2.18)

ξt =
EP̂
t−1

[(
Vt
St
−RfR

−1
t

Vt−1

St−1

)
R̃tR

−1
t

]
E
[
R̃t

2
R−2
t

] , (2.19)

et
St

= Rf
Vt−1

St−1

R−1
t + ξtR̃tR

−1
t −

Vt
St
. (2.20)

It is interesting to notice that by rewriting 2.18 as
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RfVt−1 = EP̂
t−1

[
R−2
t − λ̂tR̃tR

−2
t

1−∆K̂t

Vt

]
,

would yield again a risk neutral measure.

The only value left to calculate is the unconditional expected squared hedging

error. First,we observe how self financing condition changes.

Gv,ϑ
t

St
= Rf

Gv,ϑ
t−1

St − 1
R−1
t + ϑtR̃tR

−1
t . (2.21)

Then we rewrite hedging error in our setup.

E

[(
Gv,ξ
T − VT

)2
]

= E

ET−1

S2
T

(
Gv,ξ
T

ST
− VT
ST

)2


= E

ET−1

S2
T

(
Gv,ξ
T

ST
− VT
ST

)2


= E

ET−1

S2
T

(
Rf

Gv,ξ
T−1

ST−1

R−1
T −Rf

VT−1

ST−1

R−1
T +Rf

VT−1

ST−1

R−1
T +RfξT R̃TR

−1
T −

VT
ST

)2


= E

ET−1

S2
T

R2
fR
−2
T

(
Gv,ξ
T−1

ST−1

− VT−1

ST−1

)2

+

(
eT
ST

)2


= E

S2
T−1R

2
f

(
Gv,ξ
T−1

ST−1

− VT−1

ST−1

)2

+ ET−1

[
S2
T

(
eT
ST

)2
]

= E

S2
T−1R

2
f

(
Gv,ξ
T−1

ST−1

− VT−1

ST−1

)2

+ S2
T−1ET−1

[
R2
T

]
EP̂
T−1

[(
eT
ST

)2
]

Bearing in mind IID property of stock returns we can denote

ER := Et−1

[
R2
t

]
(2.22)
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for all t = 1, ..., T . By recursive application we have

E

[(
Gv,ξ
T − VT

)2
]

= (v − V0)2 + S2
0

T∑
t=1

R
2(T−t)
f E

[
ψ̃t

]
. (2.23)

ψ̃t = ER EP̂
0

[
ER EP̂

1

[
...ER EP̂

t−1

[(
et
St

)2
]
...

]]
(2.24)

Even if seemingly difficult, it proves easy enough to implement in an algorithm.

Not only have we transformed the problem to a form where we can use HT
ST

, but

introducing processes V
S

and e
S

ensures that we do not need to keep track of S during

calculations. Therefore, we only need DX as a state variable and the difficulty of

this computation is the same as with european call options.

This approach is implemented in lookback dimension reduction.m.
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Chapter 3

Model for Stock Returns

In order to apply the described framework, we need to find feasible values of ∆X

and their respective probabilities. One of the possible solutions is to use empirical

distribution and estimate these values directly from the data set using histogram.

However, in case we want to change the hedging interval or h, this approach forces

us to store all the empirical data so that we could recalculate weights of individual

bins of the histogram.

If we make assumptions about the density of returns of stock price process S, we

can determine respective probabilities of x using numerical integration. Changes

in initial setting would then become only changes in parameters.

3.1 Brownian motion

First we will stay in the framework of Black and Scholes and we assume stock price

S to be a geometric Brownian motion

dS

S
= µdt+ σdW

This implies that logarithms of returns over period t∗ are normally distributed

(Xt+t∗ −Xt) ∼ N

(
µt∗ − σ2t∗

2
, σ2t∗

)
.

Values µ and σ2 are easily estimated from a data set using estimates of first and

second moments of log returns. On the other hand, this model does not allow us
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Figure 3.1: Data fitted with normal distribution

to model skewness or kurtosis of the data and it does not allow for price jumps.

Empirical evidence show skewness and fat tails of the returns that deviate from

normality. A more general framework is therefore desirable.

Figure 3.1 shows a histogram of Google daily returns over a period of two years

fitted with normal distribution.

3.2 Levy Processes

Levy processes are becoming very popular in the fields of physics, engineering,

economics and, of course, mathematical finance. They have the capacity to desribe

observed reality more accuretly than Brownian motion based models.

According to [7] we define Levy process as follows

Definition 6. A cadlag, adapted, real valued stochastic process L = (Lt)0≤t≤T with

L0 = 0 almost surely is called a Levy process if the following conditions are satisfied:

• L has independent increments, i.e. Lt − Ls is independent of Fs for any

0 ≤ s < t ≤ T .
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• L has stationary increments, i.e. for any 0 ≤ s, t ≤ T the distribution of

Lt+s − Lt does not depend on t.

• L is stochastically continuous, i.e. for every 0 ≤ t ≤ T and ε > 0:

lim
s→t

P (|Lt − Ls| > ε) = 0.

Processes are connected with their distributions by the famous Lévy-Khintchine

formula ([7]).

3.2.1 Normal Inverse Gaussian

The normal inverse Gaussian distribution (NIG) is a special case of general hyper-

bolic distribution. It is a normal variance-mean mixture with mixing density being

the inverse Gaussian distribution. It was introduced to finance by Barndorff-Nielsen

in 1995 as a model for stock returns, later also used in modeling turbulence.

We choose this distribution because of its properties. First of all, density func-

tion of NIG is known explicitly, so we can employ numerical integration in order to

determine values of x and their respective probabilities. NIG is also closed under

convolution, which is important when rescaling the hedging period.

The density of NIG is

fNIG =
αδ

π

exp
(
δ
√
α2 − β2 + β (x− µ)

)
√

(x− µ)2 + δ2

K1

(
α

√
(x− µ)2 + δ2

)
, (3.1)

where K1 is the modified Bessel function of the second kind.

Density function is dependent on four parameters (α, β, µ, δ), where 0 ≤ |β| <
α, δ > 0 and −∞ < µ < ∞. Parameter α controls for the steepness of the

density and tail behaviour. Large values of α imply light tails. β is the skewness

parameter, where β < 0 implies skewness to the left and β > 0 implies skewness

to the left. For β = 0 means that density function is symmetric around µ, which

is therefore interpreted as translation parameter. Finally, δ is interpreted as the

scale parameter.
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Figure 3.2: Data fitted with normal and NIG distribution

Characteristic function is defined as

Φ (ω) = eδ
√
α2−β2

e−δ
√
α2−(β+iω)2eiµω. (3.2)

Using characteristic function, we can calculate first four moments of NIG distribu-

tion

mean = µ+
βδ√
α2 − β2

(3.3)

variance =
α2δ

(α2 − β2)3/2
(3.4)

skewness =
3β

α
√
δ
√
α2 − β2

(3.5)

kurtosis =
3
(

1 + 4β
2

α2

)
δ
√
α2 − β2

(3.6)

It is possible to estimate parameters of NIG by estimating these four moments and

solving 4 equations with 4 unknowns. Necessary m.files and data can be found

30



Mean-Variance Hedging for Exotic Options

in folder Normal Inverse Gaussian. Method of moments should be according to

[8] replaced by ohter methods due to its poor statistical behaviour, however, it is

sufficient for our purposes.

When rescaling the hedging period, we use the property of NIG being closed

under convolution. If X ∼ NIG (α, β, δ1, µ1) and Y ∼ NIG (α, β, δ2, µ2), then

X + Y ∼ NIG (α, β, δ1 + δ2, µ1 + µ2) . (3.7)

It means that a change of hedging interval is accounted for by changing parameters

δ and µ in proper proportion.

Figure 3.2 shows again a histogram of Google daily returns over a period of

two years fitted with normal (red line) and normal inverse Gaussian (green line)

distribution.

3.3 Numerical Integration

Assume we know the density function f (x) of ∆X. First we determine the relevant

interval (A,B) for values of x. In case of normal distribution we use (µ− 5σ, µ+ σ)

and for normal inverse Gaussian we take quantiles of 0.1% and 99.9% Numerical

integration allows us to approximate integral of density function as a sum. We try

to model this sum so that we can proclaim its terms to be respective probabilities

of x.

3.3.1 Midpoint Rule

Midpoint rule is an approximation of integral of function f (x) on interval (a, b) as

∫ b

a

f (x)dx ≈ (b− a) f (a+ b− a/2) . (3.8)

It follows that the composite midpoint rule has the form of

∫ b

a

f (x)dx ≈
n−1∑
i=0

hf (a+ ih+ h/2) (3.9)
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where h = (b− a) /n. Assuming that function f (x) is continuous, we can derive

the approximation error. We defer this derivation to Appendix. Approximation

errors of the simple and composite rule are O (h3) and O (h2) respectively.

We rewrite composite midpoint rule in our setting as

n∑
i=1

hf (xi) (3.10)

where h is an equal distance between values of x. Then we assign value xi a

probability hf (xi).

3.3.2 Trapezoid Rule

Trapezoid rule approximates integral of function f on interval (a, b) as∫ b

a

f (x)dx ≈ (b− a)
f (a) + f (b)

2
(3.11)

It follows that composite trapezoid rule has the form of

∫ b

a

f (x)dx ≈
n−1∑
i=0

h
f (a+ ih) + f (a+ (i+ 1)h)

2
(3.12)

where h = (b− a) /n.

Approximation error of trapezoid and composite trapezoid rule is derived in a

similar way as for midpoint rule and we reach the same results. Error of trapezoid

rule is O (h3) and error of composite trapezoid rule is O (h2).

Again, we rewrite composite trapezoid rule in our setting as

n∑
i=1

h
f (xi − h/2) + f (xi + h/2)

2
(3.13)

where h is an equal distance between values of x. Then we assign value xi a

probability hf(xi−h/2)+f(xi+h/2)
2

.
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3.3.3 Cumulative Distribution Function

When we stay in the framework of Black and Scholes, we can employ cumulative dis-

tribution function of normal distribution. We assign xi probability Φ
(
xi+h/2−µ

σ

)
−

Φ
(
xi−h/2−µ

σ

)
where Φ is a cumulative distribution function of N (0, 1) distributed

random variable.

Program codes for individual methods can be found in folder Model for stock

returns.
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Chapter 4

Results

In this chapter we finally present numerical results of above described calculations

and compare them with results of Black and Scholes. The calculations are appli-

cable to both fixed and floating strike options and we choose to demonstrate our

results on floating strike put option. According to [9], price of a floating strike

lookback put option in Black-Scholes model is

Pfloating = −S0N (−d′) + e−rTMS0N
(
−d′ + σ

√
T
)

+

e−rT
σ2

2r
S0

[
−
(

S0

MS0

)− 2r
σ2

N

(
d′ − 2r

σ

√
T

)
+ erTN (d′)

]
,

where

d′ =

(
ln

S0

MS0

+ rT +
1

2
σ2T

)
/σ
√
T

and N is the cumulative distribution function of N (0, 1). In Black-Scholes model,

there is of course no hedging error.

We used Google historical prices to model stock returns. Since we compare our

results only with Black-Scholes model, we can choose other parameters arbitrarily

(within sensible bounds). We apply our framework to compute price of floating

strike put option with time to maturity one year. We assume S0 = MS0 = 100 and

risk free rate of return is 2%. Let us denote length of rehedging interval ∆t. We

will change ∆t (which is equivalent to changing the number of rehedging periods)
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and difference h and observe convergence of mean value process and unconditional

expected squared hedging error.

4.1 Brownian motion

First we model data in accordance with Black-Scholes model (section 3.1). We

therefore expect our model to behave in limit in accordance with Black-Scholes

model. In other words, we expect V0 to converge to price of the option as described

above and expected squared hedging error to converge to 0.

4.1.1 Convergence in Number of Rehedging Intervals

In each iteration, we double the number of rehedging intervals starting with 10,

while we keep the dimension of x constant. Let us remark that keeping h constant

is not wise in this setting, since the relevant interval (A,B) diminishes with ∆t.

In other words, if we decrease length of rehedging interval ε times, we decrease

h
√
ε times. Results are depicted in figures and table 4.1. Stars represent values

of mean value process and expected squared hedging error. Red lines represent

mean value process of Black-Scholes (price of the option) and its hedging error

(0). Obviously, our model is in limit approaching values of standard Black-Scholes

model. When dividing the length of rehedging interval by 2, differences between

consecutive values of both, mean-value process and expected squared hedging error,

decrease approximately by 1/
√

2. We can say that the speed of convergence is

directly proportional to square root of ∆t.

4.1.2 Convergence in Difference h

In this case we keep number of rehedging intervals constant, decrease length of

difference h and observe how this richer stock lattice influences the solution. Mean-

value process and expected squared hedging error really seem to have the same error

as employed numerical integration methods, since differences between consecutive

values are decreasing approximately four times with respect to the previous one,

while we keep dividing the difference h by 2 (figure 4.2).
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Figure 4.1: Convergence of mean-value process and expected squared hedging error
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Figure 4.2: Convergence of mean-value process and expected squared hedging error
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4.2 Normal Inverse Gaussian

We perform the same calculations as in the previous section, but now we model

stock returns as a NIG process (as described in section 3.2.1).

4.2.1 Convergence in Number of Rehedging Intervals

According to the results (figure4.3), values of this model are not converging to

values of standard Black-Scholes model.

4.2.2 Convergence in Difference h

Since we use the same numerical integration methods as in section 4.1.2, we observe

the same convergence (figure 4.4).
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Chapter 5

Conclusions

We introduced general framework of unconditional expected squared hedging er-

ror minimization. We introduced simplifications and modifications (change of nu-

meraire) required for efficient implementation for lookback options and we proved

two theorems (1.3.1 and 1.4.1) to support existence of proposed solution. We sug-

gested two models for stock returns (Brownian motion and normal inverse Gaus-

sian) and estimated parameters of efficient lattice using numerical integration. We

have then analysed convergence of mean-value process and expected squared hedg-

ing error in length of rehedging interval, while keeping the number of possible states

of stock price over one rehedging period constant. When we stayed in the frame-

work of Brownian motion for stock returns, calculated values of mean-value process

and expected squared hedging error were limitely approaching values of standard

Black-Scholes model and speed of this convergence was directly proportional to

the square root of length of rehedging interval. This convergence was violated as

a consequence of introducing normal inverse Gaussian for stock returns into the

model.

41



Chapter 6

Appendix

6.1 Approximation Error of Midpoint Rule

It follows from continuity of f that there is a function F (x) such that F ′ (x) = f (x)

and
∫ b
a
f (x)dx = F (b) − F (a). Let us rewrite both terms as a Taylor expansion

in the point a+ h
2
.

F (a) = F

(
a+

h

2

)
− h

2
f

(
a+

h

2

)
+
h2

8
f ′
(
a+

h

2

)
− h3

48
f ′′
(
a+

h

2

)
+O

(
h4
)

F (b) = F

(
a+

h

2

)
+
h

2
f

(
a+

h

2

)
+
h2

8
f ′
(
a+

h

2

)
+
h3

48
f ′′
(
a+

h

2

)
+O

(
h4
)

So we get

F (b)− F (a)− hf
(
a+

h

2

)
=
h3

24
f ′′
(
a+

h

2

)
+O

(
h4
)

We have shown that the error of the midpoint rule is O (h3). It is very straight-

forward now to calculate the error of the composite midpoint rule. We will divide

the interval (a, b) into n intervals with length h = b−a
n

and write the composite

midpoint rule as
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∫ b

a

f (x)dx ≈
n−1∑
i=0

hf (a+ ih+ h/2) (6.1)

Since this is a sum of simple rules, its error is n times the error of the simple

rule.

n

(
h3

24
f ′′
(
a+

h

2

)
+O

(
h4
))

=

b− a
h

(
h3

24
f ′′
(
a+

h

2

)
+O

(
h4
))

=

h2 (b− a)

24
f ′′
(
a+

h

2

)
+O

(
h3
)

The approximation error of the composite midpoint rule is O (h2).
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[1] ČERNÝ, Aleš, KALLSEN,Jan. On The Structure of General Mean-Variance Hedging

Strategies. The Annals of Probability 35(4), 1479-1531

[2] ČERNÝ, Aleš, KALLSEN,Jan. (2009). Hedging by Sequential Regressions Revisited.

Mathematical Finance. (http://ssrn.com/abstract=1004706)
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